Users' Manual 5.8

Table of contents

1. Knowledge-Builder 1
1.1. Basics 1
1.1.1. The Knowledge Builder application 1
1.1.2. Building blocks 4
1.1.3. Type hierarchy - Inheritance 7
1.1.4. Create and edit objects 9
1.1.5. Graph editor 12
1.2. Definition of schema / model 23
1.2.1. Define types 23
1.2.2. Relation types and attribute types 32
1.2.3. Model changes 43
1.2.4. Representation of schema in the graph editor 47
1.2.5. Metamodeling and advanced constructs 50
1.2.6. Indexing 59
1.3. Searches / Queries 70
1.3.1. Structured queries 70
1.3.2. Simple Search / Fulltext search 90
1.3.3. Search pipeline 97
1.3.4. Model "Hit" 114
1.3.5. Search in the Knowledge Builder 116
1.3.6. Special cases 117
1.4. Folder and registration 121
1.4.1. Registration 121
1.4.2. Move, copy, delete 121
1.4.3. Folder settings 122
1.5. Import and export 123
1.5.1. Mapping of data sources 123
1.5.2. Attribute types and formats 165
1.5.3. Configuration of the export 167
1.5.4. RDF-import and -export 171
1.5.5. External Index in Elasticsearch 182
1.5.6. Restore deleted individuals from a back up 198

1.5.7. Transport selected schema 201

Users' Manual 5.8 - 1. Knowledge-Builder

1. Knowledge-Builder

1.1. Basics

When using i-views, databases work the way people think: simple, agile and flexible. That is why in
i-views many things are different than relational databases: we do not work with tables and keys,
but with objects and the relationships between them. Modelling of the data is visual and oriented
towards examples so that we can also share it with users from the specialist departments.

With i-views we do not set-up pure data storage but intelligent Knowledge Graphs which already
contain a lot of business logic and with which the behaviour of our application may, to a large
extent, be defined. To this end we use inheritance, mechanisms for conclusions and for the
definition of views, along with a multitude of search processes which i-views has to offer.

Our central tool is the knowledge builder, one of the core components of i-views. Using the
knowledge builder we can:

define the scheme but also establish examples and, above all, visualise

define imports and mappings from a data source

e phrase requests, traverse graph data, process strings and calculate proximities

define rights, triggers and views

All these functions are the subject of this documentation.

1.1.1. The Knowledge Builder application

The executable application "kb" is an acronym for the i-views "Knowledge Builder" by which we
administer the Knowledge Graph. When talking about the Knowledge Builder, we use special terms
for orientation:

e Backend: The Knowledge Builder application (KB) by itself

¢ Frontend: Web frontend which is displayed in the browser by means of the viewconfiguration
mapper application (VCM)

¢ Volume: The volume comprises all file data of the Knowledge Graph which is accessed by the
Knowledge Builder.

¢ Semantic element: A semantic element is the smallest building block of the Knowledge Graph.
An element can be either a type or an instance thereof, comprising object types and their
objects, attribute types and their attribute instances as well as relation types and the individual
relations.

When we start the Knowledge Builder application, the login dialog is shown:

Users' Manual 5.8 - 1.1. Basics

EE Knowledge Builder — a pod
Server

Semantic network

User

Password

- Start || Quit About

e Server: For the server, there are three kinds of server access available:

o (without server) : The volume of the Knowledge Graph can be accessed via the local
filesystem. In this case, the volume needs to be located within a "volumes" folder which is
located in the same directory as the Knowledge Builder application itself. Since no mediator
is in use, only one client application can access the volume at the same time - for example,
the Knowledge Builder or the bridge for web frontend access.

o

localhost : This option is for accessing the volume via a mediator which is located int the
same directory as the volumes folder and the Knowledge Builder. The mediator is an
additional application that allows simultaneous access of different client applications, for
example Knowledge Builder and bridge for web frontend access.

o

Server address and server port : Since the Knowledge Builder is preferably used as one of
many clients that grants collaborative access to the Knowledge Graph volume on a server
via a mediator, this is the most often used kind of access. Server address an port are
written colon-separated in forms of serveraddress:portnumber .

o Knowledge Graph: The name of the relevant existing volume must be specified here. **
e User: User name for volume access.

e Password: Password for volume access.

NOTE For creating a new volume, the admin tool is needed.

The Knowledge Builder user interface is divided into following areas:

Users' Manual 5.8 - 1.1. Basics

o m|

gl Instances | Subtypes | Schema
FOLDER i =
0 XTOAHD

& Working folder (workingFolder) fOrganizer}
& Private &

W Recently accessed objects

Name

£ Query results
Object

KNOWLEDGE GRAPH
4 () Object Types

osipe) @ >0
4 * Relation types
" Inferred relation
" User relation
£ Attribute Types

TECHNICAL

» & Rights (deactivated)
» & Registered objects

» 4% REST Subtype
» @ View configuration Obj ect
» £¥ Entire semantic network

¥ & Core properties Attributes «
Name = ‘Objed
o Add attribute
< > | Relations

* o Organizer: Type hierarchy view on the left side of the Knowledge Builder screen.

* 9 Instance list/object list/list view: Upper right part of the Knowledge Builder that shows the
instances of the respective type which has been selected in the organizer. Instance lists only contain
table views. If severeal table views are defined for one type, they are separated by tabs.

° e Detail editor / detail view: Lower right part of the Knowledge Builder in which a detailed
view of the instance is shown which has been selected in the instance list. The detail view is
able to contain several type of views.

Therefore, editing properties of a semantic element is done by first selecting the subtype in the
organizer o, then selecting the instance of the list view 9 and by editing the properties in the
detail editor 9

Besides the areas, there are further actions and selections available as follows:

Users' Manual 5.8 - 1.1. Basics

' 0

FOLDER
& Working folder (workingFolder) {Organizer}
W Private
@) Recently accessed objects
£ Query results
KNOWLEDGE GRAPH
4 O Object Types
® Subtype
4 " Relation types
" Inferred relation
& User relation
£ Attribute Types
TECHNICAL

» a Rights (deactivated)

» & Registered objects

» 4% REST

» W View configuration

¥ £¥ Entire semantic network
» £¥ Core properties

Community

@

DI Instances Subtypes Schema 9 Eﬁm
o|ls|>]|2o| o EELER 9’(7{'5"
4
o
Subtype
Object p

Attributes

Name = Object

Add attribute

Relations

Add relation

0 Global search: The global search works for all elements of the Knowledge Graph. Additional

searches can be added via drag&drop of queries from the folders into the search input field.

J 9 List tabs: The list views are divide up into instance list and subtypes list. As a new feature

since i-views 5.4, a schema tab provides a sole detail editor for schema definition of properties
and property types for the selected subtype.

J e Global actions: The global context menu of the Knowledge Builder offers element-
independent actions for the user. For more information, see the respective chapter at the
beginning of the i-views Knowledge Builder Technical Handbook.

J @ Global settings: The global settings provide user dependent settings for every user and
administrative settings which are available for administrators only. For more information, see
the respective chapter at the beginning of the i-views Knowledge Builder Technical Handbook.

o e New window: This button allows opening listed views, such as import mappings etc. so that
the window keeps persistent despite a different selection in the organizer.

J @ Context menu: This context menu provides all actions concerning the relevant semantic
element. Clicking onto the big circle opens the context menu, clicking on one of the small
circles opens the element in a graph editor. The big circle is also for dragging and dropping the
element into the graph editor or a semantic elements folder.

for collaborative work.

0 Community: If several users are logged in, the are listed here and can be contacted via chat

For further information, see the following chapters.

1.1.2. Building blocks

The basic components of modelling within i-views are instances and their types:

Users' Manual 5.8 - 1.1. Basics

e objects

e relations

e attributes

e object types

e relation types
e attribute types

Examples for specific objects are John Lennon, the Beatles, Liverpool, the concert in Litherland
Town Hall, the football world cup in Mexico in 1970, the leaning tower of Pisa, etc.:

+° The Beatles

-I-° John Lennon -l-. Concert in Litherland Town Hall

We can link these specific objects together through relationships: "John Lennon is a member of the
Beatles", "The Beatles perform a concert in Litherland Town Hall".

+° The Beatles

-I-° John Lennon -l-. Concert in Litherland Town Hall

Additionally, we have introduced four types here: specific objects always have a type, e.g. the type
of persons, type of the cities, the events or the bands — types which you may freely define in your
data model.

Users' Manual 5.8 - 1.1. Basics

p @ Subtypes Schema E ﬁ' D

tw ODBEA@E~-:e:
MUSIC EXAMPLE
4 O Object Types |6;
4 3 Actor ﬁlame) -
4 32 Organization 3 Doars Down
42 Band Air
2 Person Alice in Chains
» () Actor Role Amplifier
b “ Instrument Cream
» ¥ Mood Dream Theater
() Opus Franz Ferdinand
» @ Place Genesis
¥ 'y Topic Gong
» o Relation types Guns N' Roses
v O Attribute Types Hawkwind
TECHNICAL Jamiroquai
' G Rights Kaiser Chiefs
3¢ Trigger Kasabian
» & Registered objects King Crimson
» £ Printing component Kraan
b 4% REST Kruder & Dorfmeister
» W View configuration v LKWSS J v

The main window of i-views: on the left-hand side the types of objects, on the right-hand side the
respective, specific objects — here we can also see that the types of the i-views Knowledge Graphs
are within a hierarchy. You will find out more about the type of hierarchy in the next paragraph.

Even the relationships have different types: between John Lennon and the Beatles there is the
relationship "is member of"; between the Beatles and their concert the relationship could be called
"performed at" — if we want to generalise more, "participates in" is perhaps a more practical type of
relationship.

+° The Beatles

plays on event

is member of

'I-o John Lennon 'I-. Concert in Litherland Town Hall

The same applies for attributes: in the case of a person these may be the name or the date of birth.
Specific persons (objects of the type 'person') may then have name, date of birth, place of birth,
address, colour of eyes, etc. Events may have a location and a time span. Attributes and relations
are always defined with the object itself.

Users' Manual 5.8 - 1.1. Basics

1.1.3. Type hierarchy - Inheritance

We can finely or less finely divide types of objects: we can put the football world cup in 1970 into
the same basket as all the other events (the book fair in 2015, the Woodstock festival, etc.), then we
only have one type called "event" or we differentiate between sport events, fairs, exhibitions, music
events, etc. Of course, we can divide all these types of events even finer: sport events may, for
example, be differentiated by the types of sports (a football match, a basket ball match, a bike race,
a boxing match).

In this manner we obtain a hierarchy of supertypes and subtypes:

@ Event

@ Fair 0 Concert Sport Event

Cycle Race Football Competition Boxing Match

The hierarchy is transitive: when we ask i-views about all events, not only all specific objects are
shown which are of type event, but also all sports events and all bike races, boxing matches and
football matches. Hence, since the type "boxing match" is not only a subtype of "sport event", i-
views will reject a direct supertype / subtype relationship between event and boxing match — with a
note that this connection is already known.

The hierarchical structure does not necessarily have to have the structure of a tree — a type of
object may also have several upper types. However, an object may only have one type of object.

If we then wish to join the aspects of a concert and major event we cannot do this in the specific
concert with Paul McCartney because we need the type of object "stadium concert" in order to do
this:

Users' Manual 5.8 - 1.1. Basics

@ Event

[] [] [] Sport Event

L}

0 Concert @ Major Event Minor Event 0 Football Competition

o

0 Stadium Concert o Club Concert @ World Cup @ District-League Competition

+. Paul McCartney - 1990 in Estadio Maracana @ Football Werld Cup 1970 Mexico

Type hierarchy with multiple inheritance

The affiliation of specific objects with a type of object is also expressed as a relation in i-views and
may as such be queried:

o Stadium Concert

-I-. Paul McCartney - 1990 in Estadio Maracana

When do we differentiate between types at all? Types do not only differ in icon and colour — their
properties are also defined in the types and when queried, the types can also easily be filtered. The
inheritance plays a major role in all these questions: properties are inherited, icons and colours are
inherited and when, in a query, we say that we wish to see events, all objects of the subtypes are
also shown in the results.

Users' Manual 5.8 - 1.1. Basics

@ AU -.__(participates in)

~—
~——

Qe
ven
i)
i]
) 0
o (is member of)
Person s———_____
----- b _ .
Organization 0 Con
o ° ?
Q Club Concert
-I-@ Band
+° John Lennon (i]
i]
-I-. Concert in Litherland Town Hall
is member of

participatesin

+° The Beatles

Inheritance makes it possible to define types of relations (and types of attributes) further up in the
hierarchy of the object type and hence use them for different types of objects (e.g. for bands and
other organisations.

1.1.4. Create and edit objects
Creating specific objects

Specific objects (in the knowledge builder they are called "instances") may be created everywhere
within the knowledge builder where types of objects can be seen. Based on the types of objects,
objects can be newly created via the context menus.

Users' Manual 5.8 - 1.1. Basics

Subtypes Schema
W/ FOLDER .
X=Z2wO0%LY
MUSIC EXAMPLE

a0 Object Types L
4 @ Actor Name

4 23 Organization % Name %
4d Band Name:
& Person [Ringo Stard] |
14 O Actor Role I]
P %% Instrument —— el
» @ Mood Alex Kapranos
b J¥ Opus Alex Lifeson
» & Place Alexander Weyland
» Y Topic

An object can be created by means of the button "new" and using the named entered

In the main window below the header there is the list of specific objects already available. In order
that objects cannot inadvertently be created twice, the name of the object can be keyed into the
search button in the header. The search does not, by default, differentiate between upper and

lower case and the search term may be cut off left and right (supplement by placeholders "*" and
II?II):

| p| Instances Subtypes Schema E ﬁ' D
-~
e o[/ 5o PRES YD
MUSIC EXAMPLE
a0 Ohbject Types |PEU|t |9
4 9 Actar Name .
b 42 Organization Paul Hankin
3 Person Paul McCartney
L4 O Actor Role Paul Thompson
» % Instrument Paul Thomson
» @ Mood
» J3 Opus
» @& Place
Y Topic

Editing objects
After entering and confirming the name of the object, further details for the object created may be

keyed into the editor. The object may be assigned attributes, relations and extensions by using the
respective buttons.

10

Users' Manual 5.8 - 1.1. Basics

Person

Ringo Starr

Attributes

P Name = |Ringo Starr
Relations
Extensions

When editing an object we can, in addition to linking it to another object, also generate the target
of the link if the object does not already exist.

For example, members of a music band are documented completely. Via the relation, we want to
link the member Ringo Starr with the object "The Beatles". If it is not yet clear whether the object
Ringo Starr is already documented in i-views you can use the search button to ascertain this,

Band
The Beatles @

Attributes
» MName = |The Beatles |
Add attribute
Relations

Is Performer OFf Abbey Road

Has Member = John Lennon

has Place = Liverpoal

Has Member = Paul McCartney

Has Member = || | 2

Add relation

11

Users' Manual 5.8 - 1.1. Basics

or via the icon button, select 'Choose relation target' .ﬁ from a searchable list with all feasible
targets of relation.

s
v0

Ringo*® 9

Name

Ringo Starr

P MName Ringo Starr
Is Instrumental Musician On Come Together
Plays Instrument Drums
Extension Musician

1 Entry Create new Cancel

Deleting the relation has a member may be accomplished in two different ways:

1. Delete in the context menu using the button further actions E and the option ' delete '.

2. With the cursor over the button further actions E and holding down the Ctrl key.

The target object of the relation itself will not be deleted as a result of this however. If an object has

to be deleted this is done via the button x in the main window or via the context menu directly
on this object.

Objects may also be created using the graph editor. This process is described in the following
paragraphs.

1.1.5. Graph editor

1.1.5.1. Introduction graph editor

By using the graph editor, the Knowledge Graph with its objects and links can be depicted
graphically. The graph editor may be opened on a selected object using the graph button:

12

Users' Manual 5.8 - 1.1. Basics

W/ FOLDER

MUSIC EXAMPLE
a0 Ohbject Types
4 2 Actor
4 83 Organization
&2 Band
2 Person
L4 O Actor Role
» S Instrument
» @ Mood
4 3 Opus
3@ Album
Song
» @ Place
L4 ,R Topic
» f Relation types
v O Attribute Types

TECHNICAL
» & Rights
b Trigger

Community

-_—
p | Instances Subtypes Schema - ﬁ' D
-~
DABEER x =09
s
Name
Machine Gun
Message in a Bottle
Mother's little helper
Mother’s little helper
Motorhead
My Name is Mud # i
Edit unconfigured v

Open graph editor

Mother's little

Song ..
9

Upen uncoentigured graph editor

"= Showin tree

% Print |

Reengineer »

Attributes

» Name

Create copy

Schema
x Delete

. ~ .
Contains Instrumental Mus gy Access rights >

Relations

) References
Contains Vocals By R
opy
Script b

RDF export

Table

The graph always shows a section of the Knowledge Graph. Objects from the graph may be
displayed and hidden and you can navigate through the graph.

Legend

Band

Person

Song

Town

0006

19th Nervous Breakdown

Mother's little helper

+ ° Keith Richards

+° The Rolling Stones
+° Mick Jagger

-I-G London

In the graph editor not only a section of the Knowledge Graph may be displayed: objects and
relations may be edited as well.

13

Users' Manual 5.8 - 1.1. Basics

On the left-hand side of a node there is a drag point for interaction with the object. By double-
clicking on the drag point all user relations of the object will be displayed or hidden.

Linking objects via a relation is carried out in the graph editor as follows:

1. Position the cursor over the drag point to the left of the object with the left mouse button.

2. Drag the cursor in a held down position to another object (drag & drop). If several relations are
available for selection, a list will appear with all feasible relations. If there is only one feasible
relation between the two objects, this will be selected and no list will be shown. An already
existing relation can be reassigned to another element by drag & drop, if the schema definition
allows this.

+

° The Rolling Stones

+

.o Bill Wyman

In order to display objects in the graph editor there are different options:

e Objects may be dragged from the hit list in the main window to the graph editor window using
drag & drop.

e If the name of the object is known it can be selected via the context menu using the function
"show individual".

Shortcut: If an object is to be hidden from the graph editor, it may be removed from there by
clicking it and dragging it from the graph editor holding down the Ctrl key. In doing so, there will be
no changes in the data: the object will exist unchanged within the Knowledge Graph but it will not
be displayed anymore in the current graph editor section.

New objects may also be created in the graph editor. To do this we drag & drop the type of object
from the legend on the left-hand side of the graph editor to the drawing area:

14

Users' Manual 5.8 - 1.1. Basics

* ro<

W Arbeitsordner / Working
@ Private

max. Nodes |5 =

Legend 19th Nervous Breakdown
° Band

Mother's little helper
Person +° Keith Richards

Song
e U + ° The Rolling Stones +° MickJaggey
Overview
-
- 1 +* o London
» .

[re-use last relation

If there are no types of objects to be seen in the legend you can search for them using a right
mouse click in the legend area. Following this, the name of the object will be given.

Legend

Band

Add type +°*=

Person

The editor will re-appear in which the possible relations, attributes and enhancements for the
object can be edited.

1.1.5.2. Operations on objects in the graph editor

The name can be changed later on in the Admin tool or the Knowledge Builder. The user created in
this way automatically has graph administrator rights. Right-clicking the object in the context menu
allows other operations to be executed. For the most part, this context menu provides the same
functions as the form editor, however also includes other graph editor-specific components.

15

Users' Manual 5.8 - 1.1. Basics

The Beatles >

Edit
Rename

Open graph editor

+
XTS5 i

Delete
Hide node
Mavigation * Extensions
Display ¥ Inferred relations
Merge r—{ Fix

Shortest path

Hide Related Modes

The following graph editor-specific functions are available in this context menu:

¢ Hide node : The node can be hidden here.
¢ Navigation - Extensions : Opens the extensions for an object.
¢ Navigation - Calculated relations : Opens the calculated relations for an object.

¢ Navigation - Fix: Fixes the position of a node in the graph editor, so that it is not repositioned
even when the layout is restructured. The fixed node can be undone using the Release option.

**Navigation - Shortest path

1.1.5.3. View

The menu " View " provides many more functions for the graphic illustration of objects and types of
objects:

16

Users' Manual 5.8 - 1.1. Basics

Graph | View Selection

* Default Settings

Change Background]

W Art
-~ [Auto hide nodes
W Priv
Auto layout nodes
Mode alignment
Legenc Fix all labels

Show internal names

° recover hidden edges

~ Highlight relations

Default settings: Opens the menu with the default settings for the graph editor . This menu is also
available in: global setting window ﬁ' -> register card " personal " = graph . There you can set
whether attributes, relations and enhancements should appear in a small mouse-over-window
above the object and how many nodes at a maximum will be visible in one step:

e Show bubble help with details : if the mouse pointer stops on one node the details of the first
ten attributes and relations will be displayed in a yellow window if bubble help was previously
activated. (check "show bubble help with details" in the global setting window register card
"personal" graph)

+

+° John Lennon

John Lennon

Attributes

Mame: John Lennon

Relations

is composer of: Come Together

is instrumental musician on: Come Together
is member of: The Beatles

is vocalist on: Come Together

plays instrument: Guitar

Extensions: Composer

* Max nodes : if a node/object has a lot of adjacent objects it often doesn’t make sense to show
them all by clicking on the drag point.

Change Background: The background color can be changed or a picture can be set as background.

Auto hide nodes : automatically hides surplus nodes as soon as the number of desired nodes is
exceeded and shown. The number can be set in the input field "max. new nodes" in the toolbar:

max. Modes |5 =

17

Users' Manual 5.8 - 1.1. Basics

Auto layout nodes : automatically implements the layout function for newly displayed nodes.

Fix all labels : using this option the names of all relations are always visible, not only when rolled
over with the mouse. Alternatively, the description may be fixed directly in the context menu of a
relation.

Show internal names : displays the internal name of types of in brackets
recover hidden edges : all edges hidden by means of the context menu are shown again

The window of the graph editor and the main window of the knowledge builder provide even more
menu items which may offer support when modelling the Knowledge Graph.

On the left-hand side of the graph editor window there is the legend of the types of objects.

Legend

19th Nervous Breakdown

Band

Person Mother's little helper
-I-o Keith Richards

Song

+° The Rolling Stones
T
oun -I-o Mick Jagger

-I-@ London

0006

This legend shows the types of objects for the specific objects on the right-hand side.

By dragging & dropping an entry from the legend into the drawing area you can add or create a new
specific object of the corresponding type.

When right-clicking into the legend area, further types can be added permanently to the legend so
that objects of that type can be added to the graph by means of drag & drop.

Shortcut: You can drag & drop elements from the Knowledge-Builder into the graph editor when
holding down the Ctrl key.

Via the context menu for the legend entries all specific objects can be hidden from the image. Here
you can also "hold" legend entries and add new types of objects to the legend (regardless of
whether specific objects of this kind are represented in the image).

18

Users' Manual 5.8 - 1.1. Basics

Legend
+° The Beatles
e Edit [Alt)
Hide nodes (Ctrl)
~ Dynamicly show type in legend
Always show type in legend

Max. new nodes : If a node / an object has many adjacent objects, it often doesn’t make much
sense to display all of them when clicking on the drag point. For this reason, the maximum amount
of nodes to be displayed at once can be set.

1. Via the global settings in the tab "Personal", the maximum amount of new nodes can be set.

2. Within the graph editor, the amount can also be set in the upper right corner.

max. Modes |5 =

If the drag point has been clicked to show the adjacent objects a selection list will appear instead of
the objects.

Pleaze choose

Abbey Road

+° The Beatles George Harrison

John Lennon
Liverpool

Paul McCartney
Ringo Starr

(De)=zelect all

1.1.5.4. Bookmarks and history

The menu graph contains more functions for the graph editor:

19

Users' Manual 5.8 - 1.1. Basics

Bookmarks : Parts of the Knowledge Graph or "subgraphs" can be saved as bookmarks. The objects
are saved in the same position as they are placed in the graph editor.

Graph View Selection
@ }I % max. Nodes |5 -2
. ew Bookmark

W Aroersoraner / Working
Wl Private

Legend 19th Nervous Breakdown
° Band

Mother's little helper
Person +° Keith Richards

Song

+° The Rolling Stones
o fown -I-o Mick Jagger

Overview

A -I-G London
. -I-o Bill Wyman

[] re-use last relation

When a bookmark is created it may be given a name. All nodes contained in the bookmark are
listed in the description of the bookmark.

Bookmarks, however, are no data backups: objects and relations which were deleted after a
bookmark was saved are also no longer available when the bookmark is shown.

20

Users' Manual 5.8 - 1.1. Basics

Graph View Selection

% de % o s 5

] Arbeitsordner / Working
] Private
w0 RollingStones

Legend 19th Nervous Breakdown
° Band

@ Mother's little helper
Person +° Keith Richards

Song

+° The Rolling Stones
e U -I-o Mick Jagger

Overview

>, +° London
. +° Bill Wyman

[] re-use last relation

History : using the buttons "reverse navigation" and "restore navigation", elements of a (section of)
a Knowledge Graph may be hidden again in the order of sequence in which they were shown (and
vice versa). Furthermore, these buttons reverse the auto layout. The buttons can be found in the
header of the graph editor window or in the menu "graph".

e <>

Undeo navigation (Page up)

@

Layout : the layout function }- enables you to position nodes automatically within the display
area at the currently selected zoom level when many nodes are not allowed to be positioned
manually. When more nodes are displayed they will also be automatically positioned in the graph
via the layout function. The option "auto layout nodes" must be activated for this purpose (see
previous chapter).

Copy into the clipboard : this function creates a screenshot of the current contents of the graph
editor. This image may then be inserted into a drawing or picture processing programme, for
example.

21

Users' Manual 5.8 - 1.1. Basics

Print : opens the dialogue window for printing or for generating a pdf file from the displayed graph.

Cooperative work : this function enables other users to work on the graph mutually and
simultaneously. All changes and selections of a user on the graph (layout, showing/hiding nodes,
etc.) will then be shown to all other users synchronously.

Graph View Selection

l'. Copy to clipboard % <
l'. Copy to clipboard (with legend)

Open Office Export

Open for cooperative work

Close

Legend

° Band
o Person +° Keith Richards

19th Nervous Breakdown

22

Users' Manual 5.8 - 1.2. Definition of schema / model

1.2. Definition of schema / model

1.2.1. Define types

The principle of the type hierarchy was already presented in chapter "Building blocks". If new types
are to be created this is always done as a subtype of a type which already exists. Creating subtypes
can be carried out either via the context menu Create - Subtype

» 9 Actor

d IK""'\ F
- ‘ Actor Role

o A4 Edit
Edit uncenfigured
g
) ﬂlE Rename
b % Inst :H Open graph editor

» ¥ Mo Open unconfigured graph editor

» 44 Opi
b @ Plac W Print

= Show intree

P Tor S > @ Instance
o Relatic Reengineer 5 s
/N Attribe Copy schema to folder © Createsubtype
‘CHMICAL x L Link subtype
E Rights -, Choose color 3
_ g3 Accessrights 3
7 Trigger References
% Registe Copy ID
RDF export
nmunity Script g
55 Table Export)

or in the main window using the tab "Subtypes" above the search field and the tab "new":

23

../../basics/basics-en.adoc#knowledge-graph-building-blocks

Users' Manual 5.8 - 1.2. Definition of schema / model

W/ FOLDER

MUSIC EXAMPLE

a0 Object Types
» P Actor Name Internal Name

4 () Actor Role Arranger
@ Arranger Composer
& Composer Musician
@ Musidian Singer
@ Singer
P ‘4 Instrument ‘1 Create new subtype x

» @ Mood Mew subtype of Actor Role:
» J3 Opus I |

¥ / Topic
¥ " Relation types
v O Attribute Types

Changing the type hierarchy

In order to change the type hierarchy we have the tree of object types in the main window and the
graph editor.

We also can change type assignment when opening the detail editor of the affected type by
choosing the options "Edit" or "Edit unconfigured" in the context menu:

24

Users' Manual 5.8 - 1.2. Definition of schema / model

4 Jd Opus
38 Album
Ll
» @ Place
¥ ' Topic Ed_ﬂ .
b & Relation Edit unconfigured
b £ Attribute '8 Rename
L :H- Open graph editor
Open unconfigured graph editor
P @ Rights = Showintree
4 Trigger S Print
» & Registere)
reate >
» £¥ Printing ¢ ,
Reengineer 5
» 4% REST
. Copy schema to folder
» W View conf Delete
» L} Entire sen o I
oose color »
» ¥ Core pror ., ,
g3 Accessrnghts »
References
Copy ID
RDF export
Script »
E55 Table Export »

In the hierarchy tree of the detail editor, we will find the option "Removing supertype x from y" in
the context menu.

25

Users' Manual 5.8 - 1.2. Definition of schema / model

Overview Details

() Music Example Properties of the type
[4 -

@ Actor P MName = |Song ‘
» O Actor Role

Color

» @ Mood lcon .
4 J3 Opus ﬁ D
L3 Album

£ r(:) Create new subtype

4 ﬂ' Place p Add subtype Add attribute or relation

b Topic 03 Removing supertype "Opus" from "Song"

x "Song" Delete
Internal Name | ‘ f x

Abstract @] v

» % Instrument

Geschatzte Anzahl Objekte = | 101 ‘

Using this option we can remove the currently selected object type from its position in the
hierarchy of the object types. In the organizer, we can link types to other types in order to create
multi-hierarchical schema:

26

Users' Manual 5.8 - 1.2. Definition of schema / model

4 J3 Opus
3 Album
& ' Song
b @ Place
P Topic
¥ " Relation t
¥ O Attribute B

®

Edit

Edit unconfigured

B

Rename
Open graph editor
JEE L Open unconfigured graph editor
» & Rights = Showintree

+ Trigger W Print

» & Registerec

Create @ Instance
b 13 Printing c Reengineer Link supertype
', =
¥+ REST Copy schema to folder € Create subtype

» W View confi 3 Delete
» L¥ Entire serr

Link subtype

Choose color g
» £¥ Core prop & Access rights ’
References
Copy 1D
RDF export
Script ’
S Table Export ’

Shortcut: By means of drag & drop we can move an object type to another branch of the hierarchy.
If we hold down the Ctrl key when using the drag & drop function the object type will not be moved
but additionally assigned to another object type.

What still applies is: the hierarchy of the object type allows multiple assignments and inheritance.

27

Users' Manual 5.8 - 1.2. Definition of schema / model

p Instances Subtypes Schema Eﬁ'm

MUSIC EXAMPLE

a-- OEEER - -0+
| |

&

4 () Object Types

-

Name Internal Name

» @ Place
L4 g Topic

¥ " Relation types
v O Attribute Types

TECHNICAL

Configuring object types with properties

In the simplest case we define relations and attributes with an object type such as "band" or
"person" and thus make them available for the specific objects of this type. (For example the year
and location the band was established, date of birth and gender of people, location and date of
events.)

If the object type for which the properties are defined has more subtypes the principle of
inheritance will take effect: properties are now also available for the specific objects of the
subtypes. Example: as a subtype of an organisation, a band inherits the possibility of having people
as members. As a subtype of "person or band" the band inherits the possibility of taking part in
events:

28

Users' Manual 5.8 - 1.2. Definition of schema / model

Actor

is supertype ofis supertype of

0 Person @ Organization

is supertype of
° 0

is object of

+ John L
° ohn Lennon +e Band

has member s ghject of

+° The Beatles

Overview Details

) Music Example ¥ Inherited Attributes

4 Act
P Actor Define new attribute type

4 43 Organization

sz [relations of objects
& Person is author of = Instances of Opus
L3 O Actor Role
» % Instrument is band of = Instances of Musician
» @ Mood is performer of = Instances of Opus
L4 -
o Opus 4 Inherited Relations
» @& Place - - -
- i Context element of = |Instances of Static Tree Node, Instances . > Top-level type
¥) Topic
has genre = Instances of Music Genre > Actor
has member = Instances of Person > Organization
has place = Instances of Place > Actor
is performer of = Instances of Album > Actor
Define new relation type
Extensions

Add extension -

The editor for the object type "band" with directly defined and inherited relations there.

29

Users' Manual 5.8 - 1.2. Definition of schema / model

Band
The Beatles @

Attributes
» Name = |The Beatles |
Add attribute
Relations

is performer of Abbey Road

has member = George Harrison
has member = John Lennon
has place = Liverpool

has member Paul McCartney

has member Ringo Starr

is band of Ron Carter (Musician)

Add relation

With a specific object the inherited properties are available without further ado and the difference
goes without notice.

Defining relations

When dealing with relations, the following basic principle governs at i-views: a relation cannot only
be unidirectional. If we know of a relation for the specific person "John Lennon" to be "is a member
of the band The Beatles" it then implies for the Beatles the contents "it has a member called John
Lennon". These two directions cannot be separated. Therefore, i-views demands from us the types
of source and target of the relations when creating new relation types — in our example that would
be person and band as well as differing names: "is member of" and "has member".

30

Users' Manual 5.8 - 1.2. Definition of schema / model

Type of relation | with own inverse relation e
Relation Inverse relation

Mame is member of has member

Supertype Uszer relation User relaticn

Dormain Instances of Person Instances of Band

Internal Mame

virtual L]]

Create Cancel

Hence the relation is defined and can now be drawn between objects using drag & drop.
Defining attributes

When defining new attribute types, i-views needs, above all, the technical data type as well as the
name.

*

Choose attribute value type

Attribute A
Boolean

Choice

Color value

Date

Date and time

File

Flexible time

Float

geo position

Group

Integer

Internet shortcut

Interval

Password

Reference to Mapping of a data source
Reference to Crganizing folder
Reference to Cuery

Reference to Script

Reference to Semantic elements folder
String

Tirme v

Cancel

31

Users' Manual 5.8 - 1.2. Definition of schema / model

The intention of using these data types is not to define everything as character strings. Technical
data types in a defined format later offer special feasibilities of inquiring and comparing. For
example, numerical values may be compared to larger or smaller values within the structured
queries and a proximity search can be defined for geographic coordinates, etc.

After having defined the attribute value type, the name of the attribute can be defined:

Attribute name | Stage Namel

Supertype Attribute
Defined for Instances of Person
Internal Mame

[] May have multiple occurrences

1.2.2. Relation types and attribute types

Relation types and attribute types (in brief property types) are always properties of specific objects.

1.2.2.1. Create a new relation type

Via the button "add relation" in the object editor or in the relation type part of the organizer, the
editor starts to create a new relation type.

Type of relation | with own inverse relation w
Relatiocn Inverse relation

Marme

Supertype User relation User relaticn

Dormain

Internal Mame
virtual L] L]

Create Cancel

Editor for creating a new relation type (see also Chapter 2.1 Defining types)

32

Users' Manual 5.8 - 1.2. Definition of schema / model

Type of relation: "with own inverse relation" is the default case, for which each relation half as its
own name. "Symmetric" is for relations within the same domain only and offers one name for both
directions.

Name of new relation: Names for relation types may be chosen freely within i-views but should be
selected under the premise of a comprehensible data model. The following convention may be of
help for this: the name of the relation is phrased in such a manner that the structure [name of the
source object] [relation name] [name of the target object] results in a comprehensible sentence:

Furthermore it is helpful when the opposite direction (inverse relation) takes on the word selection
of the main direction: "has a member / is a member of".

Supertype: Specifies the relation supertype within the relation type hierarchy.

Like object types, relation types and attribute types can be structured within in forms of a hierarchy.
The hierarchy of relation types is a simple, but powerful instrument to accommodate the
complexity.

Example: For queries, the relation type "has author" can be used to define who has written the
song text an who has written the composition. At the same time, we have queries for which we
don’t need differentiation and for which all participants need to be requested.

Without relation type hierarchy, all queries would be much more complex because we would have
to insert all the relation types fulfilling this circumstance. Instead, we simply can define the
relations "writes text" and "writed composition" as subtypes of "writes song" (or: "is author of"). By
means of this mechanism, we still can query on the level of "writes song", but due to the
inheritance i-views automatically queries the relation subtypes as well.

The subtype therefore implies the supertype. This principle works for relation types and for
attribute types or object types.

Domain: Here we define by which object types the relation has to be created: one object type
forms the source of the relation and another object type the target. The target object type, in turn,
forms the definition area of the inverse relation. To simplify matters, when creating you may only
enter one object type at this stage. Afterwards, further object types may be defined in the editor
for the relation type (see below).

Internal name: If the relation is intended to be referred by a script, the internal name serves for
identification and reference.

Virtual: If we need single-sided relations, we can define which relation half is the single-sided one
and which relation half is only virtual. The virtual relation half is only rendered when listing in the
relation instances list or can be used for queries. For more information about single-sided relations,
see chapter "Single-sided relations".

1.2.2.2. Create a new attribute type

Via the button "define new attribute" in the object editor the editor starts to create a new attribute

33

Users' Manual 5.8 - 1.2. Definition of schema / model

Choose attribute value type

Attribute ~
Boclean

Choice)
Color value Attribute name | Stage Name{
Date -
Date and time Supertype Attribute
File
Flexible time Defined for Instances of Person
Float

geo position E—h$1temal MName
Sroup _V (] May have multiple cccurrences

Integer

Internet shortcut

Interval

Password

Reference to Mapping of a data source
Reference to Organizing folder

Reference to Query Cance
Reference to Script

Reference to Semantic elements folder

String

Time v

Two-stage dialogue for creating a new attribute type

In the left-hand window the format of the attribute type is defined (date, floating point number,
character string, etc.)

The following technical data types are available:

Type of data What do the values look like? Example (music graph)

Attribute abstract attribute, without an
attribute rating

Boolean NYESK Or »NOK music band still active?

Choice string values which can be role; design of a music
selected from a drop-down instrument (hollowbody,
menu fretless, etc.)

Colour value colour selection from a colour
palette

Date date dd.mm.yyyy (in the publication date of a recording
German language setting) medium

Date and time date and time dd.mm.yyyy start of an event, e.g. concert
hh:mm:ss

34

Type of data

File

Flexible time

Float (floating point number)
Geo

position (geographical

position)

Group

Integer

Internet shortcut

Interval

Password

Reference to [...]

String (character string)

Time

Users' Manual 5.8 - 1.2. Definition of schema / model

What do the values look like?

random external data file which
be imported into the
Knowledge Graph as a »blob«

will

month, month + day, year, time,
time stamp

numerical value with a random
number of decimal places
in

geographical coordinates

WGS84 format

without attribute rating, serves

as a medium for meta
attributes to be grouped
numerical value without

decimal places

URL

date interval: interval of
numbers, character string, time
or date

A hashed value (SHA256),
which is used to validate the
password

reference to parts of the
Knowledge Graph

configuration: search, diagram
of a data source, scripts and
files

random sequence of

alphanumeric characters

time hh:mm:ss

Example (music graph)

WAV file of a music title

approximate date when a

member joined a band

price of an entrance ticket to an
event

location of an event

runtime of a music title in

seconds
website of a band

period of time between the
production of an album and its
publication

review text to a recording

medium

Starting time of an event

After selecting and confirming the attribute type it can be further specified with the name of the
attribute in the subsequent dialogue.

Supertype : here it is defined at what level in the hierarchy the attribute type should be placed.

May have multiple occurrences : attributes may occur once or more than once, depending on the
attribute type: a person only has one date of birth but may, for example, have several academic
titles at the same time (e.g. doctor, professor and honorary consul).

35

Users' Manual 5.8 - 1.2. Definition of schema / model

1.2.2.3. Edit details

The dialogs for creating new attribute and relation types are limited views of the attribute and
relation type editors. To edit details of relations and attributes, editors must receive and enhanced
scope of functions.

You get to these two editors via the listing of relations and attributes on the “Schema” tab of the
object editor:

1 —-—
p_ Instances Subtypes Schema — a' D
~
W/ FOLDER -
MUSIC EXAMPLE
4 () Object Types l@
A
4 @ Actor Name
4 43 Organization Motorhead
42 Band My Name is Mud
& Person No Excuses
4 () Actor Role No One Knows
& Arranger v
& Composer Song
@ Musician Motorhead
& Singer
¥ % Instrument » Name = |Motorhead ‘ ~
> @ Mood Add attribute
+ @ opus
& Album Relations
£ Song — -
IS sOng contained on =
» & Place e I Delete (Ctrl)
») Topic » contains instrumental musidan = Copy to clipboard
Add meta
» & Relation types has composer = MEEEEEEy
¥ O\ Attribute Types o _(Schema)
» contains instrumental musician = Copy internal name
TECHNICAL)
has composer = Morph
Community » contains instrumental musidian = SRR ST
Choose new relation target v

Alternatively, you can use the hierarchy tree on the left side of the main window for access. The
hierarchies for relation and attribute types are located underneath the object types. The editors are
started by right-clicking on the relation or attribute to be edited in the context menu and choosing

Edit” 4.

» J4 Opus
» @ Place
b Topic

¥ o Relation types
v O Attribute Types

TECHMICAL

Next, we will look at the details of the definition of properties by using the relation type editor as
the example (the attribute type definition is a subset thereof):

36

Users' Manual 5.8 - 1.2. Definition of schema / model

has place

Overview Details

Ll
& Relation lcon = | | Q D
» i -
{ Inferred relation average number (calculated) = | 1.0 |
b o System relation
4 4 User relation estimated number of instances = |?6 |
& authentication is property of = has place Property
o contains guest appe
f contains song Add attribute or relation
" correlates with Definition
f correlates with (inve
o« has author Internal Name | | i x
& has cover version Defined for Instances of Actor +
«" has geographical pa
o has guest appearanc
f has member
o has partner
o has performer
«" has performer Target Instances of Place +
o has place
f has remixed version
o Input media type
o is authentication of
f is author of
" is band of
s cover version of Inverse relation type is place of
«" is geographical part Abstract [l
" is input content type May have multiple occurrences
f is member of
) S Mix-In O
& is musician in
o is output MediaType Single-sided relation O
" is performer of Main direction
o is performer of v v

Defined for: Here we can subsequently check for which object types the relation can be created.
Relations can be defined between several objects and thus have several sources and targets.

In this way, we can allow persons and bands to be authors of a song in the schema or assigned a
location — even if they do not have a super-type in common. We can use the “Add” button to add
additional objects. We can use “Remove” to prevent this object type and all its objects from
entering into this relation.

“Change” makes it possible to replace an object type. Already existing relations are then deleted by
the system. If there are relations to be deleted, a confirmation prompt appears before the change is
made.

Target: Here you can change retrospectively for which types of objects the relation can be used. To
change the target object type you have to switch to the inverse relation type: The button for
changing bears the label of the inverse relation type. After clicking on the button, the inverse
relation appears in the editor and can be edited in the same way as the previous relation .

Abstract: If we want to define a relation which is only used for grouping but is not supposed to
define concrete properties, we define it as “abstract.”

37

Users' Manual 5.8 - 1.2. Definition of schema / model

Example: If the relation “Writes song” is defined as abstract, this means: if we create songs and
their relation to artists and bands, we can now enter specific information (who wrote the lyrics,
who wrote the music). The unspecified relation “Writes song” cannot be created in the actual data
but can only be used for queries.

May have multiple occurrences: One characteristic of relations is whether they may have several
occurrences. For example: the relation “Has place of birth” can only occur once for each person
whereas e.g. the relation “is member of” can occur several times for a person. Hence, logical
matters can be modeled precisely. For example, musicians as persons can only have one place of
birth but (at the same time) can also be members of several bands. Whether the relation can occur
multiple times is specified independently for each direction of the relation: A person can only have
one place of birth but the place can be the place of birth of several persons.

The option can only be deactivated if the relation does not occur several times in the actual data
set. If it occurs several times, the system cannot decide automatically which of the relations is to be
removed.

Mix-in: Mix-ins are described in the Extension chapter.

Main direction : Every relation has an opposite direction. In the core, the two directions are
equivalent, but there are two places where it makes sense to determine a main direction:

¢ In the Graph editor: Here the relations always present themselves in the main direction in
relation to the direction of the arrow and labeling; irrespective of the direction in which they
were created.

¢ For single-sided relations (without inverse relation)

Additional setting options for relations and attributes are located in the “Definition” sub-item on
the “Details” tab. The setting options under Definition are often used and that is why they are
already available on the Overview tab. Under “Definition (advanced)” in contrast, there are setting
options that are not required as frequently.

has place
Overview Details
o Relation i Type May have multiple occurrences ()
» " Inferred relation Definition Mix-In O
» & System relation 4 Schema definition St rdE g O
4 " User relation Instance
o v
" authentication Type Main direction
«" contains guest appe 4 View configuration Definition (advanced)
i‘. contains song 4 |nstance
& correlates with Details Co | | i x
o correlates with (inve Object list Name attribute for types | | f x
« has author 4 Type Property is iterateable |Active > |
«" has cover version Details
 has geagraphical pa Object lst minOccurs guideline |U | f x
o has guest appearanc,, Indexes maxOccurs guideline | | y x v

Counter: If a number is entered in the counter, this is the number with which objects of this type
are counted up. The JavaScript functions getCounter(), increaseCounter() and setCounter() can be

38

Users' Manual 5.8 - 1.2. Definition of schema / model

used to access the counter.

Name attribute for objects: Typically many views in i-views only represent an object via its name
(e.g. in object lists, hierarchies, in the Graph editor, the relation target search, etc.). Instead of the
name you can use any other attribute of the objects here with which it can be represented. A
prominent example for products: The article number.

NOTE Can only be set on object types, not relation or attribute types

Name attribute for types: This can be used also to select an alternative attribute for a more
descriptive display for types.

Property is iterable: Selection options: Active / Write only / Inactive. Default: Active.

Sometimes the maintenance of the index for iterating properties severely affects performance. This
typically happens with meta properties such as “changed by” or “changed on” which do not
necessarily have to be taken into account all the time. In such cases we recommend setting the
properties to cannot be iterated by using the “Inactive” selection option. The purpose of “Write
only” is to deny read access but still allow write access. This makes it possible to test for inadvertent
side effects.

minOccurs guideline: Specifies the minimum number of times a property is supposed to occur on
an object. If the number falls below the specified number, the property is displayed in red in the
user interface but the object can continue to exist. An import ignores the reference value.

maxOccurs guideline: Specifies the maximum number of times the property should occur on an
object. If the specified number is reached, no additional properties can be created. An import
ignores the reference value.

1.2.2.4. Single-sided relations

Application of single-sided relations - basic principles

When an object is called up for import purposes or displaying in view configuration, all of its
properties will be loaded (especially when not indexed sufficiently). This in turn means that besides
of the attribute values, all existing relations will be loaded including their target objects as well,
leading to an overhead which slows down performance.

Relations

» has ctizen (1001)

Especially for catalog objects, the loading all properties can lead to long loading duration. A catalog
object is an object which serves as central reference for other objects and therefore is interrelated

39

Users' Manual 5.8 - 1.2. Definition of schema / model

with them.

Example: A Knowledge Graph has objects of the type "city" which are connected by relations to its
citizens. When a detailed view of a city has to be loaded for indicating the number of citizens only
(and not their names, addresses and hobbies etc.), single sided relations make sense for this
purpose.

In this case, the single-sided relations direct from the individual satellite objects towards the
catalogue object. This results into the relation "is citizen of" being visible on the citizen side only,
but the relation "has citizen" from the city towards the citizens will be suppressed. Nevertheless,
the 'virtual' relation "has citizen" can be used for structured queries and it can be found within the
schema.

Defining single-sided relations

In order to define a single-sided relation, we must specify in the dialog which relation half (original
or inverse orientation) has to be kept virtual, in other words "invisible". Here fore we choose the
checkbox "virtual" on the affected half. The other relation half automatically becomes the real
relation half which builds up the relationship between start domain and target domain.

E§ Mew relation type X

Type of relation | with own inverse relation ~
Relation Inwverse relation

MName is citizen of has citizen

Supertype User relation User relation

Domain Instances of Person Instances of City

Internal Mame
virtual O

Create Cancel

Single-sided relation
= wvisible”/real
relation half

Lnvisible” fvirtual
relation half

Supplementary declaration of a conventional relation as a single-sided relation

When a preliminary declared conventional relation type is going to be converted into a single-sided
relation type, the instances of the virtual relation half will be deleted. This process can be inverted

40

Users' Manual 5.8 - 1.2. Definition of schema / model

when redefining the relation form. Then the particular relation halves are going to be determined
again.

The conversion to single-sided relations will show its effect as follows: For a catalog object, all the
virtual relation halves including their relation targets are not going to be displayed anymore, but the
virtual relation instances are still rendered as an instance in the Knowledge Graph and therefore can
be called up in structured queries.

In the best case, when defining import mappings for large amounts of objects that relate to a
catalog objects, always use the real, single-sided relation type half. This can lead to performance
improvements when importing.

e
Relations = Subtypes Schema —3 'a' D

e Tr o |- R

Edit

Edit unconfigured

Copy internal name

Overview Details

Rename
. .]
Properties of the type LT RO
Open unconfigured graph editor
» Name = ‘ is citizen of = howin tree :I
lcon = ‘ Create > D
. Delete all el t i
Average quantity (computed) sieie ol Sements Reengineer ’ :I
Morph x Delete
Estimated number of objects = Convert to One-Way-Relation . :I
g3 Accessrights ¥
Add attribute or relation Eeleiences
Copy ID
-) sl
Definition Script >
RDF export b
Internal Mame ‘ citizenOf [e
Defined for Instances of Person . +
& v
‘41 Move from is citizen of to is citizen of (ternp) — O >

[5310/1,002 = 51%]

Paszzed: 844 Millizeconds

As a result, the checkbox "Single-sided relation" indicates that the respective relation half is used as

41

Users' Manual 5.8 - 1.2. Definition of schema / model

a single-sided relation.

Hint: Until i-views 5.3, the checkbox of the Boolean attribute "Single-sided relation" only served for
indication purpose. Since i-views 5.4, a redefinition only can be executed by clicking on the
checkbox or via the context menu in the detail editor.

= Y

There are existing relations of this type, Should the relations be converted?

Single-sided relation [-

Main direction

Hint: After conversion to single-sided relation, the performance for indicating virtual relations can
be improved by means of indexing.

Supplementary conversion of a single-sided relation into a conventional relation

If we realize afterwards that a relation type actually should be declared as a conventional relation
type, a correction can be made without further consequences. In the detail editor of the relation
type, we therefore click onto the context menu and choose Reengineer > Convert to normal relation
or we deselect the checkbox "Single-sided relation".

42

Users' Manual 5.8 - 1.2. Definition of schema / model

-_—
Relations Subtypes Schema — 'ﬁ' n

BOBBR o

Edit

Edit uncenfigured

Copy internal name
Overview Details

Rename
Properties of the type Open graph editor
- Open unconfigured graph editor
» Name = ‘ is citizen of - P _ J =
= Show in tree
coler % Print
lcon Create » RD

Average guantity (computed) Delete all elements Reengineer >

Delet :l
elete :I

Merph b 4
Estimated number of objects Convert to normal Relation - _
Access rights b
(1]
Add attribute or relation References
Copy ID o~
Definition Seript >
. RDF rt
Internal Name ‘cmzen()f Expo x
| e
Defined for Instances of Person . +

d
. 4 .

Immediately, the Knowledge-Builder changes all existing virtual and single-sided relations into
normal relations.

Supplementary swapping of the orientation of a single-sided relation type

The supplementary change of orientation of the single-sided relation type is done analogous via the
"Reengineer" command in the context menu of the detail editor or by swapping the checkbox
selection. In order to do this, we change to the opposite relation type half which has to be
converted from virtual to single-sided and choose Reengineer > Convert to one-way relation or we
tick the checkbox "Single-sided relation".

1.2.3. Model changes

In i-views you can make changes to the runtime of the model:

e implement new types

¢ make random changes to the type hierarchy (without creating tables and giving any thought to
primary and secondary keys).

The system ensures consistency. When creating objects and properties the opposite direction of a
relation is always included. Attribute values are checked as to whether they match the defined
technical data type (for example, in a date field we cannot enter any random character string).

43

Users' Manual 5.8 - 1.2. Definition of schema / model

Consistency is also important when deleting: dependent elements always have to be deleted with
them so that no remaining data of deleted elements stays in the Knowledge Graph.

e Thus, when an object is deleted all its properties will be deleted along with it. If, for example,
we delete the object "John Lennon" we also delete his date of birth and his biography text
which we can have as a free text attribute for each person, etc. Likewise, his relation "i
member of" to the Beatles and "is together with" to Yoko Ono. The objects "The Beatles" and
"Yoko Ono" will not be deleted; they only lose their link to John Lennon.

S

e When deleting a relation the opposite direction is automatically deleted with it.

Since i-views always ensures that the objects and properties are in accordance with the model,
deleting an object type or, where necessary, an operation has far-reaching consequences: when an
object type is deleted, all its specific objects are also deleted — analogue to the relation and
attribute types.

In this process, i-views always provides information on the consequences of an operation. If an
object has to be deleted, i-views lists all properties which will thus be removed in the confirmation
dialogue of the delete operation:

Delete the following objects?

w lohn Lennon
Mame: John Lennon
w John Lenncn is composer of Come Together
Corme Together has composer John Lennon
w lohn Lennon plays instrument Guitar
Guitar is played by John Lennon
* John Lenncn is member of The Beatles
The Beatles has member John Lennon
* John Lenncn is instrurnental musician on Come Together
v (Come Together contains instrumental musician John Lennon) song is played by
Electric Pianc is played by musician on song (Come Together contains instrurr
v (Come Together contains instrumental musician John Lennon) song is played by
Guitar is played by musician on song (Come Together contains instrumental n
Come Together contains instrumental musician John Lennon

w John Lennon is vocalist on Come Together v

o | ol |

i-views controls where, by the change, objects, relations or attributes become lost. The user is made
aware of the consequences of the deletion.

Not only the deletion, but also conversion or change of the hierarchy type may have its
consequences. For example, when objects have properties which no longer comply with the model

44

Users' Manual 5.8 - 1.2. Definition of schema / model

after a change in type or change in the inheritance.

@ Event

Py Relation that is

going to be deleted
0 Concert
Relations that will disappear

caused by that operation o o
o Club Concert o Stadium Concert

o First concert in Star-Club . Paul McCartney - 1990 in Estadio Maracana
. Concert in Litherland Town Hall

+° The Beatles -I-o Paul McCartney
-I-Q Liverpool

Let us assume that we delete the relation "is supertype of" between "event" and "concert" and thus
remove the object type "concert" and all its subtypes from the inheritance hierarchy of event to add
them to "work", for example. In this case, i-views draws our attention to the fact that the "has
participants" relations of the specific concerts would be omitted. This relation is defined in "event"
and would thus no longer apply to the concerts.

There are possibilities for preventing the omission of relations as a result of model changes. If an
object type has to move within the type hierarchy, for example, the model of the affected relation
has to be adapted prior to this.

For example, if "concert" is to be located under "work" within the hierarchy and no longer under
"event". To this end, the relation "has participants" will be assigned to a second source: that can be
either the object type concert itself or the new item "work". The relation will hence not be lost.

i-views pays particular attention to the type hierarchy. If we delete a type from the middle of the
hierarchy or remove a super/sub relation type, i-views then closes the gap which has ensued and
puts back the types which have lost their supertypes into the type hierarchy to the extent that they
keep its properties as far as possible.

Special functions

Changing type : objects already in the Knowledge Graph may be moved to objects of another type.

45

Users' Manual 5.8 - 1.2. Definition of schema / model

For example, if the object type "event" differentiates to "sports event" and "concert". If there are
already objects of the type sports event or concert in the Knowledge Graph, they may be selected
from the list in the main window and quite simply moved to a new, more suitable object type using
drag & drop.

Alternatively, we can find more information in the context menu under the item "edit".

Select type : using this operation we can assign a property to an object.

Genesis reunion-concert

Date of the event:
01.01.2020

Abba reunion-concert

Reselect relation target : in relations this does not only apply to the source, but also the relation
target.

Genesis reunion-concert

[participates]

Benny Andersson

Abba reunion-concert

Convert subtypes to specific objects (and vice versa): the border between object types and specific
46

Users' Manual 5.8 - 1.2. Definition of schema / model

objects is, in many cases, obvious but not always. Instead of setting up only one object type called
"musical direction" as in the case of our sample project, we could have set up an entire type
hierarchy of musical directions (we decided against this in this Knowledge Graph because the
musical directions classify so many different things such as bands, aloums and songs and therefore
they do not provide any good types). It may happen, however, that we change our minds in the
middle of the modelling. For this reason, there is the possibility of changing subtypes into specific
objects and specific objects into subtypes. Any relations which may already exist will be lost in the
process if they do not match the new model.

Converting the relation: source and target of the relation will remain the same, only the relation
type will be converted.

Converting the attribute: source/object will remain the same but it will be assigned to another
attribute type:

Benny Andersson Benny Andersson

Date of the event:
01.01.2020 01.01.2020
Abba reunion-concert : Abba reunion-concert

When converting the individual relations we are usually quicker when we delete these and replace
them with another one. However, it may happen that meta properties are attached to the
properties which we do not want to lose. On the other hand, the converting operations are also

[participates]

available for all properties of a type or a selection thereof. A prerequisite is, of course, that the new
relation or attribute type is also defined for the source and target objects.

If changes are made to the model, consideration should always be given to the fact that restoring a
previous condition may only be carried out by installing a backup. Analogue to the related
databases there is no "reverse" function.

1.2.4. Representation of schema in the graph editor

Until now we have mainly been dealing with linking of specific objects within the graph editor.
Presenting such specific examples, discussing them with others and, where necessary, editing them
is also the main function of the graph editor. We can, however, also present the model of the
Knowledge Graph directly using the graph editor, e.g. the type of hierarchy of a Knowledge Graph.

Types of objects will then be displayed as nodes with a coloured background and types of relations
as a dotted line:

47

Users' Manual 5.8 - 1.2. Definition of schema / model

Place

Instances are Domain of

is venue of .

Inverse relation type

. has venue

Instances are Domain of

@ Event

Relation types in the graph editor

If until now we have been referring to relations in the graph editor, this concerned relation objects
between specific objects of the Knowledge Graph. Moreover, the general types of relations (hence
the diagrams of the relations) may also be presented in the graph editor. A relation is depicted in
the graph editor as two semi-circles which represent the two directions (main direction and inverse
direction). Therefore, between these two nodes there is the relation "inverse type of relation":

48

Users' Manual 5.8 - 1.2. Definition of schema / model

plays instrument .

Inverse relation type

. is played by

The presentation of a type of relation and the hierarchy within the graph editor may be shown
analogue to the object editor with all supertypes and subtypes:

Inverse“ Relation

is supertypeds supertype ofipertype of

[¢ 0

Inverse" System relation

3 Inverse Inferred relation
Inverse User relation
is supertype of
is supertype of

is supertype of o (i]

i]

is supertype of . Actor -> Country
+ . has author

is supertype of

L]

lyrics are written by .

Attribute types may also be depicted in the graph editor — they are shown as triangular nodes.

49

Users' Manual 5.8 - 1.2. Definition of schema / model

A Attribute

is supertype of is supertype of
(i} is supertype of
i
i

A Mame

Analogue to the type of object hierarchy the hierarchy of the relations and attributes within the
graph editor may be changed by deleting and dragging the supertype relation.

1.2.5. Metamodeling and advanced constructs
1.2.5.1. Extensions
As a further means of modelling, i-views offers the possibility of enhancing objects.

For example, if a person performs the role of a guitarist in a band but plays another kind of
instrument in another band. In addition, the person exercises the role of the composer.

{ ™

Role: guitarist +® Bass Guitar

{ N

+e Guitar

o Ron Wood ° Faces
+° The Rolling Stones

L »

o Jeff Beck Group

\, J
Role: bassist

Role: composer

@ Ohlala @ Stay With Me

50

Users' Manual 5.8 - 1.2. Definition of schema / model

The fact that one person can play different roles in a Knowledge Graph may be regulated via a
special form of a object type. This may not contain any objects, but enhance objects from another
object type (e.g. in this case "person"). For this purpose, the object type "role" is implemented into
the Knowledge Graph, for example and the different roles created for persons as subtypes: guitarist,

composer, singer, bassist, etc. In order that these "role object types" may enhance objects this
function will be defined in the editor for the object type by checking the box "type can extend
objects":

Guitarist
Overview Details
) Music Example Properties of the type 8
> @ Actor b Name = | ouitarist |
4 () Actor Role

@ Arranger sy = -
@ Composer lcon = | ‘ QD

 Guitarist
@ Musidan Add attribute or relation

@ Singer Definition
» [Event
b % Instrument Internal Name | ‘ f x
» @ Mood Abstract O
4 Opus
49 0p Type is not abstract O
» ﬂ' Place
®

» ' Topic Type can extend objects

Enhancements are displayed in the graph editor as a blue dotted line:

51

Users' Manual 5.8 - 1.2. Definition of schema / model

O Actor Role

{2 Extends objects of

]

0 Person i]
O Composer

O Bass Player
i 0
O Guitarist

o
+° Ron Wood

As a result of this enhancement we have achieved several things simultaneously:

e We have formed sub objects for the persons (we can also imagine these as sections or — with
persons — as roles). These sub objects may be viewed and queried individually. They are not
independent, when the person is deleted the enhancement "guitarist" along with the relations
to the bands or titles are gone.

e We have expressed a multi-digit content. We cannot express anything on separate relations
between persons, instruments, title/band — in this case the assignment would no longer
succeed.

52

Users' Manual 5.8 - 1.2. Definition of schema / model

+° Bass Guitar

* e Guitar
Ron Wood
° Ron Wood ° Faces (bassist)

+ ° The Rolling Stones

Ron Wood
(quitarist) ° Jeff Beck Group

Ron Wood

(bassist)

Ohlala Stay With Me

Ron Wood Ron Wood

(composer) (composer)

For this purpose the relation "plays in the band" for the enhancement "guitarist" has to be defined.
This effect that persons inherit an additional model via the enhancement may be helpful regardless
of multi-digital contents.

From a technical point of view, the enhancement is an independent object which is linked to the
core individual by means of the system relation "has enhancement" or inverse "enhanced
individual". Its type (system relation "has a type") forms the enhancement type.

Guitarist
[has type]

Person

Band [has type]

[plays in]
— [has extension]

Artist XY

Artist XY

When defining a new enhancement, two object types play a role: in our example we want to give
persons an enhancement and we have to provide this information to your type "person". The
enhancement itself again has an object type (usually even quite a lot of object types); in our case
"guitarist". With the type "guitarist" (and with all others with which we want to enhance the
persons) his specific objects will be dependent.

When querying enhancements in the structure search we have to traverse individual relations:
From the specific person via the relation "has extension" via the enhancement object "Guitarist".
From there you can reach the band via the relation "plays in band".

53

+° The Rolling Stones.

lays in band

Users' Manual 5.8 - 1.2.

plays in band

o isperformerof *
o s place of

Overview

Definition of schema / model

Details

Abstract

May have multiple occurrences

[m]
%]
o is played by
> - Mix-In @
. il o is remix version of Single-sided relation a
o is song contained or, Main direction
+° Ron Wood b & is spedified by -
& is venue of Attributes,
v b Inher -

Structured query

£3= extension

+ A noparameters *
prveny Y
o Relation R |&® playsin band |@) has Target 4%
- v
< > |« >
oms
a. == % @ Query Result” 5=
- "
Name [3] Guitarist [5] Band
‘ Ron Wood Ron Wood (Guitarist) The Rolling Stones
v

Mix-in

The essence of this example with the role "guitarist" is that the relation "plays in a band" is linked to
the enhancement but not with the person. Hence, a consistent assignment is possible with several

instruments and several bands.

If the option mix-in is selected the relation, on the other hand, is created with the core object
(person) itself. The reason for this is that enhancements are sometimes not used to express more
complex contents but to assign an object polyhierarchically to different types. This object inherits in
this manner relations and attributes of several types.

plays in band

+° The Roling Stones
n\m% .
plays in ban -b%n Wood

Overview Detais
o isperformerof * Abstract a "
o i place of May have multiple occurrences =]

o is played by
£ isnlaved g0
o is remix version of Single-sided relatiog o
" is seng contained or, on a N
» o is specified by 5
— Attributes of objects
o playsinband b inhenited Attrbutes -

Structured query

5= extersun

Relation MR © has Target d¢
elation R d‘plays'\n band 0 has Target 4

BEEE -

Name

e

~
[3] Guitarist

“ 'no parameters

v v
> < >

Query Result™ EE;

-~

[5] Band

'Ron Wood Ron Wood (Guitarist)

The Rolling Stones.

54

Users' Manual 5.8 - 1.2. Definition of schema / model

When we setup an extensive type hierarchy of events, for example, with the subdivision into large
and small events, outdoor and indoor events, sports and cultural events, we can either characterise
all combinations (large outdoor concert, small indoor football tournament, etc.) or create the
different types of events as possible enhancements of the objects of the type "event". Then we can
assign an event via its enhancements as a football tournament and, at the same time, as an outdoor
event as well as a large event. Via the enhancement "football tournament" the relation
"participating team" may then be inherited, via the enhancement "outdoor event", for example,
still the property "floodlight available". When we have placed these properties in mix-in they may
be queried like direct properties in the events.

If a mix-in enhancement is deleted it acts like a "normal" enhancement: there has to be at least one
enhancement available which entails the mix-in property. When the last of these enhancements is
deleted the relation or the attribute in the core object is also deleted.

1.2.5.2. Inferred relations

A special form of the relation is the shortcut relation. Hidden behind this is the possibility to
shorten several relations already available by means of schematically predefined substitue
relations.

In this manner the system can, to a certain extent, draw a direct conclusion from an object A in the
Knowledge Graph which is indirectly connected to an object B via several nodes. This means that for
a semantic element the inferred relation and its targets can be determined in the graph editor and
in structured queries in one step.

For example, a band publishes a recording media in a certain genre of music, ergo this genre of
music can likewise be assigned to this band:

3 Choose type of relation X

Relation types

Actor > Country
Band -> Genre
Landf> Aktor

@ First Impressions of Earth

oK Abort

+

+0 A
The Strokes > ° The Strokes g Post Punk / Wave

& Edit

Ag Rename

»+ Open graph editor

I Delete
Hide node
Navigation > Extensions
Display > Inferred relations
Merge A Fix

Shortest path

Hide Related Nodes

In order to use inferred relations, in the form editor the inferred relation path needs to be defined
via the relations "is author of" and "has genre".

55

Users' Manual 5.8 - 1.2. Definition of schema / model

Band -> Genre

Overview Details

f Relation () Type & {is author of}! >> {has genre}l "
4~ Inferred relation Definition
o Actor -> Country Inferred relation path
d’ Band -> Genre 4 Schema definition
o Genre-»Band Type
o Land -=» Aktor 4 \iew configuration
¥ " System relation 4 |nstance
¥ " User relation Details
Object list
“ Type N
Details ..
Object list g R;I::I'Iv;demiom | Change relation Remove |

< || =3+ B |

v vl:

Options for defining the inferred relation path:

e "Transitive": The relation may occur in any number (once to infinite).

e "With all extensions": Extensions will be included. The setting will be defined for the relation
which is defined at the extension. If an inferred relation from the extension back to the core
element needs to be defined, the relation type "Extends instance" must be used explicitly
therefore.

In the queries the shortcut relation can be used like any other relation as well.

In the current version of i-views it is recommended that several nodes and edges be queried via
search modules as a result of the improved overview in the structured queries.

1.2.5.3. Meta properties

Up to now, properties of less complexity in object types for objects were defined. For example,
users can add or edit contents to the music Knowledge Graph which we are treating here as an
example via a web application. It should, however, be noted which information was changed from
whom and when. To do this, attributes and relations and, in turn, for attributes and relations are
required in all combinations.

Attributes to attributes: for example, discussions and reviews are listed in the music Knowledge
Graph as text attributes for music albums. If it is to be noted when discussions and reviews were
added or when they were last changed we can define a date attribute which is assigned to the
discussion and review attributes:

56

Users' Manual 5.8 - 1.2. Definition of schema / model

changed at: 01.04.2015

Review: One of the worst albums | ever...
Revolver

Attributes to relations: This date attribute may also be located at a relation between albums and
personal sentiments such as "moods" if the users are given the possibility of tagging:

Revolver

[has moaod]
a changed at: 01.04.2015

Playful

Relations may be used on attributes and on relations. For example, those users should be
documented who have created or changed an attribute (e.g. review of an album) or a relation
between an album and a mood at certain times:

Revolver
Mick J.

[writes]
[has mood]

Review: One of the worst albums | ever...
Revolver .
[generates]

Playful Mick J

These examples together with the editing information form a clearly demarcated meta level.
Properties of properties are, however, usable for complex "primary information":

57

Users' Manual 5.8 - 1.2. Definition of schema / model

If, for example, the assignment of bands or titles to the genres be weighted, a rating as "weight"
may be given to the relation as an attribute.

An attribute of a relation may also be the sum of a transfer or the duration of participation or
membership.

Relations to relations may also be expressed as "multi-digit contents". For example, the fact that a
band performs at a festival (that is a relation) and in doing so takes a guest musician with them. He
doesn’t always play with the band and hence doesn’t have a direct relation to it. Likewise, he
cannot be generally assigned to the festival but is assigned to the performance relation.

Modelling of meta properties may, of course, also be realised by implementing additional objects.
In the last example the fact that the band performed at a festival enabled an object of the type
"performance" to be modelled. A significant difference is that in the meta model the primary
information can simply be separated from the meta level: the graph editor does not show the meta
information until it is requested and in queries, also in the definition of views the meta information
can simply be left out. The second difference lies in the delete behaviour: objects are viable
independently. Properties, even meta properties, are not on the other hand; when primary objects
and their properties are deleted the meta properties are deleted with them.

Incidentally: properties can not only be defined for specific objects but also for the types
themselves. A typical example of this is an extensive written definition with a object type, e.g.
"what do we understand by a company?" That is why we are always asked whether we want to
create them for concrete objects or subtypes when creating new properties.

1.2.5.4. Multilingualism

The attributes "character string", "data file attribute" and" selection" may be created multilingually.
In the case of the character string attribute and data files, several character strings may then be
entered for an attribute:

Album
Pablo Honey m

Attributes

b Name |Pab\o Honey ‘

4 Review Pablo Honey is the debut studio album by the English alternative rock band Radiohead, released in February 1993, The album was produced by Sean Slade

English Pablo Heney is the debut studio album by the English alternative rock band Radiohead, released in February 1993. The album was produced by Sean Slade

m omomom

Pablo Honey ist das im Winter 1983 erschinene Debitalbum der britischen Band Radichead. Das Album enthélt den Song Creep, der zum bekanntesten St

German

With data file attributes several images (e.g. with labels in other languages) may be uploaded
analogically. In the case of selection attributes all selection options are deposited in the attribute
definition; here it doesn’t matter in which language the selection for the specific object is made.

All other attributes are depicted in the same manner in all languages, e.g. Boolean attributes,
integers or URLs.

If the image deviates in other languages attributes adapt their image automatically, depending on
the language: for example, dates according to European spelling day| month |year are shown in US

58

Users' Manual 5.8 - 1.2. Definition of schema / model

format month|day|year.

In i-views separate attributes are not simply deposited for values in other languages, instead they
remain as a separate layer for an attribute with language variations. You don’t have to bother about
the management of different languages when developing an application, but only the desired
language for the respective query:

-~

\
/

In i-views preferred alternative languages can be defined: if there is no attribute value, e.g. a
descriptive text in the queried language the missing text can be shown in other languages if they
are available. The order of sequence of the alternative languages may also be defined.

Multilingual settings are, for example, used in search.

1.2.6. Indexing

Indexing forms part of the internal data management of databases. Used correctly, the setting of
indexes can improve performance significantly.

Background: In i-views, all semantic elements (types or objects) are generally stored in a cluster
with their properties (attributes or relation halves). For certain transactions or uses, however, it can
be better to only load part of the information. Instead of having to load the entire elements or
clusters to read a few properties for queries, a corresponding index is used to refer exclusively to
the required properties. Metaphorically, these indexes are both signposts and shortcuts to the
required partial information.

The requirement for indexing in structured queries or during import mapping becomes apparent
through various notes: In import mapping, if an object is not identified using the primary name, as
expected, but through a different attribute, the note appears: “No usable index for [...].”

59

Ul
v
W/ Albumimport

4 © 1:Instances of Album (Identification is not optimal)
A 2: Attribute Year

Users' Manual 5.8 - 1.2. Definition of schema / model

e lm

ASEEELaulmX
1: Instances of Album

Mapping Identify Log Options
Identifiy object using the following mappings:

2: Attribute Year: No searchable Index for Year

Import mapping with message regarding missing index

:
&% Relation R O has Target 4

N hable Index for h ithor, N
Edit Conditien pand has player e has Target 4+ | @ Guitarist £ Mo zerinia Iy iz
by

No searchable Index for has author, No searchable Index for lyrics are written

Structured query with message regarding missing index

Indexing is required for:

e Queries

e Importing data with identifying properties

Depending on the intended use, suitable indexes must be selected for certain attributes or

relations.

The indexes are defined in the Knowledge Builder settings. The assignment of the indexes can take
place either in the settings of the KB or in the Detail editor of a type (Details > Indexing > Assign

index).

1.2.6.1. Manage and apply available indexes

Available indexes (Settings > Index configuration)

All indexes created in the Knowledge Builder can be managed centrally in the settings.

60

Personal System Index configuration

Index filter Available indexes:

Name
Metrics

System

topic->value
value->topic
value->topic (unique)

Indexes

Category “Indexes”

filter identifier

Users' Manual 5.8 - 1.2. Definition of schema / model

Type Status Create new
Metrics Must be synchronized

System relation index active

Pluggable indexer active

Pluggable indexer active

Pluggable indexer active

0K

This setting option can be used to manage the index structures. All available index types are listed

under “Available indexes”. Each index type can be used for specific types of attributes or relations.

If an index is shown in grey, then the index is currently deactivated; if it is highlighted in red, then

the index is currently not synchronous.

There are buttons to generate, delete, configure, assign and synchronize on the right-hand side.

Index

Lucene full text index (JNI)

Metrics

System

topic - value

topic - value (domain segmented)

value - topic and topic = value

value - topic

value - topic (unique)

Use

Full text query

Performance improvement in structured queries
by taking into account the number of elements

System relations (predefined, cannot be
changed) This is used for “extends object” / “has
extension” / “is super-type of” / “is subtype of”
relations

To list attribute values/relation targets in object
lists

To list attribute values/relation targets in object
lists

For single-sided relations, results in a speed-up
for weighted inverse single-sided relations

Attribute values for an object

Attribute values that may only occur once per
attribute type for an object

61

Users' Manual 5.8 - 1.2. Definition of schema / model

Category “Index for relations"/ “Index for attribute value ”

Indexes can be divided up using different aspects. First of all, a distinction can be made between
forward and reverse indexes. In the case of the reverse indexes, it may make sense to refer to the
property from target/value to resolve the metaconditions on the property. Ultimately, an index can
optionally perform a segmentation by each type of source object in order resolve structured
queries that are limited to objects of subordinate types more efficiently.

Some properties may not require an index depending on the specific application. (They can then be
marked with “Ignore”. They are not examined further in this optimization step.)

e Relations can use a reverse index instead of a forward index on the inverses — and vice-versa.

e Attributes can also be indexed with modified/standardized values (e.g. full text with basic word
forms). A corresponding operator can then be used for search for these.

Applicable indexes (detailed configuration)

The indexes that can be used for a relation type or attribute type can be assigned using the detailed
configuration.

contains song

Overview Details

«" band has player . Type Indexes:

" contains guest appe Definition Name filter identifier Type Status | Assign index |

i‘. contains song 4 Schema definition CElE = Pluggable indexer active | Remove ‘

o correlates with Instance

o correlates with (inve Type | e ‘

o eventis performed 4 View configuration | spnchrontze ‘
4 4 has authar 4 |nstance

o lyrics are written Details

«" has cover version Object list

o has geographical pa 4 Type

«" has guest appearanc Details

& has member Object list

" has partner v Indexes

Assigning indexes in the detailed configuration of type

Attribute types

topic - value

topic = value (domain segmented)
value - property

value - topic

value - topic (unique)

Relation types

topic - value

topic = value (domain segmented)
value - property

value - topic

62

Users' Manual 5.8 - 1.2. Definition of schema / model

1.2.6.2. Create a new index

In the settings of Knowledge Builder, a new index can be created under: Settings > Index
configuration > Indexes > Create new

The following selection is available at the start:

Index Use

Pluggable indexer Combined use of distributor and index modules
for adapted indexing; specific configuration by
means of index filters is possible

Lucene full text index (JNI) Full text query

The following section describes the configuration of the pluggable indexers because these can be
used most flexibly and cover almost all use cases.

Addable index modules

Pluggable indexers enable the administrator to create an indexer from prefabricated modules in
order to achieve the corresponding indexer behavior.

A pluggable indexer consists of distribution levels that are closed by an index level that regulates
data storage. Hence, an indexer can index both attributes and relations.

If the indexer is assigned an optional index filter, the indexer behavior can be influenced further;
only suitable property types can then be assigned to the indexer.

Since properties include attributes and relations, the following section refers to an attribute value
or relation target as a value of the property.

63

Users' Manual 5.8 - 1.2. Definition of schema / model

Addable index modules

Distributor by domain

Distributor by property type

Distributor by property value

Distributor by semantic element

Index Redundant Storage of Relation Properties

Add Index module
Assigned index modules
=iiie Remove last index module
Mo filter Select filter filter identifier
Indexer Mame
Abort Ok
Pluggable indexer
X T = Topic = object/element/instance P = Property =

attribute/relation "V" = Value = attribute value/relation target

"Value”

Distributor/index Use

Distributor by domain (after To search for a subset of object types that jointly use a property
that, all other distributors can
be selected)

Distributor for each property Distinction between attribute and relation
type (index can be selected
afterwards:)

Index property on value/target Attribute - Attribute value, Relation - Target object/target type
To find relation targets in structured queries with a restriction on
the meta property

64

Pluggable indexer

(1) object
value/target = topic - value =
topic > (domain
segmented)

@® ndex value/target
property = value - property

Index on

value

on

Index value/target on property
(uniqueness check)

9 Index value to semantic
element = value - topic

9 Index value to semantic
element (uniqueness check) =
value - topic (unique)

Distributor for each property
value

Distributor for each object

Index redundant storage for
relation properties

Filter

Filter type

Latitude
Longitude

Interval start value
Interval stop value
String filtering

Strings to words filter

Users' Manual 5.8 - 1.2. Definition of schema / model

Object - Attribute, Abject - Target object of relation To list
attribute values/relation targets in object lists

Attribute value - attribute Meta-relation target - Attribute
Relation target = relation Meta-attribute (value) - Relation For
single-sided relations, results in a speed-up for weighted inverse
one-way relations

Attribute value = Attribute To search for meta properties

Attribute value -> Attribute Relation target - Relation To
support structured queries objects with specified
values/targets on attributes/relations

on

Attribute value - Object (e.g.: email address)

Together with “Index property”: For compact storage of many
identical values/targets;
value/target on property”

same response as for “Index

For single-sided inverse relations

(Might not be used in combination with pluggable indexes)
Faster display of meta properties on relations when using
symmetric relational properties

Use

For indexing an attribute type of the value type “geographical
position”

For indexing an attribute type of the value type “geographical
position”
II)

For indexing an attribute type of the value type “interva

For indexing an attribute type of the value type “interval”

For splitting the input string into single words

1.2.6.3. Details about indexer blocks

A distinction is made between the breakdown indexer modules and the indexing indexer modules.

65

Users' Manual 5.8 - 1.2. Definition of schema / model

A breakdown indexer module partitions the index according to different aspects. Following that,
there is either another breakdown or an indexing index module that stores the index entries.

Indexer

Distributor by property type

name is being eaten eats

Distributor by domain

animal plant animal plant animal plant
e ey L s
| 1
P12 3 T05
iy T05 ,Grass® > P11 ij'roz TO3 -3 P11 P11 ->T03 T05-3 P12

Index value to Frog”=>T02 Sundew” = P12 T e T02 > T01
semantic element JLion” > T04 T05 > T02
LStork” > T01 T03 > Toa

.Zebra” 3 T03

The figure shows an example of how a stackable indexer consisting of three modules (without value
filter) groups the index entries. This index can now efficiently provide answers to questions such as

e Which animals start with S
e Which plants either other organisms
e Which animals eat zebras (T03)

e etc.
Questions such as

e Which organisms start with S

¢ Which organisms eat flies (TO5)

could also be answered. To do so, an indexer configuration without “Distributor by domain” would
suffice (and might be more efficient depending on the data situation).

1.2.6.3.1. Distributors
e Distributor by property type

The most important module, without which most indexing modules cannot be added. It generally
appears in first place and partitions the entries according to their property type.

e Distributor by domain

Enables partitioning according to the relevant terms of the property-carrying objects. The module is
only useful for properties of individuals. If a property can occur in multiple object types and a

66

Users' Manual 5.8 - 1.2. Definition of schema / model

search only searches for a subset of these object types, this module accelerates the search through
corresponding index access.

e Distributor by semantic element

This module can be used for indexing to summarize the relation targets on the source object. As the
previous module, it is used for mapping older indexers and its K-Infinity 3.1 only makes sense for
single-sided inverse relations.

¢ Distributor by property value

Used to partition according to relation target or attribute value. In this case, only the property can
still be indexed (see Index property).

1.2.6.3.2. Indices

¢ Index value/target to object

This index module is used to store an attribute value on an object or a relation target on the source
of a relation in the index. This type of indexing makes sense if expert queries for objects with
specified values on indexed attributes (e.g. with specified target on indexed relations) are supposed
to be supported.

¢ Index object to value/target

The index module indexes in the exact opposite way as the “Index value to semantic element” and,
for attributes, can be used to determine the column values of the indexed attributes for object lists.
For relations, it can be used in the same way as the “Index value to semantic element” if either the
inverse relation is indexed or the source object is already more restricted by the search than the
target object. If you want to support expert queries with the indexed relation in both directions
(source-target and target-source), the relation can be indexed either with this value and the “Index
value to semantic element” or the relation and its inverse relation can both be indexed with one of
the two index types. Here, it can make a difference if the index module is combined with a
“Distributor by domain” because use of this distributor module for an index on the inverse relation
can be used for partitioning by means of the target domain.

¢ Index value/target to property This index module is used to store values on the attribute or
target on a relation in the index. This type of indexing makes sense if searches for additional
meta properties are supposed to be supported for the indexed attributes. To ensure this index
can also be used in a search for the objects of the property (analogous to “Index value to
semantic element”), the respective property must remain set to “Active” under “Property can
be iterated” in the corresponding term editor.

e Index property to value/target

This index module supports expert queries to search for targets of the relations. To do so, the meta
properties of the relation are used for a highly restricted process. Simple source-target conditions
are not, however, supported.

67

Users' Manual 5.8 - 1.2. Definition of schema / model

¢ Index property

Together with the distributor for each property value, the same behavior can be achieved as for an
index value / target to property. If there are a great many identical values or targets, this makes it
possible to achieve more compact storage; otherwise, this combination has no advantages.

¢ Index property value

This index only stores the attribute values or relation targets. Using it makes sense if a “Distributor
for each object” is used upstream and few objects have many values/targets.

¢ Index redundant storage for relation properties

This module can only be used by itself and is used to display the meta properties on relations more
quickly if symmetric relational properties are used. No index structure is created at the technical
level but the indexer can be addressed via the same configuration and programming interfaces.

1.2.6.3.3. Uniqueness check

The Index value to semantic element and Index value to property modules can be supplemented
with a uniqueness check. The modules supplemented in this way are usually used for the
consistency check of unique identifiers. They are available in the selection list for the addable index
modules (e.g. Index value to semantic element (uniqueness check)).

If a new value is to be written and the same value is found in the index, this new value cannot be
adopted. Values are recognized as identical if they are also grouped identically by all distributors of
the index. If, for example, you want to perform a uniqueness check by domain only (this, for
example, makes it possible for “modern” to coexist as an individual of verb and as an individual of
adjective), the index must contain a Distributor by domain.

If a value filter is also configured, the uniqueness check is executed on the filtered values. This
makes it possible, for example, to identify “arm” and “Arm” as identical.

A value filter that splits strings (for full text) can be combined with the uniqueness
NOTE check, but this is not usually sensible, because even a partial string can lead to
duplicates after splitting, for example “The house” and “house and home.”

The Index value to semantic element cannot recognize duplicate values of this property as
duplicates in an object if properties occur multiple times. It is therefore possible for two identical
attributes with identical values to exist in the same object, but not in different objects. If you want
to prevent this, you must deactivate multiple occurrences in the attribute term or instead use an
Index value/target to property for the uniqueness check.

1.2.6.4. Details about value filter

1.2.6.4.1. Value decomposition
No atomic attribute value can be indexed for geocoordinates and interval attributes. Instead,

68

Users' Manual 5.8 - 1.2. Definition of schema / model

longitude and latitude or interval start value and interval stop value are used to index one
component of the value. For complete indexing, a corresponding indexer for the other component
of the value must be configured respectively.

1.2.6.4.2. String manipulations

Full text filters for strings can be configured in the Admin tool. These can be used to configure
which manipulation is possible on the strings, and how the strings should be split into individual
words. Additional operators are then offered in expert queries, to which the respective filter label
has been added, to allow a specific query to be executed using this filter.

Strings can be indexed in manipulated form by means of “string filtering,” and when a query is
executed, this results in all attribute values being interpreted as hits which the filter maps to the
same string as the search input. By means of “string splitting,” several (manipulated) sub-strings
(tokens) from a text can be indexed. The related index then allows expert queries that execute a
search within the string by means of the operators “Contains words” and “Contains phrase.”

1.2.6.5. Metrics

An attribute “Average number (calculated)” can be created on all property types. The value of the
attribute specifies how many values of the corresponding property an object from the property
domain has on average.

This information enables structured queries to better decide how they determine their result set. In
addition, you can create an attribute “Average number (manual)” whose value overwrites this
value. (This makes sense if the domain is abstract but the property in enquiries is supposed to be
used only when it actually occurs.)

69

Users' Manual 5.8 - 1.3. Searches / Queries

1.3. Searches / Queries

Querying of the Knowledge Graph has various subtasks for which we can configure different search
modules: often we would like to process the user’s entry in a search box (character strings). Usually
we would like to pursue the links for the queries within the Knowledge Graph, sometimes we want
to assign weights. Various types of searches are available in i-views for this purpose:

e Structured queries

e Simple/direct queries (simple search, full text search, trigram search, regular expressions,
parameterised hit quality)

e Search pipelines

1.3.1. Structured queries

Using structured queries, you can search for objects which fulfill certain conditions. A simple
example for a structured query is as follows: all persons who master a certain instrument should be
found.

+
o Relation HE ‘.r' plays instrument |° has Target "{}nlnstrument Q fixec \'\ﬁ

Instrument
N Attributes...
o Relations...
Schema »
Identify > L Specify objects
Query structure ¥ .:1- Access right parameter

i Script
Paste from clipboard
Semantic element with ID

53 (0

&

5

in folder

First there is the type condition: objects of the type person are searched for. The second condition:
the persons have to master an instrument. Third condition: this instrument has to be the violin.

In the structured query the relation "plays instrument", the type of the target of the relation and
the value of the target "violin" form three different conditions and thus also three search modes. If
the third condition that the instrument has to be a violin is omitted, the query will find all persons
who play at least one (arbitrary) instrument:

70

Users' Manual 5.8 - 1.3. Searches / Queries

Structured query

£3= Persons who play an instrument

.3 Person
& Relation .." plays instrument 0 has Target_

Often conditions (in this case the instrument) should not be predetermined or completely omitted,
but given as a situational parameter in the application:

Structured query

£3= Persons who play an instrument

" &% Instrument o

J’ Relation fplays instrument o has Target ‘

O Attribute e = & Instrument A-a[7
[d

4 N\

e

Schema >

BT ’ Instanes of T & Predefined parameters >
Query structure 3 RDF-URI-Alias Instances of Ti
rdtabout Instances of 7, Standard value
Paste from clipboard (dEID Instances of T Remove condition (Ctrl)
uuip Instances of Ti Copy to clipboard

<

Attributes

» Name Name

Relations

Coc]I conet

The conditions may become arbitrarily complex and can traverse the Knowledge Graph to any
depth:

Structured query

§£= Artist with specific topics
& Relation o] hasTarget-
o Relation © has Target
N Attribute Value = @ Topic A=a[g

Slightly more complex example: persons or bands who deal with a certain theme in their songs (to
be more exact in at least one). In this case you do not search for the name but the ID of the theme
as the parameter — typical e.g. for searches which are executed via a REST service or by a script.

71

Users' Manual 5.8 - 1.3. Searches / Queries

The type hierarchies are automatically taken into account in the structured queries: The type
condition "Opus" in the search box above includes its subtypes "Album" and "Song". Even the
relation hierarchy is taken into account: if there is a differentiation below "is author of" (e.g. "writes
text" or "writes music") the two sub-relations will be included in the search. The same applies for
the attribute type hierarchy.

1.3.1.1. Interaction

When a new structured query is created, the root condition contains the root object type of the
Knowledge Graph by default. In order narrow down the query you can simply overwrite the name
or select Choose type by clicking on the icon.

I
+ |! Top-level type

Choose type
Edit [Alt)

The button == allows you to add more conditions to the structured query. Deleting conditions takes
place at the beginning of each line where the type condition is listed (relation, attribute, target,
etc.). Alternatively, conditions can be removed by using the shortcut Ctrl + Click.

J] o I P, . | .-.-I-.._ P A § |ﬂ. [E-
Choose -

=]

Add comment
Disable condition when no parameters set
Remove condition (Ctrl)

Copy to clipboard

When you click on the button = the following menu will appear which may vary slightly depending
on the context.

Top-level type
/N Attributes ¥
UP Relations »
Schema »
Identify ¥
Cluery structure
Transfer »

A complete explanation of all conditions and options of the structured queries can be found in the
next chapters.

72

Users' Manual 5.8 - 1.3. Searches / Queries

1.3.1.2. Use of structured queries

One of the main purposes of structured queries is to provide information on a certain context in
applications. The structured query from the last section, for example, can enable end users in a
music portal to generate a list of all artists or bands who cover subjects such as love, drugs, violence
etc. in their songs.

To do so, the structured query is usually integrated into a REST service via the query’s registration
key . We include the subject in which the user is interested as a parameter in the query with the
user’s ID.

A user enters a search string to search for their topic. Hence, there is no ID but only a string
that is to be used to identify the topic. However, the query result is supposed to show
immediately which bands have written songs on the subject. For this purpose, a structured
query can be integrated into a search pipeline as a component, after the query that processes
the search string.

One of the reasons why structured queries are such a central tool for i-views is that the conditions
for rights and triggers are defined with structured queries. Let’s assume the only people allowed to
leave comments in a music portal are artists and bands. In the rights system, you can thus specify
that only artists and bands that have written at least one song on a topic may leave comments on
this topic. Structured queries can also be used in exports to determine which objects are to be
exported.

All these uses have one thing in common: we are only interested in qualitative, not weighted
statements. This is the domain of structured queries in contrast to search pipelines.

Last but not least, structured queries are also important tools for us as knowledge engineers. We
can use them to get an overview of the Knowledge Graph and compile reports and to-do lists. Here
are some examples of questions that can be answered using structured queries:

¢ Which topic is featured by many artists/bands?

¢ Do specific topics have to be removed because too many relations have amassed or conversely
should rarely used topics be merged or closed?

For ease of use, it makes sense to be able to organize structured queries in folders.

1.3.1.2.1. Implement

The structured queries are implemented in the organizing folder tab or on the results tab by means
of the button New query:

73

Users' Manual 5.8 - 1.3. Searches / Queries

Organizing folder
= Suchen / Searches

Instances Subtypes Schema

The search results can then be further processed (e.g. copied into a new folder) but they are not
kept there permanently.

The path which the structured query has taken may only be viewed in the graph editor to backtrack
it. To this end, one or more hits are selected and displayed using the button graph.

Blzzsso

A structured query may be copied in order to create different versions, for example. Likewise there
is the possibility of saving them in XML format, regardless of the Knowledge Graph. The structured
query may therefore be imported into another Knowledge Graph. However, this is limited to
versions of the same Knowledge Graph, e.g. to backup copies, because the structured query
references types of objects, relations and attributes via their internal IDs.

1.3.1.3. Structure of structured queries

With structured queries we are able to express indirect conditions: you may arbitrarily traverse
between the elements throughout the structure of the Knowledge Graph. Artists and bands may be
found who wrote songs on certain topics but which we cannot name specifically using their titles.

1.3.1.3.1. Multiple conditions

Condition chains may be arbitrarily deep, but it’s also possible to express several parallel conditions.
Additional conditions are added to any condition element as a further branch:

Structured query

£= Artists depending on topic and location

*
o Relation Hf © has Target
o Relation H## © has Target #
P O e aech

O attribute 4 [& Name [Valve = Amapy

& nasion B[raae | © s aroel Q st @ [Gremtomman]

74

Users' Manual 5.8 - 1.3. Searches / Queries

Several conditions: English bands with songs on a certain subject

1.3.1.3.2. Alternative Conditions

In the example mentioned above only artists or bands can be found who created songs on a defined
subject and who come from England. If, instead, we want to find all artists and bands which fulfil
one of the two conditions they will be expressed as alternative. By clicking the symbol of the
condition in the form of the relation "is the author of" you can select an alternative from the menu:

2eand
< ~ & Qdeand | S | Sisauthoref | © * | Jdopus
&£ & | isspecifed by | © & | Topic
' # |/ s characterized by | @ #* | Keyword

~ & Sl | ° * " hasg

tives JA e .;P Relation R © has Target &

o Relation

O & ttsion B[vas e | © s Target B Q

Alternative conditions: the band either has to be English or have songs on a certain subject

If there are further conditions outside the alternative bracket there are objects in the hit list which
fulfil at least one of the alternatives and all other conditions.

1.3.1.3.3. Transitivity / Repetitions

Let’s assume the bands are assigned to either cities or countries within the Knowledge Graph. Of
these, in turn, it is known which cities are in which countries. In order to document these contents
in the search it is possible to expand the condition string: we are able, for example, to search for
bands which are assigned to a city which, on the other hand is in England. However, in this manner
those bands will not be found which are directly assigned to England. In order to avoid this we can
state in the relation "is located in" that it is optional and therefore is not required to exist.

Simultaneously, we can also include hierarchies which are several levels deep using the function
Repetitions. For example, the band ZZ Top is known to originate from the city of Houston which is in
Texas. In order to also retain the band as a result when bands from the USA are queried we can
state in the relation "is located in" that this relation has to be followed up until n repetitions are
reached:

75

Users' Manual 5.8 - 1.3. Searches / Queries

Structured query
&= Band has place

o° Relation R 0 has Target 4R
o Relation |Jl o has Target ¢ Q. fixed a

is place of
[4] is place of

_{- o iy from to
£ At >
2 ’ v v

Schema >

e s [A Shortest path

eni
T o
Paste from clipboard

1.3.1.3.4. Negated conditions

Conditions can be negated. For example, if punk bands are searched for, which do not come from
Great Britain. To this end, the negative condition is setup as a so-called Utility query:

Structured query
£3= Punk-Bands outside of Great Britain

+
o Relation MR e has Target 4¢ Q fixed ﬁ
% Reference =— [4] ¢

¢ Utility query |4 B
o rcsion B[P e © s T WQFRR] 5 @Grmromar]

The utility query retrieves bands from Great Britain. From the main search a reference to the utility
query can be established specifying that the search results must not satisfy the criteria of the utility
query. In this manner we remove the results of the utility query from those of the main query and
only obtain bands which do not come from England.

1.3.1.3.5. References

References allow referring to other conditions of the same query:

Structured query
£3= Bands that cover themselves

T
& Relation 4R © has Target &
o Relation R © has Target
o Relation He © has Target & % Reference = [1] &

Here the last condition references the first one, i.e. the band who writes the cover version also has
to be the author of the original. Without a reference the search would read as follows: bands which

76

Users' Manual 5.8 - 1.3. Searches / Queries

have written songs which cover other songs which were written by any (other) bands.
1.3.1.3.6. Other options in building the structured queries

Structured query macros

Other structured queries, or more generally other searches of any kind, can be integrated into
structured queries as macros. In doing so, there is the possibility of outsourcing repeating, partial
queries into your own macros and thus, for example, to adapt the behaviour at a central location
when changing the model. A macro can be integrated into each condition line.

An example from our music graph: The works of a band include singles, albums and the songs
included in these albums. We can reuse this partial query, for example in a structured query which
returns the bands for a certain mood. We start this query with a type condition — we are looking
for bands — and integrate the pre-defined macro as a condition for these bands:

[32na |

+
@ Satisfies Band — Opus
ol AlbumOrSonglie

The objects which return those which are integrated into the structured query as macros have to
match type determined by the condition to which they are linked.

With the aid of the identifier tool, the query can still be continued with additional conditions.

In our case the albums and songs from where the macro query originates are defined by the
invoking query: Namely albums and songs with the mood "aggressive". Integrating the search
macro into the structured query is carried out through the menu Query structure. Under Structured
query macro (registered) there is a list with all the registered macros. The advantage is that the
macro can be reused for another structured queries.

As soon as the macro is deregistered, it is deleted and not available for other
WARNING }
queries anymore.

77

Users' Manual 5.8 - 1.3. Searches / Queries

It is also possible to use local macros for structured queries. In this case, the macro doesn’t get a
registry key and is only accessible for and within the respective structured query.

#+ &38and
& & | isauthorof | © = ﬂows'

& # [contains | 1011 © 1 #* [JF0pus | @ 1oenis

43 Bands typieal for the genre +
33 Band — Opus

Satisfies Band —Opus
[AlbumOrsong

Query

Using the search condition Query, the results of a simple search or a search pipeline may serve as
input for a structured query. The input box contains the search entry for the simple search. Further
conditions can enable a simple search to be filtered further, for example.

Cardinality condition

A search for attributes or relations may be expanded with a cardinality operator (characterised by a
hash tag #). You may use the cardinality greater than or equal to, less than or equal to and equal.
The normal equal operator of the relation or attribute condition corresponds to greater than or
equal to 1.

1.3.1.4. Conditions in detail

1.3.1.4.1. Type condition

The root of the structured query determines which objects should appear as the results. To do so,
click on the type icon for the first condition and select Choose type in the menu, the input mask
then starts in which the name of the type can be entered.

I
+ I! Top-level type

Choose type
Edit (Al

78

Users' Manual 5.8 - 1.3. Searches / Queries

Alternatively, you can simply overwrite the text after the type icon with the name of the type.

In the second step the relation condition is added. For example, a search is made for the place of
origin of a band and "has place" is set as a relation condition. The target type of the relation is
added automatically which, however, can also be changed (if, for example, the "has location"
relation for countries, cities and regions applies but we only wish to have the cities).

Multiple types in a single type condition are interpreted in terms of an "or" logic in the query. For
example, we search for works or events on a particular style of music as follows:

& J:Opuz 12| Event

There are further functions available for a type condition. In the context menu accessible through
the &k button, there is the Schema item:

o4 [1
Top-level type
/N Attributes »
cf" Relations »
Schema » {_:] Add type condition
Identify > o Instances
Query structure » G

Transfer g Instances and subtypes

&» Concretise concept conditions by parameter
!’ Without Inheritance

We can just search for types of objects instead of specific objects or both at the same time by
checking the item Subtypes or Instances and subtypes in the Schema submenu.

+ G‘Opus

This is what the condition looks like when a search is made for both specific opus as well as
subtypes of opus (albums and songs).

Without inheritance

Normally, inheritance is automatically taken into consideration for all types of conditions of the
structured query. If a search is made for events in which bands play a certain style of music, all
subtypes of events are then incorporated into the search and then we are provided with indoor
concerts, club concerts, festivals, etc. In the vast majority of cases this is exactly what is desired. For
exceptions there is the possibility of switching off the inheritance and restrict the search to direct
objects of the type event, i.e. by excluding the subtypes of objects.

79

Users' Manual 5.8 - 1.3. Searches / Queries

1.3.1.4.2. Operators for the comparison of attribute values

For attributes it is possible to specify value conditions, e.g. when searching for bands which were
founded after 2005 or songs which are more or less 3 minutes long or songs which contain the word
"planet" in their title. These require comparison operators. The type of comparison operators which
i-views offers us depends on the data type of the attribute:

.
Il S

Equal

not equal

Il +

Exactly equal
Between

b
My

Distance

Greater than
Greater/Equal
Less than
Less/Equal
before now (past)

W OAIAAIVY

after now (future)

Comparison operators for dates and quantities

Equal

not equal

Exactly equal

contains phrase (Zeichenketten-Zerlegung (Volltextfilter))

Contains string (Zeichenketten-Zerlegung (Volltextfilter))

Contains string (regular expression) (Zeichenketten-Zerlegung (Volltextfilter))
Greater than

Greater/Equal

Less than

Less/Equal

Regular expression

IS IA A IV VMM #

Comparison operators for character strings

80

Users' Manual 5.8 - 1.3. Searches / Queries

= Equal —
not equal
Exactly equal

covered by

overlaps

-+
=

- covers
N

1 less overlaps
n

greater overlaps

Comparison operators for intervals

Operator overview

Operator

Equal

Exactly equal

Attribute value types Description

Any attribute value typ Identigfies values that
are equal to the
searched value.ln case
of character strings,
wildcard characters '*'
(arbitrary strings) and
i (one arbitrary

character) are
supported.
Character String Identifies character

strings which are
identical with the
search term without

using wildcard
characters.
Contains phrase Character string with Identifies character

full text index strings which contain
the searched terms in
forms of a subset.

Contains character Character string with Identifies character
string (strings to word full text index strings which contain
filter) all words of the

searched term in an
arbitrary order

Example

Search term 'Star*
finds 'Star' and 'Start'

Search term 'Star*
finds 'Star*', but not
'Star' or 'Start'

Search term 'Farmer
George' finds 'Farmer
George Green', but not
‘George Farmer'

Search term 'Farmer
George' finds 'Farmer
George Green' and
'George Farmer', but
not 'George Grey'

81

Operator
Contains character
string (regular

expression)

Regular expression

Not equal

Greater than

Greater/Equal

Less than

Less/Equal

Equal (geo)
Equal now (present)

Before now (past)

Attribute value types

Character string with
full text index

Character string

Any attribute value
type
All attributes with

assortable values

All attributes with

assortable values

All attributes with
assortable values
All attributes with

assortable values

Geo
Date

Date

Users' Manual 5.8 - 1.3. Searches / Queries

Description

Indentifies character

on word matches the
search terms derived

from the regular
expression.

Identifies character
strings which match
the search terms
derived from the

regular expression.

Identifies values which
are not equal to the
searched value. In case
of character strings,
wildcard characters '*'

(arbitrary strings) and

P (one arbitrary
character) are
supported.

Identifies values (and
hence the elements
carrying the attribute)
which are greater than
the searched values.

Identifies values
greater than or equal

to the searched value.

less
searched

Identifies values
than the
term.

Indentifies values less
than or equal to the
searched value.

Identifies date values
that are situated in the
past.

Example

Search term 'Balyile?r'
strings of which at least finds 'Silke Bayer' and

'Emil Bair',

'Bauer’

but

not

\d+\s\w+' finds '64293

Darmstadt’

82

Operator

After now (future)

Distance

Between

Covers

Covered by

Overlaps

Attribute value types

Date

Date, Geo, Number

Interval

Interval

Interval

Interval

Users' Manual 5.8 - 1.3. Searches / Queries

Description

Identifies date values
that are situatued in
the future.

Identifies values whose
distance to the
searched value equal
to the maximum of the

given distance value
(date: number of days,
geo: distance in
meter). Parameter

values require a tilde
character to separate
the target value from
the distance, e.g.
"2019/10/01 ~ 30" -
2019/10/01
plus/minus 30 days.

i.e. on

Identifies intervals

which completely
comprise the searched
value. Parameter
values require a
hyphen character, e.g.

"10.1.2005 -

20.1.2005".
Identifies intervals
which comprise a

common,
partial interval with the
searched value.

non-empty

Identifies intervals
which share a
common, non-empty

partial interval with the
search value.

Example

Search value
'2019/10/01' with
distance 30 will return
the result
'2019/10/15', but not
'2019/11/01'

Searched value 'l - 5'
returns 'l - 3, but not
|3 - 6|

'2 - 4' finds '1 - 3" and
'3-6', butnot'4-5'

'2 - 4' finds '1 - 3" and
'3-6',butnot'4-5'

83

Users' Manual 5.8 - 1.3. Searches / Queries

Operator Attribute value types Description Example

Greater overlaps Interval Identifies intervals '2 - 4' finds '3 - 6, but
which share a not'l-3'
common, non-empty
partial interval,

containing the lower
limit of the search
value interval.

Less overlaps Interval Identifies intervals '2 - 4' finds '1 - 3', but
which share a not'3-6'
common, non-empty
partial interval,
containing the upper
limit of the search
value interval.

Comparative value results from the script

Attribute value conditions may be removed from partial searches and replaced by a script and
attribute condition. The results of the script are then used as a comparative value for the attribute
value condition, e.g. if the comparison operators do not suffice for a specific query.

1.3.1.4.3. Identifying objects

The structured query provides several options for identifying objects within the Knowledge Graph.
To simplify matters, the previous examples often defined the objects. This type of manual
determination may, in practice, be of help in testing structured queries or determining a
(replaceable) default for a parameter entry.

At this point we have already become familiar with the combination with the name attribute which
can, of course, be any random attribute. In the menu item Identify we will find some more options
for defining starting points for the structured query:

Specify chjects

Jo

Identify >
Query structure > =
Transfer -]

"

Access right parameter

-

(o]

Script

Semantic elerment with [0

..
R

in folder

.

1.3.1.4.4. Access right parameter

The results of the query may be made dependent on the application context. This particularly
applies in connection with the configuration of rights and triggers when, generally speaking, only
user is usable.

84

Users' Manual 5.8 - 1.3. Searches / Queries

1.3.1.4.5. Script

The objects to be entered at this point are defined by the results of the script.

1.3.1.4.6. Semantic element with ID

You may also determine an object via its internal ID. This condition is normally only used in
connection with parameters and the use of the REST interface.

o Relation He Q has Target o B¥ Semantic element with ID| Location_ID

1.3.1.4.7. In folder

Using the search mode in folder the contents of a collection of semantic objects can be entered into
a structured query as input. The selection symbol will enable you to select a folder within the work
folder hierarchy. The objects of a collection are filtered with respect to all other conditions
(including conditions for terms).

1.3.1.4.8. Parameter conditions

Parameters
By using parameters in a structured query, values can be passed when using the query in JavaScript.

Parameters can be freely assigned, a query is query is called as follows:

$k.Registry.query('<registryKeyOfQuery>').findElements ({
'<parameterNameInQuery>': '<input>'
})

The parametrized input can be in forms of:

e semantic element

P
1 Top-Level-Typ
/N, Attributes » P
& Relations ¥ # Specify objects x
Schema > Serantic element
Identify > Q Specify objects element
Query structure > .:c Access right parameter oK Cancel
Transfer > IE‘ Script :
F‘L!; Semantic element with [0
W infolder

e attribute value

85

Users' Manual 5.8 - 1.3. Searches / Queries

+ O Top-Level-Typ
O Attribute H8 |d Name(|#% drmtin = | boar

Choose

" Cuery using all languages
Cuery using the current language
Cluery using the selected languages
Subpress warning
Show warning
Add comment

Edit parameter

¢e

Predefined pararneters b
Standard value
Remove condition (Ctrl)

Copy to clipboard

e elementid

+ .TDp—LeveI—Typ BE K antic nlamant with 1N

Choose

Add comment

&) Edit parameter

Standard value
Remowve condition (Ctrl)

Copy to clipboard

There are two possibilities to test structured queries using parameters:

e Using the test environment of the structured query

¢ Invoking the structured query by script (executing or debugging)
In general, there are four conditions a parameter can have:

e Parameter is set
e Parameter is not set

e Parameter is deactivated

(Parameter contains empty string)

86

Users' Manual 5.8 - 1.3. Searches / Queries

Optional parameters

The structured query has a feature that allows using optional parameters: for a certain branch of
the query, the context menu offers the condition:

Until 5.3: Disable condition when no parameters set

%+ @ KG Element
@::l:—i.w & [P ralatad alamant | 8% hoc Toooat sk (@ KG Element
Choose
N Attribute 4 | RDF-ID | &F Value = @ id A=a[y

Add comment
Disable condition when no parameters set
Remaove condition (Ctrl)

Copy to clipboard

Since 5.4: Mandatory parameter
'
Add comment D Attribute BB £k Value = @ id A=afy
Mandatory parameter .
Remove condition (Ctrl)

Copy to clipboard

& | kG element b
o Relation @ Mandatory parameter: id 4R |4 related element o has Target 4 @ KG element
N Attribute HR [RDF-ID | 3k Value = @ id A=ap

If the optional parameter condition has been set, it has the following effect: From this point on, the
rest of the branch (to the right) will not be encountered as condition for the query result when the
respective parameter has been deactivated.

If several parameter conditions have been set within one branch, the AND logic applies:
& Mandatory paramete element -~ id
If all mandatory parameters are deactivated, the subsequent query branch will be left out
completely when computing the query result, else the parameters which are set are will be used.
When the parameter is not set, the test environment will nevertheless throw an

NOTE error despite the optional parameter condition. If testing of optional parameters is
needed, the parameter needs to be disabled in order to test an unset parameter

87

condition.

Important rules about setting parameters

Parameter condition

Parameter is set

Parameter is not set

Parameter is disabled

Parameter contains

empty string

Setting in structured
query

Parameter value has

been entered

No parameter value
has been entered (just
executing query)

4% id (Parameter is not set)

L]

Clicking on x besides
parameter
4+ X id (Parameter is not set)

Disable Pararneter

+ R id (disabled)

[

Entering or
rejecting search dialog

if occurring

nn
’

Users' Manual 5.8 - 1.3. Searches / Queries

Setting in JavaScript

Variable containing
parameter value s
defined

Handing over no
parameter Using
findElements () or
findHits() without

arguments or setting
parameter
undefined.

to

Setting parameter to
null.

Variable for parameter
set to empty string
or""

[

Risk of search results containing false positives

Result

Parameter condition is
encountered in query
result

Error: "Parameter xy is
missing"

e With conventional
parameter:
the parameter
requirement would
not exist within the

as if

structured query

e With optional or
mandatory
parameter: the

branch from the
optional condition
until end of query

branch will be
ignored
Query branch will

return no result; if no
alternatives exist, the
whole query might

return no results

For predictability and reliability of query results in scripts, make sure to avoid
parameter values from being null inadvertently, since no errors are thrown

WARNING

parameter input.

system wise. Use control structures to catch unattended conditions of

When an optional parameter is passed on to the structured query by means
of a script in a search view or a search result view , the value type of the

88

Users' Manual 5.8 - 1.3. Searches / Queries

parameter also needs to be set to optional. If the value type is set to
obligatory, the structured query will not deliver any search result when the
script sets the parameter value to null (with the intention to deactivate the
optional parameter).

1.3.1.5. Comments in structured queries

1.3.1.5.1. Adding comments

Every condition in a structured query can be commented. For adding a comment, choose the option
Add comment in the context menu. At the condition in the structured query, an existing comment
causes a blue indicator flag which shows up a text in case of mouseover.

+ 3 Person

A Atiribute d |4 Last name

Edit Condition
The last name still has to be entered

By means of the dialog Edit comment, the corresponding comment can be changed or removed:

‘2t Add comment X
Language Add
+ Comment The last name still has to be entered|
[a. . 1
Q CI'K:mse1 -

Add comment
Disable condition when no parameters set
Remove condition (Ctrl)

Copy to clipboard

Delete Cancel

The indicator flag for comments is not shown when the condition has a warning or a fault. In this
case you only can see the yellow warning indicator or the red fault indicator. Additionally, all
warnings, faults or comments will be listed in their order on the right side below the parameters
editor.

89

Users' Manual 5.8 - 1.3. Searches / Queries

.
& Attribute e % value = l:l A=a g =1 Error, 2 Comments

Edit Condition @ The last name still has to be entered

Parameter Value Equal is missing. @ Value Equal: No or invalid attribute value ...
this comment has ne indicater
@ this comment has no indicator

Warnings and cautions can be suppressed in the indicator indication if you want to ignore them at
this point (of course, this is not recommended). To do so, click on the indicator symbol in the listed
view or choose the function Suppress warnings in the context menu of the condition. The indication
can be reactivated on the same way or by choosing the context function Show all warnings of the

root finder.

+ No parameters

@ The last name still has to be entered

@ this comment has no indicator

1.3.2. Simple Search / Fulltext search

Processing the search queries of users may be carried out with or without interaction (e.g. with
type-ahead suggestions). The starting point is, in any case, the character string entered. In
configuring the simple search we can now define with which objects and in which attributes we
search according to the user input and how far we differ from the character string entered. Here is

an example:

90

Users' Manual 5.8 - 1.3. Searches / Queries

| white p ‘ﬁ Input

a Andrew White

Barry Eugene Carter Name =

_ objects

m Jack White
Lenny White
Meg White
The White Stripes
WHITE
Whitesnake
Will White

How do we have to design and organise the search in order to receive the below feedback on
objects from the entry "white"? In all cases we will have had to configure the query to show that we
only want to have persons and bands as the results. How is it, however, if there are any deviations
from the user input?

1. When is the (completely unknown) Chinese experimental band called "WHITE" a hit?
If we state that upper case and lower case doesn’t matter

2. When will we receive "Whitesnake" as a hit?

If we understand the entry to be a substring and attach a wildcard

3. When "Barry Eugene Carter"?
If we not only search through the object names but include other attributes as well — his stage

name is namely "Barry White".

These options can be found again in the search configuration as follows:

91

Users' Manual 5.8 - 1.3. Searches / Queries

Query
£= Query for artists

]

Attributes
O

[t | [-Nofier- |

Aternative Mame -
Name Primary name 9

Semantic elements
B fitter results

Instances of Band o A |z|

Instances of Person

Query syntax

[] Case sensitive
B4 Apply query syntax 9
£ Deconstruct query string

Default operator:

Wildcards
O No wildcards (O Prefix Minimal number of characters
g m“::;::d; g :r::'i"g Wildeard quality factor
Language

(®) Query using all languages
() Query using the cument language
() Query using the selected languages

| =

Settings

[[] Restrict resultset size Hits

[Server based query

L*]

Configuration of the simple search with (1) details as to which types of objects are to be browsed
through, (2) in which attributes the search has to be made, (3) upper case and lower case and (4)

placeholders.

1.3.2.1. Simple search — details of the options

1.3.2.1.1. Placeholder / wildcard

The entry is often incomplete or we want to retrieve the entry in longer attribute boxes. To do this,
we can use placeholders in the simple search. The following settings for placeholders can be found
in simple search:

92

Users' Manual 5.8 - 1.3. Searches / Queries

Wildcards

(0 Mo wildcards O Prefix Minimal number of characters 3
O Auto wildcards ® Substring Wildcard quality factor 1.0
® Always wildcards () Suffix

e Prefix (trailing placeholder) finds the [White Lies] for the entry "white"
e Substring (leading and trailing placeholder) finds [The White Stripes]
¢ Suffix (leading placeholder) finds [Jack White]

WARNING Leading placeholder is slow.

The option Always wildcards works as if we had actually attached an asterisk in front and/or
behind. Behind Auto wildcards there is an escalation strategy: in the case of automatic
placeholders, a search is made first with the exact user entry. If this does not deliver any results a
search will be made with a placeholders, depending on which placeholders have been set. With the
option prefix or substring there is once again a chronological order: in this case you look for the
prefix first (by attaching a wildcard) and, if you still can’t find anything, you make a search for a
substring (by means of a prefix and attaching a wildcard).

If you are allowed to attach placeholders in your search you can state in the box Minimal number of
characters how many characters the search entry must show to actually add the placeholders. By
entering 0 this condition is deactivated. This is particularly important if we set up a type ahead
search.

With the Wildcard quality factor you can adapt the hit quality to the extent that the use of
placeholders will result in a lower quality. In this manner we can, if we want to give the hits a
ranking, express the uncertainty contained in the placeholders with a lower ranking.

If the option No wildcards is selected the search entry will not be changed. The individual
placeholder settings will then not be available.

The user can, of course, use placeholders themselves when entering the search string, which will
then be obeyed.

1.3.2.1.2. Apply query syntax

When the box for the option Apply query syntax is unchecked, a simplified form of the analysis of
the search input is used in which, for example, the tokens | (OR condition), & (AND condition), and
! (negation) no longer have an effect on the result. Nevertheless, in order to be able to define how
the hits for the tokens should be compiled, the Default operator can be switched to AND or OR.
What applies to all linking operators is the fact that they do not refer to values of individual
attributes, but to the result objects (depending on whether Hits only on attributes has been set). A
hit for "online system" thus delivers semantic objects which have a matching attribute for both
"online" and "system" (which is not necessarily the same).

93

Users' Manual 5.8 - 1.3. Searches / Queries

1.3.2.1.3. Filtering

Simple searches, full-text searches and also some of the specialized searches may be filtered
according to the types of objects. In the introductory example, we made sure that the search results
only included persons and bands. Attributes which do not match a possible filtering are depicted in
red bold print within the search configuration dialogue. In our case this could be an attribute
"review", for example, which is only defined for albums.

1.3.2.1.4. Translated attributes

In case of translated attributes we can neither select a translation, nor have the language
dynamically defined. Search for multilingual attributes, then in the active language or in all
languages, depending on whether the option Query using all languages is selected.

1.3.2.1.5. Query output

A maximum query output may be defined by entering the maximum number in the Hits box. By
toggling the checkbox Restrict result set size the mechanism can be activated or
deactivated.

WARNING If the number is exceeded, no output will be shown!

1.3.2.1.6. Server-based search

Generally speaking, each search can also be carried out as a server-based search. The prerequisite
for this is that an associated Job-Client is running. This option can be used when it can foreseen that
very many users will make search queries. By outsourcing certain searches to external servers, the i-
views server will be disburdened.

1.3.2.2. Multi word search inputs

In our examples for queries the users have, until now, only entered one search term. However, what
would happen if the user entered "Abba Reunion News", for example, and thus would like to find a
news article which is categorized by the keywords "Abba" and "reunion"? We have to disassemble
this entry because none of our objects would match the entire string or at least not the article being
searched for:

94

Users' Manual 5.8 - 1.3. Searches / Queries

abba reunion news p‘

0 Combined again?

With segmentation I reunion
L N

R — l/ J Reun
: news

Our examples so far do not, however, fall short only due to multi word search inputs. We also often
have search situations in which it does not make sense to regard the names or other character
strings from the Knowledge Graph, with which we compare the input, as blocks , e.g. because we
would like to retrieve input in a longer text. In this case the wildcards will eventually no longer be an
adequate means: if we also want to disassemble the input on the page of the object and the text
attributes which have been searched through it would be better to use the full-text search.

1.3.2.3. Full text search and indexation

If we want to view or search through longer texts word by word, e.g. description attributes we
recommended the use of full-text index. What does something like that look like?

e

aaliyah Doc#155, Pos. 548644 / Doci#459, Pos. 934875 / Doc#935, Pos. 26526

abba Doc#132, Pos. 43095 / Doc#459, Pos. 46795 / Doc#935, Pos. 534955 /
Doc#353, Pos. 367773 / Doc#711, Pos. 92634

abbey Doc#464, Pos. 95367 / Doc#2543, Pos. 65258 / Doc#634, Pos. 35241

abbreviation Doc#436, Pos. 54362

abbreviator Doc#463, Pos. 234652

abnormity Doc#253, Pos. 4652

abo Doc#234, Pos. 32243 / Doc#332, Pos. 23414

The full-text index records all terms/words which occur within a portfolio of texts so that i-views can
quickly and easily look up where a particular word can be found in which texts (and in which part of
the text).

95

Users' Manual 5.8 - 1.3. Searches / Queries

"Texts", however, are not usually separate documents within i-views, but the character string
attributes which have to be searched through. Their full-text indexing is a prerequisite for the fact
that these attributes are offered in the search configuration.

Even full-text indexing concerns the deviations between the exact sequence of characters within
the text and the text which is entered in the index and which can hence be retrieved accordingly. An
example of this: a message from the German music scene:

Transformation to
“andre”

Separate from punctuation mark, then
eliminate the single character

André Rieu together with Bela Bl on f

top word

Stop word

amazing tour! Fun-Punk meets Cuddle-Classic?

<

: : Fragmentin "cuddie”
Separate from Fragment in “fun’ and “classic” and
punctuation mark and “punk’ separate from

punctuation mark

In this example we find a small part of the filter and word demarcation operations which are
typically used for setting up a full-text index:

1.3.2.3.1. Word demarcation / tokenizing

Often in punctuation such as exclamation marks are placed directly on the last word of the
sentence without a space in between. In the full-text index, however, we want to include the entry
{tour}, not {tour!} — hardly anyone will search for the latter. For this purpose, when setting up the
full-text index we have to be able to specify that certain characters do not belong to the word. The
decision is not always so easy: In a character string such as "hard-rock" which occurs in a text we
have to decide whether we want to include it as an entry in the full-text index or as {hard} and
{rock}. In the first instance our message will then only be found if an exact search is made for "hard-
rock" or, for example, "*ard-ro*", in the second instance for all "rock" searches.

What we will probably keep together in spite of the occurrence of punctuation, i.e. exclude from
tokenizing, are abbreviations: when AC/DC come to Germany o.i.t. (only in transit) it is probably
better to have the abbreviation in the index instead of the individual letters.

1.3.2.3.2. Filter

By using filter operations we can both modify words when they are included in the full-text index
and also completely suppress their inclusion. We can maintain a list of stop words. Moreover, we
probably do not want individual characters (Bela B.) to be in the index like this — the likelihood of
confusion is too great. Using other filters we can restore words to their basic forms or define
replacement lists for individual characters (e.g. in order to eliminate accents). Other filters, in turn,
clear the text of XML tags.

96

Users' Manual 5.8 - 1.3. Searches / Queries

We can set all this in the Knowledge Builder within the global settings via Index configuration >
Indices. We can then assign these configurations to the character string attributes. The index
configuration is organized in such a manner that filtering can take place before the word
demarcation and after the word demarcation.

The full-text search does not affect the wildcard automatism of the other queries but the user may,
of course, provide his input with wildcards.

1.3.3. Search pipeline

Search pipelines enable individual components to be combined to complex queries. Single
components perform operations in the process, e.g.:

e traversing the Knowledge Graph and thus determining the weighting

e performing structured queries and simple queries

e compiling hit lists

Every query step produces a query output (usually a number of objects). This query output may, in
turn, be used as input for the following components in the pipeline.

1.3.3.1. Example

Let us assume that songs and artists from our music graph are characterized with tags named
moods. Based on a certain mood we now want to find which bands best represent this mood.

Step O of our search pipeline accepts a mood as parameter and assigns it to the variable named
"mood". In this example, we use the mood "aggressive" as input and see how the pipeline can be
used to find bands typically associated with this mood. In step 1 the pipeline goes from the starting
mood to the songs which are assigned to the mood "aggressive" via the relation is mood of:

Components
£ typical bands Configuration Hits ~ Cause Description
4 : by songs Input mood
/% Weighted relation/attribute (is mood of) mood => songs Hit
Output songs
Hit
Properties is mood of (Instances of Opus) Add
Remove
Weight Remove
Standard value | 25
Add Remaove Move up Move down
Settings
] Restrict resultset size Hits
[Server based query Test environment

97

Users' Manual 5.8 - 1.3. Searches / Queries

aggressive
® 0
Dog faced boy

. @
Heart in a cage
[]

i
(i] o @ Faint
@ Seven Nation Army
@ A Place for my Head
@ Crawling

@ Anarchy In The U, K.
@ By Myself

In the second step we go from the number of songs detected in the "mood" searched for to the
corresponding bands via the relation has author:

Search Pipeline
L= typical bands

Components
jeol typical bands o Configuration Hits Cause Description
4 [C by songs Input |songs HE :
/% Weighted relation/attribute (is mood of) mood => songs Hit
/4 Weighted relation/attribute (has author) songs =» bandsBySongs
- & g Output | bandsBySongs |

Hit

Properties has author (Instances of Band) o
o Remove |
[Remove | [..]

Weight |

Standard value

98

Users' Manual 5.8 - 1.3. Searches / Queries

(A .
Er) aggressive
Ly 299

@ Dog faced boy °
Eels

Heart in a cage
+° The Strokes

@ By Myself
@ Faint
Crawling ° Linkin Park
@ A Place for my Head

@ Anarchy In The UL K.

@ Seven Nation Army
@ Elephant ° Sex Pistols

+° The White Stripes

Now we would like to pursue a second path: from the starting point "mood" "aggressive" to the
musical directions which are characterized by aggressiveness. Based on this number of relevant
musical directions we have to go to bands which are assigned to this mood. We go down this
alternative path in one step using a structured query:

Components

£ typical bands Configuration Query parameters Description

4 [by songs put | 1=
& Weighted relation/attribute (is mood of) mood => songs Hits to filter, or no input to perform the query

& Weighted relation/attribute (has author) songs =>
4 I bystyle
3 Structured query "Band" => bandsByStyle

Output | bandsByStyle ‘
tits

{® Scale quality bandsByStyle => bandsByStyle Remain |]
% Merge hits bandsySongs, bandsByStyle => typicalBands Fitsthet do not match the query condition
4@ Result typicalBands
Query | structured query [open |[.]
+ B

o Relation Mk | has style | @ has Target 4 |J@Style
o Relation 8 |o” is characterized by | @ has Target #
O Attribute #R -ﬁ Value = @ mood A=a

99

-I-G Heavy Metal

{4 .
Ery aggressive
Wy 299

@ Heart in a cage

Users' Manual 5.8 - 1.3. Searches / Queries

@ Dog faced boy °
Eels

+° The Strokes

@ By Myself

Faint
@ Crawling
@ A Place for my Head

@ Anarchy In The U. K.
@ Sewven MNation Army
° Sex Pistols

e Elephant
+° The White Stripes

9 Punk

° Linkin Park

From the last two steps we give the indicator "musical direction" a somewhat lower weighting and

compile the outputs at the end:

Search string

L]

Parameters

MNarme Required Value

rmood aggressive

<

; | Trace search |

Name Type Reason
Linkin Park Band Crawling, By Myself, A
The White Stripes Band Seven Nation Army, Ele
Sex Pistols Band Anarchy In The U. K.
Eels Band Dog faced boy
The Strokes Band Heart in a cage

Type of value Set value

Keyword
Set element

Reset

Search string Quality

100
95
80
78
78

The steps are processed in sequence: the input and output define which step will continue to work
with which hit list. For instance, in this manner we would be able to begin again with "mood" on

100

Users' Manual 5.8 - 1.3. Searches / Queries

our alternative path.

1.3.3.2. The principle of weightings

It was the goal to give the bands we obtained as outputs a ranking which shows how great their
semantic "proximity" is to the mood aggressive. In particular, we influence ranking in this search at
two positions: right at the end we weight bands higher in the summary which are found both via
their musical direction and their songs. In this case this applies to Linkin Park and the Sex Pistols.
The higher ranking of Linkin Park results from the fact that again and again different songs lead to
Linkin Park with the mood aggressive. Since more aggressive songs from Linkin Park are in the
database, Linkin Park should be "rewarded" with a higher ranking.

1.3.3.3. Configuration of search pipelines

The individual components of a search pipeline are depicted in the main window in the box
components in the order of sequence in which they are implemented.

Using the button add we can insert a new component at the end of the existing components.

Grouping with blocks serves only to provide an overview, e.g. for the compilation of several
components in a functional area of the search pipeline.

The order of sequence of the steps can be changed using the button upwards and downwards or
with drag & drop.

Using the button remove the component selected will be removed, to include all possible sub
components. The configuration for the component selected is displayed on the right-hand side of
the main window.

1.3.3.3.1. Configuration of a component

A selected component may be configured on the right-hand side of the main window using the tab
Configuration: most components need input. This usually comes from a previous step. In this way,
the first components in our example pass on the output under the variable "songs" to the next
component, this then goes from there to the bands and, in turn, gives the output to the next steps
as "bandsThroughSongs":

Components
£ typical bands Configuration ~ Hits Cause Description
«E by songs Input sangs

(% Weighted relation/attribute (is mood of) mood => songs Hit

/% Weighted relation/attribute (has author) songs = bandsBySongs
Qutput | pandsBySongs

Hit

Properties has author (Instances of Band) Add

Remove

Weight Remove

Standard value g7

101

Users' Manual 5.8 - 1.3. Searches / Queries

Using the input and output variable we can also, in later steps, re-set to the initial output which we
saw in the last paragraph.

We define the input parameters as global settings for the search. Under the name which we assign
here we can then access these inputs in our search pipeline during each step. In our example the
input parameter for identifying typical bands is the mood.

Components
£ typical bands Configuration ~ Description
4 : by songs [] Add hit causes

& Weighted relation/attribute (is mood of) mood == songs
{2} Weighted relation/attribute (has author) songs => bandsBySongs
4 : by style Name Required Type Description

Parameters

£7 Structured query "Band" => bandsByStyle I:I meed
™ scale quality bandsByStyle => bandsByStyle

% Merge hits bandsBySongs, bandsByStyle => typicalBands

4 Result typicalBands

Some components enable a deviation from the standard processing sequence:

Individual processing

Elements of a set, e.g. hits from a search may be processed individually. This is practical if you want
to assemble an individual environment of adjacent objects for search hits. In individual processing
each element of the configured variable in the single hit is saved and implemented in the sub
components.

Condition for set parameters

This component only carries out further sub components if predefined parameters have been set,
whereby the value is insignificant. New sub components may be added by using the "add" tab.

KPath condition

By using a KPath condition we can determine that the sub components may only then be
implemented if a condition expressed in KPath is fulfilled. If the condition is not fulfilled the input
will be adopted. KPath is described in the KPath chapter of the technical manual.

Output

We can stop the search at any stage and return the input. This component is also useful for testing
the search pipeline.

Block component

The block components which we have also used in our example group a lot of individual steps. In
order to maintain an overview in extensive configurations we can also change the name of the
component using the tab Description and add a comment as well. Neither the block components

102

Users' Manual 5.8 - 1.3. Searches / Queries

nor the description have any functional effects. Both of them only serve the "legibility" of the

search pipeline.

1.3.3.3.2. Test environment

The test environment can be invoked by several ways:

Components

£ typical bands
«E by songs

&5 Weighted relation/attribute (has authar) songs => b

4 [by style
£7 Structured query “Band” =>
™ scale quality ByStyle => b
% Merge hits
4 Result typic:

£ Weighted relation/attribute (is mood of) mood =» song

 typical bands
b W] Private

@ Recently accessed o & Edit
AB Rename

typical bands

£ Query results
Set registry key
MUSIC EXAMPLE Copy registry key
4 () Object Types Deregister

» 9 Actor i} Rermove

» (O Actor Role
» ™) Event

Configurstion Deseription
[Add hit causes

Parameters

Name Required Type Description
meod
< >
Add Remove Move up Move down

‘ Test uvd'lbnma

Using the test environment in the menu we can analyze the functioning of the search. The upper
section contains the search input and the lower section the output. The input may be a search text
or an element from the Knowledge Graph, depending on which required and optional input
parameters we have globally defined in the search pipeline. If we wish to enter an element from the
Knowledge Graph as a starting point we select the corresponding parameter line and add an
attribute value or a (Knowledge Graph) element, depending on the type.

103

Users' Manual 5.8 - 1.3. Searches / Queries

Search string

Parameters
Mame Required Type Yalue Type of value Set value
mood aggressive Keyword
Set element
2 5 Reset
Search Trace search
Name Type Reason Search string Quality
Linkin Park Band Crawling, By Myself, A - 100
The White Stripes Band Seven Nation Army, Ele - 95
Sex Pistols Band Anarchy In The U. K. . 80
Eels Band Dog faced baoy 78
The Strokes Band Heart in a cage 78

On the tab Trace search a report of the search will be displayed. This primarily consists of the
configuration of the output variables and the duration of the implementation of each component.
The log begins with the pre-configured variables (search string) as well as active users.

Trace search Duration: 3.03 milliseconds -
4 by songs

Messages:
Weighted relation/attribute (is mood of) mood => songs

Variables and values
Weighted relation/attribute (has author) songs => bandsBySongs

4 by style Mame Type Walue
songs Output (9) Dog faced boy, Elephant, A F
Structured query "Band" => bandsByStyle mood

Input

aggressive
Scale quality bandsByStyle => bandsByStyle

Merge hits bandsBySongs, bandsByStyle => typicalBands
Result typicalBands

Hits

BEz:s:

Name Type Reason Search string Qualith
A Place for my He Song

25
Anarchy In The U Song 25
By Myself Song 25
Crawling Song 25 M

1.3.3.3.3. Calculation possibilities

In the case of some components it is possible to summarize several quality values into one single

quality value — e.g. in summarize hits but also when traversing the relations (see example above).
For this purpose the following methods of calculation are available:

¢ Addition / multiplication
¢ Arithmetic average / median

e Minimum / maximum

104

Users' Manual 5.8 - 1.3. Searches / Queries

¢ Ranking

The option Ranking is suitable when we want to assemble an overall picture from individual
references, e.g. if we want to calculate many paths, at least partially independent paths — at the
end still with differing lengths — to an "overall proximity". Using the ranking calculation we ensure
that all positive references (all independent paths) keep increasing their similarity without
exceeding 100%.

In the search pipeline quality values are always specified as floating point numbers. The value 1
thereby corresponds to a quality of 100%.

1.3.3.4. The individual components

All elements that can be added to the search pipeline either incorporate a structural function, a
query function, a logical function or functions for computing qualities:

105

I Block

= Compute hits quality

= Compute overall quality of hits
& Compute quality from weighted qualities
@ Condition: Parameter set

@ Filter quality

@ KPath condition

30 Limit number of hits

% Merge hits

%) Merge partial hits

£ Process individually

5 Query

¥ Result

‘W Scale quality

(=] Script

£ Set quality from attribute value
4 Set quality/causes

£J Structured query

P Weighted relation/attribute

0K

1.3.3.4.1. [Block

Users' Manual 5.8 - 1.3. Searches / Queries

Cancel

The block element is only for optical reasons. To keep larger search pipelines clearly arranged, it can
be used to structure several succeeding elements into logical groups. To do so, simply drag&drop
the elements underneath the block. The block has no influence on the results of the search

pipeline.

1.3.3.4.2. /& Weighted relation/attribute

Starting with semantic objects, we can traverse the graph in this step and collect relation targets or
attributes. To do so, we have to specify the type of relation or attribute.

Only collected targets are output, rather than the initial set. If this is to be
NOTE displayed, we then have to enable the option Add source hits to result at the Hits

106

Users' Manual 5.8 - 1.3. Searches / Queries

tab.

When traversing a relation, the weighting of hits can be influenced. Let’s assume we want to
semantically enhance the "initial mood" of our example search with "sub-moods". But this
indirection is to be reflected in a ranking: Connections to bands that run via sub-moods are not
supposed to count as much as connections via an initial mood. For this purpose, we can assign a
fixed value — e.g. 0.5 — for moving along the relation and then merge input quality, e.g. multiply it.
In this case the sub-moods added in this step count only half as much as direct moods.

Instead of assigning a fixed weight for moving along the relation, we could also read the value from
a meta-property of the basic type float of the selected relation. If the attribute is not available or no
attribute has been configured, the default value is used. The value should be between 0 and 1. The
hit generation can be configured in detail: For relations, you have the option to also generate a new
hit for the source of the relation (rather than for the relation target).

If a relation has been selected as a property and hits are generated for relation targets, we can also
transitively trace the relation. The quality value is reduced with each step until the value falls below
the specified threshold. If an object has more relations than specified under maximum fan-out,
these relations are not traced. The higher the damping factor, the more the quality value is reduced.

1.3.3.4.3. [J Structured query

We can use structured query components to either search for semantic objects/go from an existing
set to other objects (as with the weighted relation) or filter a set.

If we search for objects, we forward our initial set of hits from a preceding step into the search via
the parameter name. (In general: Within the expert query, variables of the search pipeline, e.g.
search string, can be referenced via parameters.) In this case, the input stays blank.

Configuration ~ Query parameters Description
Input

Hits to filter, or no input to perform the query

Output | handsByStyle

Query | Structured query Open

+

o Relation | #* is characterized by | @ has Targ

O awribute 8 @ Name |€F Valve = € mood A<

For filtering, in contrast, we specify a set of objects as the input. The output contains all objects that
meet the search condition. Objects that do not meet the search condition can optionally be stored
in an additional variable (Rest).

We can either define the structured query ad hoc directly in the component or we can use an
existing structured query.

107

Users' Manual 5.8 - 1.3. Searches / Queries

If an existing search is selected, no copy is created. Any changes to the structured
NOTE query that we make for search pipeline purposes also modify the query for all
other uses.

1.3.3.4.4. [Query

You can use the Query component to execute simple queries, full text queries and other search
pipelines. Simple queries and full text queries receive a string here, e.g. the search string: This is a
parameter that is available for processing user input in all search pipelines. The hit list of the called
search fills the output of this component.

By integrating search pipelines into other search pipelines, we can factorize sub-steps that occur
more frequently. Several parameters and entire sets of hits can be transferred to other search
pipelines. With integrated search pipelines we can also replace several parameters, that is, we can
access of every sub-step output in the integrated search and vice versa. If we go to Selected
parameters, we can also rename them, for example, if we want to use a set of hits from the
integrated search but have already used the name. Alternatively, we can also apply only some of
the parameters from the integrated search in order to avoid such conflicts.

1.3.3.4.5. f& Merge hits

We can use this component to summarize different sets of hits from previous steps. The following
methods are available for summarizing:

Join

All hits that occur in at least one of the sets are output as a result

Intersect

Only hits that occur in all sets are output as the result.

With joins and intersects, a semantic object can occur in several sets of hits and has to be computed
as one total hit with a new hit quality. The aforementioned calculation options are also available
here.

Difference

One of the sets of hits must also be defined as the initial set. The other sets are deducted from
this set.

Symmetric difference

The result set consists of objects that are included in exactly one subset (= everything except for
the intersection, when there are two sets).

Three different types of total hits can be generated. The selection is particularly relevant if partial
hits include additional information.

¢ To generate uniform hits, remember the original hits as the cause: New hits are generated that
contain the original hit as the cause.

108

Users' Manual 5.8 - 1.3. Searches / Queries

e Extend original hits: The original hit is copied and receives a new quality value. If there are
several hits for the same semantic object, a random hit is selected.

e Generate uniform hits: A new hit is generated. The properties of the original hit are lost.

1.3.3.4.6. . Condition: Parameter set

This element assures that its subcomponents are only processed if preset query parameters (= input
for the query elements) are set. The respective parameter can be assigned within the configuration
tab. If the parameter is not set, the affected part is skipped and the next part will be processed.

1.3.3.4.7. £, Process individually

This element is used for processing several hits (= array of hits) in order to use each single hit (= nth
element of the hit array) as an input for query elements that only can process a single hit at once.
This comes into account for queries expecting a string as input.

The hits of a preceeding query are intended to be processed by a simple query. To do so, we
process these hits individually: The hits, which are passed on in an array, will be split up again
into individual array elements (for more information, see chapter Model "hit"). Due to the fact
the single hit itself is consisting of a semantic element, its hit quality, its hit cause and possibly
further user-defined query properties, a script is needed to return the name of the semantic
element of the hit. The returned name string then can be used as an input for a simple query.
The hits of the simple query for each input element can be merged again into a single hit array
by the query element Merge partial hits.

To merge the hits from the element Process individually an to calculate the overall

NOTE
hit quality correctly, the element Merge partial hits is needed.

1.3.3.4.8. 13, Merge partial hits

During individual processing you frequently have to generate a total set from partial hits. The
component Merge partial hits enables you to do so. This summarizes all hits of one or more partial
sets of hits ("hit collections"). The difference to Summarize hits is that summarizing only takes part
at the end, not for every partial hit set. This is relevant in particular when calculating the quality
because summarizing hits would return incorrect values, in particular for the computing method
Median.

1.3.3.4.9. [=] Script

A search pipeline can contain a JavaScript. This can access the variables of the search pipeline.
Furthermore, a script can transfer several parameters to the search pipeline. The result of the script
is used as the result of the component.

JavaScript API is described in a separate manual.

109

Users' Manual 5.8 - 1.3. Searches / Queries

1.3.3.4.10. 1} Set quality/causes

For hits arising as a result caused by the input from preceding (and also distant) query elements,
dedicated quality values or indirect causes might be needed which otherwise might be missing.

Setting individual qualities comes into account especially when a structured query has been used
before: Structured queries always return hits with the hit quality 1.0 (100%) due to the fact that the
hits arise wether a structural relationship could be found or not - in this case, existence is no
gradual match (like the output of a string-processing query). By setting the output parameter from
query elements positioned before the structured query as a source of quality information, an
"interconnection" can be built to recapture individual quality values again. If just the overall quality
needs to be adjusted, the query element Scale quality is adequate here fore. If a quality influence
per relation distance is needed, the query element Weighted relation/attribute is more suitable.

Setting the causes of hits comes into account when not the direct causes, but distant causes from
another (preceding) query are needed. By setting causes, the hits can be "explained" in forms of a
graph: The resulting semantic elements, their originally causing elements and all intermediate
semantic elements will be shown at once.

1.3.3.4.11. /" Set quality from attribute value

For hits, we can copy the quality value from an attribute of the semantic object. If the object does
not have exactly such an attribute, the default value is used. The value should be between 0 and 1.

1.3.3.4.12. ‘ Compute quality from weighted qualities

To adapt the quality of a search hit, it can be useful to compute a total value from individual partial
qualities. The qualities must be available as numeric values. These values are used to calculate a
new total quality.

1.3.3.4.13. | 2| Compute overall quality of hits

You can use the individual quality values of a set of hits to compute a total quality.

1.3.3.4.14. 7= Filter quality

We can restrict sets of hits to hits whose quality value falls within specified limits (minimum or
maximum). Normally, we want to filter out hits that fall below a certain quality threshold.

1.3.3.4.15. ‘;_';f Limit number of hits

If the total number of a set of hits is to be restricted, we can add the component Limit number of
hits. We can use the option Do not split hits of the same quality to prevent a random selection in
case of several hits of the same quality in order to comply with the total number. We then get more
hits than specified.

In some very specific cases, we can also randomly select the hits, e.g. if we have a large number of
hits with the same quality and want to generate a preview.

110

Users' Manual 5.8 - 1.3. Searches / Queries

1.3.3.4.16. .. Scale quality

Die quality values of a set of hits can be scaled. A new set of hits with scaled quality values is
calculated. The calculation takes place in two steps:

1. Die quality value of the hits are limited. The threshold values can either be specified or
calculated. The calculation determines the minimum and maximum value of the hits. If
thresholds are specified and a hit has a quality value that falls outside of the thresholds, the
value is limited to the threshold value. If you want to remove such hits, you have to execute the
restrict quality component first. Example: Mapping percentage values to school grades. 30% is
average, over 90% is high score. The values can be scaled linearly from 30% to 90%.

2. Following that, the quality values are scaled linearly. Hits with the minimum/maximum input
value receive the minimum/maximum scaled value.

1.3.3.4.17. | =-| Compute hits quality

You can use a KPath expression to generate a new hit with calculated quality for a hit. The KPath
expression is calculated on the basis of the input.

1.3.3.4.18. 41 Result

The Result element is used to determine at which position of the search pipeline processing ends
and which parameter value is to be returned as result. Everything underneath the result element
will not be processed.

This comes in handy when elements of the search pipeline are momentarily not needed: They
simply can be "parked" underneath the result element.

1.3.3.5. KPath

KPath allows addressing of objects within the Knowledge Graph. The notation is similar to XPath but
differs in some respects.

The individual elements of the expression normally are separated by a slash /. If a KPath expression
begins with /, then the evaluation starts at the root type, else it starts at the current object
(depends on the context of the evaluation). If an element does not correspond to one of the listed
elements of the table, it will be interpreted as a name of a sub type. Simple names can be specified
without quotation marks.

When specifying a language, it must be stated according its ISO 639-2 code ("eng" for English, "ger"
for German, ...).

@Name

Attribute "Name"

//book\Faust/~authoxr
Relation "author" of the book "Faust"

111

//$artifact$/book{eng}

Users' Manual 5.8 - 1.3. Searches / Queries

Sub type "book" (English name) of the type "artifact" (internal name)

//book*[~author/target()/@Name = "Goethe"]

All books which had been written by Goethe

1.3.3.5.1. Names

In combination with@, /, //°, \ and \\, following kinds of names can be used:

Name

name

"name" or 'name’

nameen
$name$, $"name"$
§name§, §"name"§

#ID42_1013

Description

Name in standard language. Without quotation marks the name
needs to be begin with a letter, an asterisk or with an underscore
sign. Whitespaces or special characters which are used in other
expressions are not allowed. The name must comply with
following regular expression:

[a-zA-Z_*T1[N () {}$%{}[1,~@8#+-""s | &]*

For better readability, the escape character \ has been left out

If the name doesn’t meet the above-mentioned requirements, it
needs to be surrounded by single quotes or double quotes. Here,
the backslash sign \ serves as escape character for possibly used
apostrophes, e. g. Wendy 's.

Name in the specified language "lang"
Internal name
System name

ID of the object

Names are not replaceable by variables and must therefore be a part of the script.

1.3.3.5.2. Operators

Numeric values can be linked by the operators +, -, * or /.

When using *, - and /, at least one white space character must surround the operator on both

sides each.

Parenthesis are supported, e. g. (5 + 3) * 4 equals the value 32.

112

Users' Manual 5.8 - 1.3. Searches / Queries

Sum of all relations between Goethe and Schiller:

\\Goethe/~*/size() + \\Schiller/~*/size()

The operator + also can be used to append strings:

//person\Goethe + " wrote " + //book\Faust

leads to:

Goethe wrote Faust

By means of the unary operator !, a Boolean expression can be negated, e. g.:

11=2

For some operators, an alternative notation only consisting of alphabetical characters is possible, e.
g. eq for equality. Applying this notation, at least one white space character needs to be used
between operator and operand. The expressions are case-sensitive, so operators are only

recognized if written in small letters.

Possible operators are (in descending precedence):

Operator Alternative notation
! not
*

/

+

< It

> gt
le
>= ge
= eq
1= ne

Meaning

Negation (unary operator)
Multiplication

Division

Addition, linking (only character strings)
Subtraction

Smaller than

Greater than

Smaller than or equal to

Greater than or equal to

Equal to

Not equal to

113

Users' Manual 5.8 - 1.3. Searches / Queries

Operator Alternative notation Meaning
AN xor Exclusive or (logical operator)
&& and And (logical operator)

Due to KScript basing on XML, operators like &&, < or « need to be written using entities like &1t ;
or & ; instead of the character signs < and & or alternative notation needs to be used.

Example for "and":

<Path path="var(left) && var(right)"/>
<Path path="var(left) and var(right)"/>

Example for "smaller than":

<Path path="var(left) < var(right)"/>
<Path path="var(left) 1t var(right)"/>

1.3.3.5.3. Conditions

Conditions can be specified using the following notation:

pathl[path2]path3

On all elements out of pathl for which the condition path2 applies, path3 will be executed. To
express the condition path2, comparative operators can be used (see preceding section). Boolean
expressions can be linked with Boolean operators.

Name of all books which had been written by Goethe:

//book* [~author/target()/@Name = "Goethe"]/@Name/value()

1.3.4. Model "Hit"

The "Hit" type content model is available to ensure that search queries can be processed and
transported both as quality and causes. A "Hit" can be seen as a container that summarizes the
element including several properties and makes it temporarily available to the context. The
contained properties can be, for example, calculated hit quality, hit cause, change log entry etc.

114

Users' Manual 5.8 - 1.3. Searches / Queries

In search pipelines, the content models "Hit" and "Hits" are available. The "Hits" type is an array of
several "Hit" elements:

Hits= | woHit>, <Hit=, ... <Hit=]

. Element (object, attribute or relation

‘ * Hit quality
‘ ® Hit cause

‘-

‘ ®* (direct/semantic Hit)

. 4

1.3.4.1. Meta-attributes of hits

In addition to the semantic element, the following meta-attributes are transported in a hit:

Hit quality
Can have a value between 0 and 1 by setting a quality in a search pipeline; the hits of a
structured query receive the value 1 by default

Hit cause

Refers to the input element that has led to the hit and its type

Hit cause (snippet)

Refers to the content or the search term that has led to the hit

For detailed information on the meta-attributes, refer to the JavaScript API.

1.3.4.2. Using hits in search pipelines

If a hit list is to be processed in a search pipeline by means of a simple query, individual processing
is required because the hit list is in the form of an array: Queries can process an individual "hit" in
the form of a string but not "hits" (= array). Converting a "hit" into string, in turn, can be done using
a script that precedes the simple query.

115

http://documentation.i-views.com/5.2/javascript-api/$k.Hit.html

Users' Manual 5.8 - 1.3. Searches / Queries

4 £ Process individually hits => hit
[=] Script hit => name
£ Query name => elements

%) Merge partial hits elements => results

Example script for converting a hit into a string:

function search(input, inputVariables, outputVariables) {
return input.element().name();

1.3.4.3. Using hits in tables

The Use hits option is available in the query configuration above the table. This option determines
whether the entire hit element (semantic element + meta-attributes) or only the semantic element
is to be forwarded to display query results.

1.3.4.4. Processing hits in tables via a script

If the query results are to be processed further using a script, the Use hits option determines
whether the query result is supposed to be treated as a hit: The script is forwarded either
Sk.SemanticElement or Sk.Hit as a JavaScript object.

1.3.5. Search in the Knowledge Builder

With the exception of the structured queries which are created in the folders and also implemented
there, all searches in the header of the Knowledge Builder are made available for internal usage.

fo

FOLDER

4 W Arbeitsordner / Working Folder (workingFolder)
b W Suchen / Searches
» W Private
% Recently accessed objects
£ Query results

For this purpose we only have to drag & drop a pre-configured search into the search box of the
header of the Knowledge Builder. If this contains several searches to be selected from you can
select the desired search from the pull-down menu by clicking on the magnifier icon D The
search input box always preserves the search mode which was last executed.

116

Users' Manual 5.8 - 1.3. Searches / Queries

We can remove the search using the global settings where we can also change the sequence of the
various searches in the menu.

1.3.6. Special cases

1.3.6.1. Fulltext search with Lucene

The full-text search may also alternatively be carried out via the external indexer Lucene. The search
configuration is then analogous to the standard full-text search, i.e. attributes may, in turn, be
configured in the search which are also connected to the Lucene index; the search process is also
analogous. In order to configure the Lucene indexer connection we hereby refer you to the
corresponding chapter in the admin manual.

1.3.6.2. Search with regular expressions

Regular expressions are a powerful means of searching through databases for complex search
expressions, depending on the task concerned.

Search with regular hit
expressions

The [CF]all The Call, The Fall

Car. Cars

Car.* Cars, Caravans, Carmen, etc.
[AR]oom doom, loom, etc. (but not room)

As search inputs, i-views supports the standard also known from the standard known from Perl
which, for example, is described in the Wikipedia article for regular expression.

1.3.6.3. Search in folders

The search in folders is carried out in names of folders and their contents:

¢ folders whose name matches the search input

e folders which contain objects which match the search input

e expert searches which contains elements which match the search input

e scripts in which the search input appears

e rights and trigger definitions which contain elements which match the search input
Using the search input "#obsolete", you can target your search for deleted objects (e.g. searching in
rights and triggers). When configuring the search the number of folders to be searched through can
be limited. Furthermore, the option "search for object names in folders" may be deactivated. This is

helpful if you do not want to search for semantic objects in folders because in the case of extensive
folders (e.g. saved search results) the search for object names may take a very long time.

117

https://en.wikipedia.org/wiki/Regular_expression

Users' Manual 5.8 - 1.3. Searches / Queries

1.3.6.4. Query for duplicates

After imports or due to other reasons such as quality assurance it can be necessary to check for
duplicates semantic elements. To do so, a specially configured structured query can be used.

Because the structured query shown in the following example refers to elements

NOTE of the whole Knowledge Graph without further type restrictions (objects of top
level type), executing the query can take very long. It therefore is advised to
restrict the query to the most specific subtype possible.

In principle, the structured query searches for different objects that have identical values for their
identifying attributes (here: objects with identical names).

The query for duplicates can be configured as follows:

1. Create a query for objects of the subtype in question. Add the identifying attribute as condition
(here: primary name).

2. Depending on the object, create a utility query. Use a negative reference (comparison operator
"is not") to make sure that only different objects will be found:

+ © Top level type

e W Ve 5 [e
‘. B i ¢

< e 3 4 |® Top level type

5 e W] vame M Vose = [e

3. For comparing the attribute values against each other, the value fields need to be removed first:

118

Users' Manual 5.8 - 1.3. Searches / Queries

Structured query

£ = Duplicates

+

O\ Attribute 48 '! Choose

% Reference — [3] & . Query using all languages
_______________________ Query using the current language

Query using the selected languages
¢ Utility query 34 E Subpress warning
O\ Attribute Show warning :| A=a
Add comment
&) Edit parameter
& Predefined parameters >
Standard value

Copy to clipboard

4. After having removed the value fields, the context menu offers the option "compare values".
Add this condition and select the identifying attribute of the utility query to compare against:

Structured query
£ = Duplicates
+

1
O Attribute 7 yame

% Reference — # cardinality
........... = Has attribute value
comparison value computed by script
¢ b) condition on new attribute value
script condition on new attribute value

Compare with attribute value to be written

~* s property of
/N Attributes >
. o Relations >
Schema >
/| - e ’
«C Add altemative
Name Paste from clipboard @ \dentifier
<l Predefined identifiers >
t Extract to utility query
Q Use as main query
%4 Reference

@ New local macro
@® Structured query macro (registered)...

Result: Structured query for searching duplicates.
119

Users' Manual 5.8 - 1.3. Searches / Queries

Structured query

£ = Duplicates
+ |.Toplweltype

/N Attribute ¥ |4 Name #Value = value of [4] kl@

’Q Reference # [3] ¢

¢ Utility query |3 48 .Top level type
O\ Attribute 4 4 | & Name

1.3.6.5. Query for identical translations

Similar to the query for duplicates, the query for objects with identical translations makes use of
references and attribute value comparisons.

Because the structured query shown in the following example refers to elements
of the whole Knowledge Graph without further type restrictions (objects of top
level type), executing the query can take very long. It therefore is advised to
restrict the query to the most specific subtype possible.

NOTE

The difference between this query and the query for duplicates is that it is all about one and the
same object this time, with the additional condition of identical attribute values in different
translation layers of one and the same attribute:

Structured query
£3 = IdenticalTranslations

.
N Attribute HB
% Reference = [B1 &
'ﬁ' Value = valueof[5] A=ag @
O Attribute |3 48 ﬂ- Vae Geman= [+ | A
g Reference = [4] 4
¢ Utility query |4 o
O\ Attribute |5 4 ﬁ- Value = valueof[6] A=ag E
O ptribute 6 4 | M Name [#% Value Engish = [+ | Amp

120

Users' Manual 5.8 - 1.4. Folder and registration

1.4. Folder and registration

Along with the objects and their properties, we also build a variety of other elements in a typical
project: we define, for example, queries and imports/exports, or write scripts for specific functions.
Everything that we build and configure can be organized in folders.

The folders are shared with everyone else working on the project. If we do not wish to do so, we
can file things in the private folder, for example for test purposes. This is only visible for the
respective user.

A special form of the folder is the collection of semantic objects, in which we can file objects
manually, for example for processing at a later date. To do so, we simply move them to the folders
using drag and drop, and there are also operations to, for example, define result lists in folders.

The moment we delete one of these objects within the Knowledge Graph, it is also deleted from the
collection. If a semantic element is removed by clicking on Remove from folder, it is only removed
from the collection but still exists within the Knowledge Graph. If the actions Delete or Delete
selected elements or Delete all elements inside the folder is used, the semantic element actually is
deleted and from the Knowledge Graph and therefore is not accessible anymore within the
collection.

The action Remove from folder has different functionalities, depending on the
context of use: In the case of folders containing import mappings, the action
Remove from folder actually means completely deleting the respective import

mapping!

WARNING

In the case of collections of semantic objects with more than 100 entries, for reasons of
performance, no determination of the table configuration that best suits the content occurs. We
can, however, request this by means of the context menu function Determine configuration of the
object list when necessary.

1.4.1. Registration

Queries, scripts, etc. can call each other (a query can be integrated into another query or into a
script, while, in turn, a script can be called from a search pipeline). There are registration keys for
this purpose, with which we can equip queries, import/export mappings, scripts and even
collections of semantic objects and organizing folders to ensure they provide other configurations
with a functionality. The registration key t} must be distinct. Everything that has a registration key
is automatically added to the Registered objects folder, or in the subfolder that corresponds to its

type.

1.4.2. Move, copy, delete

Let us assume we have a folder called "Playlist functions" in our project. This might contain an
export, some scripts and a structured query "similar songs", which we would like to use in a REST
service. The moment we give the structured query a registration key, it is added to the folder

121

Users' Manual 5.8 - 1.4. Folder and registration

Registered objects (Technical section). This means the structured query "similar songs" appears in
the folder Registered object under Query. It also remains there when we remove it from our project
subfolder "Playlist functions". If we remove the registration key, the query will automatically
disappear from the registry.

The basic principle when deleting or removing: Queries, imports, scripts can be in one or several
folders at the same time, and at least one folder must contain them. Only when we, for example,
remove our query from the last folder will it actually be deleted. Only then does i-views also
request a confirmation of the delete action. The same applies for removal of the registration key.

If we wish to delete the query in one step, regardless of the number of folders that contain it, we
can only do this from the registry.

1.4.3. Folder settings

We can define quantitative limits for query results, folders and object lists (lists of the specific
objects in the main window of the Knowledge Builder when an object type is selected on the left-
hand side) in the folder settings. Automatic query up to the number of objects specifies up to which
number of objects the contents of the folders or the object lists are shown without any further
interaction by the user. If the limit set there is exceeded, the list initially remains empty, and the
message "Query not executed" appears in the status bar. Executing a search without an input in the
input line shows all objects, unless the second limit has been exceeded: Maximum number of query
outputs or Maximum number of outputs in object lists. In this case the result will also be empty and
the status bar will show a corresponding message. The search then has to be narrowed down to
yield a result.

122

Users' Manual 5.8 - 1.5. Import and export

1.5. Import and export

By mapping data sources we can import data to i-views from structured sources and export objects
and their properties in structured form. The sources can be Excel/CSV tables, databases or XML
structures.

The functions for import and export overlap to the most part and are therefore all available in a
single editor. In order to access functions for import and export, it is first necessary to select a folder
(e.g. the working folder). There the “New mapping of a data source” button can be used to select a
data source for the import or export.

FOLDER ﬁ
» &) Arbeitsordner / Working Folder (workingFolder) Em @ Ag & l‘. = Q
» @ Private

W Recently accessed objects Name Type Registry key

Alternatively, you can find the button on the “TECHNICAL” tab under “Registered objects” =
“Mappings of data sources”.

The following interfaces and file formats are available for import and export:

e CSV file

* Excel file

e XML file

* JSON file

e LDAP

e Elasticsearch

¢ |AS Knowledge Model
e MySQL interface

e ODBC interface

e Oracle interface

e PostgreSQL interface

The following section uses a CSV file to describe how to create a table-oriented import/export.

1.5.1. Mapping of data sources

CSV files are the default exchange format for spreadsheet applications such as Excel. CSV files
consist of individual rows of plain text in which columns are separated by a fixed, predefined
character such as a semicolon.

123

Users' Manual 5.8 - 1.5. Import and export

1.5.1.1. Principle of operation

Let’s use a table with songs as a first example: When the table is imported, we would like to create
a new, specific object of the type song for each line. The contents of columns B to G become
attributes of the song, or relations to other objects:

A B C D E F G H

1 |Title name Artist Album Genre Run-time Year My rating

2 |The suburbs Arcade Fire The suburbs Postwave 315 2010 60
3 |Ready To Start Arcade Fire The suburbs Postwave 255 2010 80
4 Modern Man Arcade Fire The suburbs Postwave 279 2010 60
5 |Rococo Arcade Fire The suburbs Postwave 236 2010 40
6 |Empty Room Arcade Fire The suburbs Postwave 171 2010 20
7 |City With No Children Arcade Fire The suburbs Postwave 191 2010 20
8 |Half Light| Arcade Fire The suburbs Postwave 253 2010 20
9 |Half Light Il {No Celebration) Arcade Fire The suburbs Postwave 267 2010 40
10 |Suburban War Arcade Fire The suburbs Postwave 281 2010 80
11 |Month Of May Arcade Fire The suburbs Postwave 230 2010 20
12 |Wasted Hours Arcade Fire The suburbs Postwave 200 2010 40
13 |Deep Blue Arcade Fire The suburbs Postwave 268 2010 60
14 |We Used To Wait Arcade Fire The suburbs Postwave 301 2010 100
15 |Sprawl I (Flatland) Arcade Fire The suburbs Postwave 174 2010 40
16 |Sprawl Il (Mountains Beyond Mountains) Arcade Fire The suburbs Postwave 318 2010 40
17 | The Suburbs (Continued) Arcade Fire The suburbs Postwave 87 2010 40
18 |Eleanor Righy The Beatles Revolver Oldies 127 1966 60
19 |For No One The Beatles Revolver Oldies 121 1966 60
20 |Good Day Sunshine The Beatles Revolver Oldies 129 1966 40
21 |Here There And Everywhere The Beatles Revolver Oldies 145 1566 40
22 |[IwantTo Tell You The Beatles Revolver Oldies 149 1566 40
23 |I'm Only Sleeping The Beatles Revolver Oldies 181 1366 60
24 |Love To You The Beatles Revolver Oldies 181 1566 20
25 |She Said She Said The Beatles Revolver Oldies 157 1566 40
26 Taxman The Beatles Revolver Oldies 159 1966 20
27 \Tomorrow Mever Knows The Beatles Revolver Oldies 177 1966 20
28 Yellow Submarine The Beatles Revolver Oldies 160 1966 20
2% | About A Girl Nirvana MTV Unplugged in NY Rock 217 1994 60
30 Jesus Doesn't Want Me For A Su Nirvana MTV Unplugged in NY Rock 277 1994 10
31 |The Man Who Sold The World Nirvana MTV Unplugged in NY Rock 260 1994 80
32 |Pennyroyal Tea Nirvana MTV Unplugged in NY Rock 220 1994 60
33 |Dumb Nirvana MTV Unplugged in NY Rock 172 1994 40
34 |Polly Nirvana MTV Unplugged in NY Rock 196 1594 60

Using the song as a basis, we build up the structure of attributes, relations and target objects that
should be created by the import (left-hand side). An object of type song is created this way for row
18, for example, with the following attributes and relations:

124

UL
& Mood example
4 @ 1:Instances of Song
A 2: Attribute Name English
A 3 Attribute run-time (seconds)
A 4: Attribute Year
A 5: Attribute Rating
4 ” 6:Relation has genre
4 @ 7:Instances of Music Genre
A 8: Attribute Name English
4 ” 9: Relation has author
4 ® 10: Instances of Band
& 11: Attribute Name English
4 4 12: Relation is contained by
4 © 13 Instances of Album
A 14: Attribute Name English

Users' Manual 5.8 - 1.5. Import and export

Oldies

Run-time: 127
Year: 1966

The Beatles Rating &0

Eleanor Rigby

Revolver

We can, however, also decide to distribute the information from the table in a different way, for
example allocate the year of release and artist to the album, and in turn the genre to the artist. A
row still forms a context, however this does not mean it must belong to exactly one object:

-
i Mood example
4 @ 1: Instances of Song
A 2: Attribute Name English
A 3: Attribute run-time (seconds)
A 4: Attribute Rating
4 /" 5: Relation is contained by
4 © 6: Instances of Album
A 7: Attribute Name English
A 8 Attribute Year
4 " 9: Relation has author
4 @ 10: Instances of Band
A 11 Attribute Name English
4 " 12: Relation has genre
4 @ 13! Instances of Music Genre
A 14: Attribute Name English

Run-time: 127
Rating: 60

Oldies

Eleanor Rigby

The Beatles

Revolver Year: 1966

Everywhere that we build up new, specific objects and relation targets in our example, we must
always specify at least one attribute for this object, in this case the respective name attribute that
allows us to identify the corresponding object.

125

Users' Manual 5.8 - 1.5. Import and export

1.5.1.2. Data source - selection and options

Once we have selected the “ New mapping of a data source ” button, a dialog opens which we must
use to specify the type of data source and the mapping name. If we have already registered the
data source in the Knowledge Graph, then we will now find it in the selection menu at the bottom.

-
lalo]aleln =

Name Type Registry key Semantic element
‘3 Create new X
Mame
|Songd
Data source
(® Create new
CSV/Excel file 2
Elasticsearch
LDAP

My5QL interface
ODBC interface
Oracle interface

PrctrraSril

(O Use registered data source

Choose

Cancel

By pressing “OK” as confirmation, the editor for the import and export opens. We can specify the
path of the file we wish to import under “Import file”. Alternatively, we can also select the file using
the button to the right of it. As soon as the file has been selected, the column headings and their
positions in the table are exported and shown in the field at the bottom right. The “ Read from data
source ” button can read out the columns again in the event of any changes to the data source. The
column “Mappings” shows us the respective attribute to which the respective column of the table is
mapped later on.

126

Users' Manual 5.8 - 1.5. Import and export

O YoY YLk

! Songs Songs

CSV/Excelfile Options Log Registry

Import file: C\User\Desktop\Songs.csv Show table...

Exportfile Show table...
Options

Table file type C5V file ~

1st row centains heading Cell values are enclosed in quotes

Identify columns Separator Encoding: | UTF-8 ~
@) by heading O Tab
(O by position O Space Line Separator | auto detect ~

(O uber Zeichenposition @ :

Celumns: | Read from data source

Position Heading Field length Type Mappings Identifier Column
1 Title name Varizble String A

2 Artist Variable String B

3 Album Varizble String C

4 Genre Variable String D

5 Run-time Varizble String E

[Year Variable String F

7 My rating Variable String G

[edit Add column Remave columns Mave up Move down Mappings

The structure of our example table corresponds to the full default settings, so that there is nothing
else to factor in under the menu item Options . CSV files can, however, exhibit structures that are
very different, which must be factored in using the following setting options:

Encoding : The character encoding of the import file is defined here. This provides ascii, ISO-8859-1,
ISO-8859-15, UCS-2, UTF-16, UTF-8 and Windows-1252 for selection. If nothing has been selected,
the default setting that corresponds to the operating system in use is applied.

Line separator : In most cases, the setting “detect automatically”, which is also selected by default,
is sufficient. However, should the user establish that line breaks are not being identified correctly,
then the corresponding, correct setting should be selected manually. This provides CR (carriage
return), LF (line feed), CR - LF and None for selection. The standard used to encode the line break
in a text file is LF for Unix, Linux, Android, Mac OS X, AmigaOS, BSD and others, CR-LF for Windows,
DOS, 0S/2, CP/M and TOS (Atari), and CR for Mac OS up to Version 9, Apple Il and C64.

1st line is heading : It may the case that the first line does not include a heading, and the system
must be notified of this by removing the checkmark set by default next to “ 1st line is heading ”.

Values in cells are surrounded by quotation marks is selected so that the quotation marks are not
included in the import when this is not wanted.

Identify columns : Whether the columns are identified using their heading, the position or the
character position must be specified, as otherwise the table cannot be captured correctly.

Separator : If a different separator than the default semicolon is used, this must also be specified
when the column is not identified using the character position.

Moreover, the following rules apply: If a value in the table contains the separator or a line break,

127

Users' Manual 5.8 - 1.5. Import and export

the value must be placed in double quotation marks. If the value contains one quotation mark, this
must be doubled (» “” «).

1.5.1.3. Definition of target structure and mappings

1.5.1.3.1. The object mapping

We will now start setting up the target structure that should be produced in the Knowledge Graph.
In our example, we are starting with object mapping of the songs. In order to map a new object, we
must press the “New object mapping” button.

Sov OSY YL R

Mew object mapping

w Songs Surngs

C5V/Excel file Options Log Re

The next step is to specify the type of object for import.

vow ASEEEO,alX

W/ Songs
@ 1: Instances of undefined

1: Instances of undefined

Mapping Identify Log Options

Type) V3

Import: 1255 >

Export: Enter the (beginning of the) type name:

[Song] |

Cancel

There are further specific settings in the options tab of the object mapping.

With objects of all subtypes: If the checkbox is set to "With objects of all subtypes", the import also

includes objects from all subtypes of "Song". Since this is usually desired, the checkmark is set here
by default.

Exact type is specified by the following mapping: If the exact type to which the object is to be
created is identified in the import source, this can be mapped here via the "New..." button. It must
be a subtype of the type specified in the tab "Mapping".

Allow multiple objects: It is possible that the Knowledge Graph already contains several objects
with correspondent identifying properties (correspondent names). If the import mapping needs to
be referred to these objects, an ambiguity conflict occurs. If you set the checkmark here, the import
for all these objects is going to be performed disregarding the ambiguity.

If you do not set the checkmark, the import will not be carried out for the multiple occuring objects

128

Users' Manual 5.8 - 1.5. Import and export

and instead the user will be informed that the importer cannot uniquely identify the object.

1.5.1.3.2. The attribute mapping / Identifying objects

Now we want to link the information in the table to the object mapping of the songs. Attributes for
individual songs are represented along with relations. In order to first create the track name for a
song in the mapping, we add an attribute to the object mapping for song. Clicking on the “ New

attribute mapping “ button opens a dialog, which must be used to select the relevant column from
the table to be imported.

O O EEILE.
wl Songs
L | 1?Instanoes of Song

1: Instances of Seng

Choose column w
Columns:

Position Heading Mappings Identifier
Title name

Artist

Album

Genre

Run-time

Year

My rating

- RN SR TTRY U

oK Cancel

As this attribute is the first one we created for the object mapping of songs, it is then automatically
mapped to the name of the object, as the name is usually the most commonly used attribute.

129

Users' Manual 5.8 - 1.5. Import and export

- ASEE LA

lw' Songs 2: Attribute Name Current language

a .
.W‘ImstamcesofSong Mapping Import Identify Log Options Language Valueassignment

£\ 2: Attribute Name Current language

Map to: Title name Remove
Source 1: Instances of Song =/ || New..
Import: Update or create if not found

Export: Export all

Attribute: | Name ra
Possible attributes Apply

also known as (synonym)
Aternative Name
description

EID

lcon

level

Name Primary name
Name

Rating
RDF-URI-Alias
rdf:about

rdf:iD

Review

The first attribute created for an object is also automatically used for identification of the object .
Note that for string attributes like the primary name, the language can be specified when
translation layering is activated. When nothing else is specified, the current language (display
language of the Knowledge-Builder) is automatically used as reference. The language can be
specified within the language tab:

- ALSEEL,alX
! Songs 2: Attribute Name English

4 @ 1: Instances of Song

Mapping Import Identify Log Options | Language | Value assignment
£ 2: Attribute Name English

() Current language [] Allow fallback language preferences for empty translations

®) Choose language

Chinese
Czech
Danish
Dutch
English
Finnish

French

An object must be identified by at least one attribute — by its name or its ID, or by a combination of
multiple attributes (as with the first and last name and date of birth of a person) — it should already
exist so that it can be unambiguously found in the Knowledge Graph. This prevents unwanted
duplicates from being created during import.

NOTE Meta-Attributes at relations can also be imported. Here it is ensured that both the

130

Users' Manual 5.8 - 1.5. Import and export

relation source and the relation target are specified and identified, otherwise the
relation is ignored by the importer.

In the “ Identify “ tab it is possible to subsequently change the attribute identifying the object, or to
add multiple attributes. In addition, it is possible to specify whether the values should be matched
in a case-sensitive fashion, and the query should return identical values (without index filter /
wildcards). The latter is relevant if filters or wildcards are defined in the index that specify, for
example, that a hyphen should be omitted from the index. The term would not be found with a
hyphen if the search took place only via the index; in this case, a checkmark would be needed here
so the search only finds the exactly identical value.

- w ASELEE PagX

w Songs 1: Instances of Song

F "
@ 1: Instances of Song PRviis PoalROvtiosa

& 2: Attribute Name Current language)) -))
|dentifiy object using the following mappings:

2: Attribute Name Current language

Now we can add further attributes to object mapping that do not need to contribute towards
identification, e.g. the length of a song — and this is once again done via the “New attribute
mapping” button. (Please note: first the object mapping “objects of song” must be selected again.)
Now we select the “Length” column from the table to be imported. This time we have to manually
select the attribute to be mapped to the “Length” column. The field on the bottom right contains
the list of all possible attributes defined in the schema that are available to us for objects of the
“song” type, among them also the “length” attribute.

131

Users' Manual 5.8 - 1.5. Import and export

y By o o
Tew 1T ASEE LSRN
'l Songs 3: Attribute undefined
4 1: Instances of Song

A 2: Attribute Name English

Mapping Import Identify Log Options

Map to: Run-time Remove
A 3: Attribute undefined

Source 1: Instances of Song = New.

Import: Update or create if not found

Export: Export all

Attribute: | yndefined ld

Possible attributes Apply

ED “

lcon

level

Name Primary name
Name

Rating
RDF-URI-Alias
rdf:about

rdfID

Review

run-time (seconds)
uuiD

Year

Mapping of translations

For string attritbutes with translations, e.g. the primary name of objects, we can define in which
language the value needs to be imported.

If an attribute mapping is created for a translated attribute, the import language automatically is set
to the "Current language". The current language equals the language in which the Knowledge
Builder has been started (which at the same time is the language of the user interface).

If the import needs to be done in another language than the current language, this can be specified
by selecting the tab "Language" and then by selecting a language of the list, which then becomes
the chosen language for the attribute mapping.

In case of an import source containing several translations of one and the same attribute (within
the same line), these values can be imported within one import mapping simultaneously.

The simultaneous import of translations for an attribute is done as follows:

132

Users' Manual 5.8 - 1.5. Import and export

—
=80
Ay 2y B ay
vew 1 ASEEL,almX
W/ Import 3: Attribute Name English
4 ® 1:Instances of Album Mapping Import Identify Log Options Language Value assignment
A 2: Attribute Name German B
O Currentlanguage [Allow fallback language preferences for empty translations
A\ 3: Attribute Name English
@ Choose language

Chinese
Czech
Danish
Dutch
English

Finnish

[Show all languages
Mappings of other translations of the same attribute:

2: Attribute Name German

Add Remove

0 For each language, create a separate attribute mapping for the same attribute, but specify a
different import language

9 In the "Language" tab for one of the attribute mappings, add the relevant attribute mappings of
the other languages to the field "Mappings of other translations of the same attribute"

This prevents from separate attributes being created for each translation and ensures that
corresponding translations are imported altogether at the same attribute.

1.5.1.3.3. The relation mapping

Next, we want to map the album on which the song is located. Since albums are concreate objects
in the Knowledge Graph, we need the relation that connects the song and the album to do this. To
map a relation, we first select the object for which the relation is defined and then click on the
button “ Map new relation .”

> R s .
OIS AL E O X
i Song 1: Instances of Song
4 (O 1: Instances of Song

Mapping Identify Log Options

pute Name English

I . . Type Song
£\ 3: Attribute run-time (seconds)

Following that, just like for attributes, we get a list of all possible relations; and the required relation
“js included in ” is naturally included.

133

CSV/Excel file

Songs
vew 1§

i Songs

4 © 1:Instances of Song
A 2: Attribute Name English
A 3: Attribute run-time (seconds)
«" 4: Relation undefined

Users' Manual 5.8 - 1.5. Import and export

ASEE LR
" 4 Relation undefined

Mapping Import Export Identify Log Options

Source ‘ T: Instances of Song _:" E u [—Il!um
Target =[] [
Import: ‘Update or create if not found | IZ'

Export: Exportall [[-]

Relation |underm¢d' |
Possible relations

has remixed version
has stule

is contained by

is cover version of
is marked up in

is object of

is remix version of

Inverse relations | undefined

Possible inverse relations

In the next step, we now have to define where in this table the target objects come from. A new
object mapping is required for the target; this is created using the “New” button. If the type of the
target object is uniquely identified in the schema, it is copied automatically. If not, a list of possible

object types appears.

CSV/Excel file
W= Songs
vew 4
i Songs
4 © 1: Instances of Song
A 2: Attribute Name English
A 3: Attribute run-time (seconds)
" 4: Relation is contained by

AsSHELaRX

4: Relation is contained by

Mapping Import Export Identify Log Options

Source |'I: Instances of Song -:-| El IE' | Remove ‘

Target | -:.| .| | New... | [} Remove
e

Import: | Update or create if not found | [=]

Export: | Export all | El

Relation |;,.,..._..,|- by ‘

Possible relations

has remixed version ~

has style

is contained by ‘

is cover version of
is marked up in
is object of

is remix version of

Inverse relations | contains

Possible inverse relations

containg

For new object mappings, we then once again have to select the attribute that identifies the target
object etc. This creates the target structure of the import.

134

Users' Manual 5.8 - 1.5. Import and export

w Songs
4 0 1:Instances of Song
A\ 2: Attribute Name English
A\ 3: Attribute run-time (seconds)
4/ 4: Relation is contained by
4 5:Instances of Album
A\ 6: Attribute Name English
A 7: Attribute Year
4 1’ &: Relation has author
4 0 9: Instances of Band
A\ 10: Attribute Name English
4 /" 11: Relation has genre
4 0 12: Instances of Music Genre
A\ 13: Attribute Name English

1.5.1.3.4. The type mapping

Types can also be imported and exported. Let’s assume we want to import the genres of songs as
types.

To map a new type, we choose the “New type mapping” button.

CSV/Excel file
w = Example Type Import

wew ¥

w' Example Type Import

B Example Type Import

C5V/Excel file Options Leog Registry

Following this, we have to specify the super-type of the new types to be created, in our example,
the super-type would be “Song:”

CSV/Excel file
w = Example Type Import
sew +§ ASeEELa X
i/ Example Type Import " 1: Types of Song
© 1: Types of Song Mapping Import Export Ildentify Log
Type | sang (ﬁ]’|
T | Update or create if not found | =] -
Export: | Bxportall N -

135

Users' Manual 5.8 - 1.5. Import and export

Following that, we have to specify from which column of the imported table the name of our new
types is to be taken:

CSV/Excel file

w= Example Type Import

Sew 9 ASNRELARX
= Bxample Type Import 2 Attribute Name Current language
a0 1: Types of Seng Mapping Import Identity Log Options Language Value assignment
A 2: Attribute Name Current language et ‘&m HZ| e
Source | 1:Types of Song =[] [New-]|
CSVExcl fle - =
R g e Eror =
Gew 9 ASBEELERX
i Exam) & i (= I®
ple Type Import lypes of Song
) 1: Types of Song igoilaroot LPoon Ligergte it og Possible stibutes
'8 Choose column x [Color n
Columns: — | EID
Position Heading Mappings Identidier ~ = estimated number of instances
1 Title name - Help text
R A, e
4 Genre |] Primary name
5 Ranirsz RDF-URI-Allas
[Wear
7 My rating rdfabout
dtID
1dtID-Prefix
[.

Following that, we still have to specify on the “Import” tab that our new types are not supposed to
be abstract:

CSV/Excel file
w = Example Type Import

ASoEEOaEX

Q I
Mapping Impﬂﬂ EHPU“ |dentify I_Og

pute Name Current language

() Type can extend objects

If we now want to assign the corresponding songs to their new types, we have to use the system
relation “has object.” In older versions of i-views this relation is called “has individual.” As the target
we chose all objects of song (incl. subtypes), which are defined via the Name attributes in
accordance with the Song title column.

136

Users' Manual 5.8 - 1.5. Import and export

Ay 2y By =3
vew * ASEE X
! Example Type Import 3: Relation has object

)1
4 () 1: Types of Song Mapping Import Export Identify Log Options
& 2: Attribute Name Current language

Source 1: Types of Song = New... Remove
4 4" 3: Relation has object
4 @ 4:Instances of Song VT 4: Instances of Song = New...| | Remove
A 5: Attribute Name Current language Import: Update or create if not found
Export: Export all
Relation | has object ra
Possible relations Apply

Domain of (Abstract relation)
Extends objects of

has object

has print template

has property

If we now import this mapping, we get the desired result. The songs that already exist in the
Knowledge Graph are taken into account by the import setting “Update or create if not found” and
moved under their respective type so that no object is created twice (see chapter Import behavior
settings). A quick reminder: A specific object cannot belong to several types at once.

There is another special case. If we have a table in which different types occur in one column, we
can also map this in our import settings.

Person/Band Origin Type of location
Paul McCartney Liverpool City
The Beatles Great Britain Country

To do this, we count the mappings of objects to which we want to assign subtypes (in this case
“objects of location”) and then select the corresponding super-type on the “Options” tab.

bl Types import 4: Instances of Place
4 @ 1: Instances of Band

&\ 2: Attribute Name Current language
4 " 3: Relation has place
4 @ 4 Instances of Place
«(Os: Types of Place

Mapping Identify Log. Options
Type
With objects of all subtypes
Exact type is specified by the following mapping:

5: Types of Place wo | | New...| | Remove
&\ 6: Attribute Name Current language

& 7: Attribute Name Current language [] Allow multiple objects

It is also important not to forget to specify on the “Import” tab that the type is not supposed to be
abstract so that concrete objects can be created.

Assuming Liverpool already exists in the knoledge graph but is assigned to the
type “Location” because it did not have subtypes such as “City” and “Country”

CAUTION at that time. In this case, Liverpool is not created anew under the type City.
Reason: The objects of the Location type are only identified via the name
attribute and not via the subtype.

137

Users' Manual 5.8 - 1.5. Import and export

1.5.1.3.5. Mapping of extensions

Extensions can also be imported and exported. Let’s assume we have a table that shows the role of

a band member in a band:

Person Band Rolle
RonWood Faces Guitarist
RonWood Jeff Beck Group Bassist
RonWood Rolling Stones Guitarist

Ron Wood is a guitarist with the Faces and the Rolling Stones, but a bassist with the Jeff Beck
Group. In order to map this, we must select the object for which an extension was defined in the

schema and then press the “New extension mapping” button.

v w ANEE=I Om g X
Mew extension mapping

wl Extensions - Import example 1: Instances of Person
0 1: Instances of Person e T | o
Type Person

Like an object mapping, an extension mapping queries the corresponding type. In the schema of
the music graph, the “Role” type is an abstract type. So it is necessary to define in the mapping that
the role is to be mapped to subtypes of the “Role” type (see Type mapping chapter).

! Extensions - Import example
4 1: Instances of Person
4 @ 2: Extension Actor Role
4 ()3 Types of Actor Role
£ 4: Attribute Name Current language

As with objects and types, the relation can be mapped to the extension (or to the subtypes of an

extension).

138

Users' Manual 5.8 - 1.5. Import and export

! Extensions - Import example
4 © 1: Instances of Person
4 @ 2: Extension Actor Role
()3 Types of Actor Role
& 4: Attribute Name Current language
4 " 5:Relation plays in band
4 © & Instances of Band
£ 7: Attribute Name Current language
£\ 8: Attribute Name Current language

1.5.1.4. Mapping of several values for an object type at an object

If several values are specified for an object type when there is an object (in our example, there are
several “Moods” for each song), then there are three possible ways the table will look. For two of
the three possible ways, the import must be modified, which is described in the following.

Option 1 — Values separated by separators: The individual values are found in a cell and are
separated by a separator (e.g. a comma).

A B C D E
1 |Title name Genre Mood Run-time Year
2 |Eleanor Righy Cldies reflective, dreamy 127 1966
3 |For Mo One Oldies acerbic 121 1966
4 |I'm Only Sleeping Oldies quirky, mellow 181 1966
5 Yellow Submarine Oldies spacey, trippy, playful 160 1966

In this case, we go to the mapping of the data source, where the general settings are found, and to
the “ Options ” tab found there. The setting used to specify separators within a cell is found here in
the lower section. We now only have to locate the corresponding column of the table to be

“wn

imported (“Mood”) and enter the separator used (“”) in the column “ Separator .

139

vew
w' Songs
4 (0 1: Instances of Song

& 2: Attribute Name Current language

A\ 3: Attribute run-time (seconds)

4 " 4: Relation has mood
4 © 5 Instances of Mood
&\ 6: Attribute Name Current language

Users' Manual 5.8 - 1.5. Import and export

00ALSLER

Songs

C5V/Excel file | Options | Log Registry

Import

() Import in a single transaction

(®) Use multiple transactions for import Update metrics
Triggers activated

[Automatic generation of name for nameless objects

Data source

(O Read full table (contains forward references)

® Read row by row (no forward references)

Separator within one cell:

Column Separator
Title name

Genre

Mood

Run-time

Option 2 — Several columns: The individual values are located in their own respective column,

whereby not every field must be filled in. As many columns are required as the maximum number

of moods there are per song.

A B C D E F
1 Title name Genre Mood Mood2 Mood3 Run-time
2 |Eleanor Rigby Oldies reflective dreamy 127
3 |For No One Oldies acerbic 121
4 |I'm Only Sleeping Oldies quirky mellow 181
5 |Yellow Submarine Oldies spacey trippy playful 160

Year

G

1366
1966
1366
1366

In this case, the corresponding relation must be created the same number of times as there are

columns. In this case, the first relation must, accordingly, be mapped to “Moodl”, the second
relation to “Mood2” and the third relation to “Mood3”.

140

Users' Manual 5.8 - 1.5. Import and export

Ay oy Py (o

- w ASEEL,aRX
W' Songs 12: Attribute Name Current language
4 ® 1 Instances ot Seng Mapping Import Identify Log Options Language Value assignment
A 2: Attribute Name Current language

Map to: Mood3 Remove
& 3: Attribute run-time (seconds) -
4 . 4: Relation has mood Source 11: Instances of Mood =|| - || New...
4 © 5: Instances of Mood Import: Update or create if not found
& 6: Attribute Name Current language Export: Export all
4 " 7: Relation has mood
4 @ 8: Instances of Mood Attribute:| Name ra
A\ 9: Attribute Name Current language
4 /” 10: Relation has mood Possible attributes Apply
4 @ 11: Instances of Mood EID “
A 12: Attribute Name Current language lcon
level
MName

Name Primary name
RDF-URI-Alias

Option 3 — Several rows: The individual values are located in their own respective row. Please note:
In this case, it is essential that the attributes that are required for identification of the object (in this
case the track name) appear in every row, as otherwise the rows would be interpreted as their own
respective object without a name, making a correct import impossible.

A B C D E

1 |Title name Genre Mood Run-time Year

2 |Eleanor Righy Oldies reflective 127 1966
3 |Eleanor Righy dreamy 127 1966
4 |For Mo One Oldies acerbic 121 1966
5 |I'm Only Sleeping Oldies quirky 181 1966
& |I'm Cnly Sleeping mellow 181 1966
7 Yellow Submarine Oldies spacey 160 1966
g Yellow Submarine trippy 160 1966
g Yellow Submarine playful 160 1966

In this case, no special import settings are required, as the system identifies the object using the
identifying attribute and creates the relations correctly.

1.5.1.5. Settings of the import behaviour

During the import process, a check is always performed to determine whether an attribute already
exists. “ldentify” infers concrete objects from attributes. When we refer below to “existing
attributes”, these are attributes whose value precisely matches the value in the column to which
they are mapped. When we refer to existing objects, we mean concrete objects that have been
identified through an existing attribute.

Example: If our Knowledge Graph already contains a song called “Eleanor Rigby”, the name
attribute (mapped to the “track name“ column in our import table) is an existing attribute, so the
song is an existing song as long as the song is identified only via the name attribute.

141

Users' Manual 5.8 - 1.5. Import and export

The settings for import behavior allow us to control how the import should react to existing and
new semantic elements. The following table shows a brief description of the individual settings,
while the sub-chapters of this chapter contain detailed and descriptive explanations.

Setting Brief description

Update Existing elements are overwritten (updated), no new elements
are created.

Update or create if not found Existing elements are overwritten; if none exist, they are created.

Delete all with same value (only All attribute values that match the imported value are deleted
available for properties) for the respective objects.

Delete all with same type All attribute values of the selected type are deleted for the
relevant objects, regardless of the values match or not.

Delete Is used to delete that exact element.

Create Creates a new property/object irrespective of whether the
attribute value or the object already exists.

Create if type not found (only An attribute of the required type is only created if none of this
available for attributes) type exists.

Create if value not found (only An attribute with this value is only created, if none with this

available for attributes) value exists.
Do not import No import.
Synchronize In order to synchronize the contents for import with the contents

in the database, this action creates all elements that do not yet
exist, updates all elements that have changed, and delete all
elements that no longer exist.

During an import, we have to decide individually for every mapped object, every mapped relation
and every mapped attribute which import settings we want to use.

Unlike in other editors of the Knowledge Builder, a setting is neither “inherited” by
NOTE the subordinate mapping elements, nor is the import setting for an object
“inherited” by its attributes.

The import mapping

If errors occur due to the data, they will be reported according to their row numbering when the
import transaction is done. Please pay attention that the row numbering of the error message
relates to the table shown in the import preview when clicking on "Show table".

If empty rows exist in the source table, they are filtered out by the import mechanism. Therefore
pay attention that in case of empty rows, the row numbering of source table differs from the row
numbering of the import mechanism (including table preview).

142

Users' Manual 5.8 - 1.5. Import and export

Source data

A B
1 |Name Date of Fair Empty row — being filtered out
2 |Camlam Europe Sep 26 2015 - Sep 27 2015 for performance improvement
4 ,. Apr 15 2018 - Sep 18 2018
Music Fair 2019 Apr 72019 - 5ep 92019
A Import preview
-
. R . # MName Diate of Fair
. Differencein
: numberina 2 Camlam Europe Sep 26 2015 - Sep 27 2015
. T Apr 15 2018 - Sep 15 2018
N L4 Music Fair 2019 Apr 7 2019 - Sep 9 2019
. . v
v o’
Following errors occurred: .
L]
Row Schema Value " Mapping Description Category
3 1: Instances of Fair Mo identifying properties found in the data source Error
-—

(Import error message)

1.5.1.5.1. Update

If this setting is applied to an attribute , it ensures that the value from the table overwrites the
attribute value of exactly one existing attribute. No new attributes are created with this setting. If
the object has more than one attribute value of the selected type, no value is imported.

If you use the “Update” setting for an identifying attribute while using the “Update or create if not
available” setting for a corresponding object, the error message “Attribute not found” appears, if
the identifying object is not available in i-views.

If “Update” is applied to an object , this setting ensures that all properties of the object can be
added or changed by the import. New objects are not created.

Example: Let’s assume we keep a database of our favorite songs. We have just received a list with
songs that contain new information. We want to get this information into our database but prevent
songs that are not our favorite songs from being imported. We use the “Update” setting to do this.

143

Users' Manual 5.8 - 1.5. Import and export

Song

About A Girl

Attributes
b Name = | About A Girl
Rating = |6
Relations
has genre = lAIternative Rock

Add relation

The song "About A Girl" is already available in the Knowledge Builder.

Song Run-time
About A Girl 168

Author
5 Nirvana

Rating

The import table contains information on the length, rating and creator of the song.

CSV/Excel file

w = Update
weow 9§
i Update
4 @ 1: Instances of Seng

ASEEROoaRX

1: Instances of Song

Mapping Identify Log Optiens
A 2: Attribute Name Current language

. . Type |Song
A 3: Attribute run-time (seconds)
A 4: Attribute Rating Import: | Update | B3
4 " 5: Relation has author Export: Exportall | [=]

4 @ 6 Instances of Band
A 7: Attribute Name Current language

For Song objects we specify that they are supposed to be updated. All attributes, relations and
relational targets receive the import setting “Update or create if not available yet.”

144

Users' Manual 5.8 - 1.5. Import and export

About A Girl

Attributes
run-time (seconds) = |168

b Name = |About A Girl
Rating = |5
Relations
has genre = lAIternative Rock
has authaor = Nirvana

Add relation

The result: The song has been updated and has received new attributes and relations. Already
existing properties have been updated (value).

1.5.1.5.2. Update or create if not found

This import setting is required in most cases and is therefore set as the default setting. If elements
already exist they will be updated. If elements do not exist yet they are created in the database.

1.5.1.5.3. Delete all with same value

This import setting is only available for properties (relations and attributes) and is only used when
the import setting “Delete” cannot be used for deleting. “Delete” does not function for deleting
when a relation or an attribute occurs on an object several times with the same value. If an attempt
is made nonetheless, an error message appears. For example, the song “About A Girl” may have
been linked to the band “Nirvana” using the relation “has author” by mistake.

145

Users' Manual 5.8 - 1.5. Import and export

About A Girl

Attributes
run-time (seconds) = |168

b Name = |About A Girl
Rating = |5
Relations
has authar = Nirvana
has authaor = Nirvana

Add relation

In cases like this, the import setting “Delete” does not have an affect, because due to multiple
occurrences, it does not know which relations it is supposed to delete. In this case, “Delete all with
the same value” must be used.

1.5.1.5.4. Delete all of same kind

This import setting is used if all attributes, objects or relations of a type are supposed to be deleted,
irrespective of existing values. In contrast to this, the settings “Delete” and “Delete all with identical
value” take the existing values into account. Only the elements of those objects that occur in the
import table are deleted.

Example: We have an import table with songs and the duration of the songs. We see that the
duration differs in many cases and decide to delete the duration for these songs to make sure we do
not have any incorrect information.

Song Run-time

19™ Nervous Breakdown 113
A Maniac Depressive Mamed Laughing Boy 300
A Place For My Head 249
About A Girl 168

For most songs, the duration in the import table differs...

146

Users' Manual 5.8 - 1.5. Import and export

Mame B [2] run-time (seconds)
19th Nervous Breakdown 113
A Manic Depressive Named Lauging Boy 300
A Place for my Head 249
About A Girl 168

... from the duration of the songs in the database.

w! Delete values of same type

3: Attribute run-time (seconds)
4 @ 1:Instances of Song

Mapping Identify Log Options Language Value assignment
A 2: Attribute Name Current language

. Map to: Run-time Remove
44 3: Attribute run-time (seconds)
Source 1: Instances of Song g) New...
Import: Delete all of same kind m
Export: Export all

For the attribute “Duration” we use the import setting “Delete all of the same type.”

Mame run-time (seconds)
19th Nervous Breakdown

A Manic Depressive Named Lauging Boy

A Place for my Head

About A Girl

After the import, all attribute values of the attribute type duration have been deleted for these 4
songs.

1.5.1.5.5. Delete

The import setting “Delete” is used to delete exactly the one object/ exactly the one
relation/exactly the one attribute value. If none or several objects/relations/attribute values match

the elements for import, an error message about this appears and the elements concerned is not
deleted.

1.5.1.5.6. Create new

This import setting creates a new property/a new object irrespective of whether the attribute value
or the object already exists. Sole exception: If a property may only occur once (observe the setting

“May have multiple occurrences” for the attribute definition), then the new attribute is not created
and an error message appears noting this.

Following errors occurred:

Row Schema Value Mapping Description Category
2 Run-time 120 3: Attribute run-time (seconds) Attribute "run-time (seconds)" cannot be added to '1%th Nervous Breakdown' Error
3 Run-time 306 3: Attribute run-time (seconds) Attribute "run-time (seconds)" cannot be added to 'A Maniac Depressive Mamed Laughing Boy' Error
4 Run-time 239 3: Attribute run-time (seconds) Attribute "run-time (seconds)” cannot be added to A Place For My Head' Error
5 Run-time 168 3 Attribute run-time (seconds) Attribute "run-time (seconds)” cannot be added to 'About A Girl' Error

147

Users' Manual 5.8 - 1.5. Import and export

1.5.1.5.7. Create if type not found

This import setting is only available for attributes. A new attribute value is only created when the
corresponding attribute does not yet have a value. The values do not have to be the same; what
matters is that one value or another exists, or does not exist, for the corresponding attribute type.
The simultaneous import of several attribute values to one attribute type is not possible, as in this
case it is not possible to decide which of the attribute values should be used.

Example: Assuming that we have an import table that contains the musicians with their alias
names. A number of musicians also have several alias names. In this case, we cannot use the setting
“Create type if not found,” because then all musicians with several alias names would not be given
one.

1.5.1.5.8. Create if value not found

This import setting is only available for attributes. A new attribute value is only created if the object
does not yet have this value for the corresponding attribute.

Example: Let’s take again the import table that includes musicians wih their alias names. Here we
can use the setting "Create value if not found", because then the musicians with several alias names
can get all these alias names.

1.5.1.5.9. Do not import

The import setting “Do not import” allows us to specify that an object or a property should not be
imported. This is useful when a mapping has already been defined and we want to use it again,
however do not want to import specific objects and properties again.

1.5.1.5.10. Synchronize

The import setting “Synchronize” should be used with caution, because it is the only import setting
that not only affects the objects and properties in i-views that have values that match those in the
import table, but also extends to all elements of the same type in i-views. When an import table is
synchronized with i-views, in principle this means that after the import, the result should look
exactly the same as it does in the table.

If objects of one type are synchronized, all objects of this type that are not in
CAUTION the import table are deleted. The objects that exist are updated and the
objects that are not in i-views are created as new objects.

Example: We would like to synchronize the music fairs in i-views (at the left) with a table with the
fairs and their date (at the right):

Name Date of Fair A B
1 N Date of Fai
CamJam Europe Sep 26 2015 - Sep 27 2015 ame e ot ralr
2 |CamlJam Europe Sep 26 2015 - Sep 27 2015
choir.com Fair Apr1 2015 - Apr 4 2015 3
Music Fair 2018 Apr 15 2018 - Sep 18 2018 4 Apr 15 2018 - Sep 18 2018

Music Fair 2019 Apr T 2019 - Sep 9 2019 5 |Music Fair 2019 Apr 72019 - 5ep 9 2019

148

Users' Manual 5.8 - 1.5. Import and export

For objects of the “Fair” type, we select the import setting “Synchronize;” for the individual
attributes Name and Date of fair the import setting “Update or create if not found” is used:

b/ Synchronize 1: Instances of Fair
4 © 1: Instances of Fair Mapping | Identify | Log | Options
A ?: Attribute Name Current language

. . Type Fair ||
A 3: Attribute Date of Fair Current language
Impeort: Synchronize
Export: Export all

The attribute name is the identifiable attribute of fair. There is no name for the object Music fair
2015 in the import table. If we import the table this way, an error message is output:

Following errors occurred:

Row Schema Value Mapping Description Category
3 1: Instances of Fair Mo identifying properties found in the data source Error

After the import, we now see that the import caused two objects to be omitted that did not have a
counterpart in the import table. The date was updated for Music fair 2016:

Fa

MName Date of Fair
CamJam Europe Sep 26 2015 - Sep 27 2015
Music Fair 2019 Apr 7 2019 - Sep 9 2019

When attributes are synchronized, the following applies: When an existing attribute is not given a
value by an import, it is deleted for the corresponding object of the import table. If the existing
attribute has a different value to the import table, it is updated, even when it is allowed to occur
several times. If the attribute does not yet exist, a new one is created.

When relations are synchronized, and they are not given a value, they are deleted for the
corresponding object. If the existing relation has a different value to the import table, it is updated.
If the target object does not yet exist in the database, a new one is created, provided that a
corresponding import setting has been assigned to the target object. If the target object cannot be
created as a new one, because, for example, the import setting “Update” was assigned, an error
message appears notifying us that the target object was not found and will not be created.

1.5.1.6. Table columns

When it comes to mapping database queries, the columns that are available for import are
specified by the database tables and/or the Select statement. When mapping files, it is possible
adopt the columns with the “Read from data source” button from the file. But you can also specify
them manually. In that case you can choose whether to create a standard column or a virtual
property.

149

Users' Manual 5.8 - 1.5. Import and export

If you want to export from the Knowledge Graph you have to enter the columns manually. You can
export only standard columns, not virtual columns.

Virtual table column / virtual property Virtual columns are additional columns that allow you to
use regular expressions to transform the contents we find in a column of the table to be imported.
Example: Let’s assume that “a.d.” is appended to all the years in our import table. We can correct
this by creating a virtual column that adopts only the first 4 characters from the year column.

We can also define virtual properties during export.

We simply write the expressions into the column header (into the name of the column). During the
process, partial strings enclosed in pointy brackets <...> are replaced according to the following
rules, with n, n1, n2, ... representing the contents of other table columns with the column number
n.

Expression Description Example Input Output
<np> Print output of content of Hits:<1p> 1 (integer) Hits: 1
column n (string)

‘none’ Hits: ‘none’
<ns> Output of string in column n Hello <1s>! 'Peter’ Hello Peter!
<nu> Output of string in column n in Hello <1u>! 'Peter Hello PETER!

upper case
<nl> Output of string in column n in Hello <1I>! 'Peter’ Hello peter!
lower case
<n c start- Partial string from position start <1c3-6> ‘Columns’ lumn
>
stop to stop from column n <1c3> ‘Columns’ mns
<1c3-> ‘Columns’ lumns
<n m regex> Test whether the content of <1mO0[0-9]>hi 01 hi
column n matches the regex
. 123 (blank)
regular expression. The
following expressions are only <img$stest (blank) test
evaluated if the regular
expression applies. 123 (blank)
<n X regex> Test whether the content of <1x0[O- 01 (blank)
column n matches the regex 9]>hello
regular expression. The
following expressions are only 123 hello

evaluated if the regular
expression does not apply.

150

Users' Manual 5.8 - 1.5. Import and export

Expression Description Example Input Output

<n e regex> Selects all hits for regex from <lel+> HELLO WORLD LL,L
the contents of column n.

Individual hits are separated by <je\d\d\d\d> 02.10.2001 2001
commas in the result.

<nr regex> Removes all hits for regex from <1rlL> HELLO WORLD HEO WORD
the contents of column n

<n g regex> Transmits the contents of all <1g\(\d)-> +42-13 42
groups of the regular
expression

<n f format> Formats numbers, date and <1f#,0.00> 3.1412 3.14

time specifications from
column n according to the
‘format’ format specification <1fd/m/y> 1 May 1935 1/5/1935

1234.5 1234.50

<1fdd/mmm> 1/5/1935 01/May

Table columns can also be referenced independently from their column number by using specially
defined identifiers. The advantage in this case is that the allocation is not lost if the column order is
changed in the import table.

The identifier for the relevant column of the import table is entered in the column with the heading
Identifier in the column definition table. These columns are referenced by creating a virtual table
column that is given the identifier as its table column heading (see example 2).

Expression Description Example Input Output
<$ name Reference to a column by <SNameSu> 'mp3’ MP3
Sexpr> means of a unique column

identifier name and

subsequent transformation by
means of the expression.The $
characters are a functional
component of the identifier
syntax.

For more information on how to use regular expressions (regEx), see https://regex101.com/.
Example 1: Use of expressions (reference via column number)

Let’s assume we have an import table containing concrete objects without a name. However, we
want these objects to be modeled as separate objects in our data model. Example: for a load point,
column 88 contains its main value, which is torque. So we enter the expression load point <88s> as
the definition of our virtual column that will represent the name of this load point. The resulting
name for a load point with a torque of 850 would therefore be “load point 850”.

151

https://regex101.com/

Users' Manual 5.8 - 1.5. Import and export

We can also use the virtual property to create a username consisting of the first 4 letters of the first
name and the last name. If the person is named Maximilian Mustermann and we define the virtual
column with the relevant expression <1c1-4><2c1-4>, the result is “MaxiMust”.

The virtual property can also be used to create an initial password for a user during import. The
expression could be Pass4<2s> . The resulting password for Maximilian Mustermann would be
“Pass4Mustermann”.

A rather extensive example shows how the virtual property can be used to assign objects to the
correct direct top-level group:

Media Item number Title Artist Genre <1mCD=<2c1-3>000 < 1xCD> < 1xMD= < 2c1-400 Playlist Summer 2019

2 CcD 010000 The suburbs Arcade Fire Postwave 010000 Playlist Summer 2019
3 cD 010100 Modern Man Arcade Fire Postwave 010000 Playlist Summer 2019
4 LP 010101 Empty Room Arcade Fire Postwave 010100 Playlist Summer 2019
5 MP3 010102 Half Light | Arcade Fire Postwave 010100 Playlist Summer 2019
6 0GG 010103 Half Light Il Arcade Fire Postwave 010100 Playlist Summer 2019
7 LP 010104 Maonth Of Day Arcade Fire Postwave 010100 Playlist Summer 2019
8 LP 010105 Deep Blue Arcade Fire Postwave 010100 Playlist Summer 2019
9 LP 0101086 Eleanor Rigby The Beatles Oldies 010100 Playlist Summer 2019
10 LpP 010107 | Want Ta Tell You The Beatles Oldies 010100 Playlist Summer 2019
11 LP 010108 I'm Only Sleeping The Beatles Oldies 010100 Playlist Summer 2019
12 P 010110 Love To You The Beatles Oldies 010100 Playlist Summer 2019
13 MD 010200 Taxman The Beatles Oldies Playlist Summer 2019
14 LP 010201 About A Girl Nirvana Rock 010200 Playlist Summer 2019

The three right columns are virtual columns.

<ImCD>: The number of the top-level group of the object is only written to the first of the virtual
columns if the term “CD” (for compact disc) occurs in the first column for the object.

<2c¢1-3>000: The number to be written to the column consists of the first three characters of the
second column and three zeros.

<IXCD><1xMD>: Only if the first column for the object does not contain "CD" or "MD", the content
is written to the column.

<2¢1-4>00: The number to be written to the column consists of the first four characters of the
second column.

Playlist Summer 2019: This expression is written to the column for all objects.
Example 2: Use of individual identifiers (in combination with regular expressions)

In the following example, the contents for the Media column are transformed into upper-case
letters and into filename extensions by means of virtual columns: Column 6 uses a reference per
column number, column 7 uses a reference per column identifier.

To set up columns with virtual values, do as follows:

1. Enable the editing of columns first

152

2. Add the identifier name for the column (the identifier "media" always will stick to the column

with the title "Media")

3. Click on the "Add column" button

4. Choose the virtual property

Users' Manual 5.8 - 1.5. Import and export

5. For the heading, enter the column identifier in combination with the regular expression

6. To ensure that the current data is loaded, click on "Read from data source"

7. Click on "Show table" to see the result

Playlist
CSV/Excel fi
Import file:

Export file:

Options

Table file type

le Options Log

Registry

ChUser\Desktop'PlayListxdsx

1st row contains heading

Identify columns

@) by heading

O by position

(O aber Zeichenposition

Columns:

Paosition

1
2
3
4
5
]
-
8
1

Edit

Excel file (xlsx) ~

Read from data source 0

Heading
Media

Item number
Title

Artist

Genre

<lu>

<SmediaSm(mp3|ogg)>*.<Smediall> 6

Playlist Summer 2019

(3]

Add column Remove columns

Maove up

Column type: (11
Standard

*

Field length
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Move down

Type
String
String
String
String
String
virtuell
wvirtuell

wvirtuell

Mappings

Mappings ldentifier

media

eshow table...

Show table...

Column

I &0 M m g n o

A click on the "Show table" button shows the preview with the transformed column entries:

v

v

v

= Media Item number
2 cb 010000
3 cD 010100
4 LP 010101
5 mp3 010102
6 ogg 010103
7 LP 010104
8 LP 010105
9 LP 010106
10 LP 010107
1 LP 010109
12 LP 010110
13 MD 010200
14 LP 010201

Title

The suburbs
Modern Man
Empty Room
Half Light |

Half Light Il
Month Of Day
Deep Blue
Eleanor Rigby

| Want To Tell You
I'm Only Sleeping
Love To You
Taxman

About A Girl

Artist

Arcade Fire
Arcade Fire
Arcade Fire
Arcade Fire
Arcade Fire
Arcade Fire
Arcade Fire
The Beatles
The Beatles
The Beatles
The Beatles
The Beatles

Nirvana

Genre
Postwave
Postwave
Postwave
Postwave
Postwave
Postwave
Postwave
Oldies
Oldies
Oldies
Oldies
Oldies
Rock

<Tu>
D
cD
LP
MP3
0GG
LP
LP
LP
LP
LP
LP
MD
LP

<SmediaSm(mp3|ogg)>~.<Smediasl>

Playlist Summer 2019

Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019
Playlist Summer 2019

The following figure shows the

effect of swapped columns in an import table: If only column

Users' Manual 5.8 - 1.5. Import and export

numbers are used like in < 1 u>, the wrong column is accidently transformed; if an identifier is used
with a downstream regular expression like in <S media Sm(mp3]|ogg)>, the content is still
referenced correctly an therefore transformed into the correct virtual value:

T~ X v v

£ Item number Media Genre Title Artist <lu> <SmediaSm(mp3|ogg)>*.<SmediaSl> Playlist Summer 2019

2 010000 cD Postwave The suburbs Arcade Fire 010000 Playlist Summer 2019
3 010100 cD Postwave Modern Man Arcade Fire 010100 Playlist Summer 2019
4 010101 LP Postwave Empty Room Arcade Fire 010101 Playlist Summer 2019
5 010102 mp3 Postwave Half Light 1 Arcade Fire 010102 *mp3 Playlist Summer 2019
6 010103 ogg Postwave Half Light 1l Arcade Fire 010103 *.0g9g Playlist Summer 2019
7 010104 LP Postwave Month Of Day Arcade Fire 010104 Playlist Summer 2019
8 010105 LP Postwave Deep Blue Arcade Fire 010105 Playlist Summer 2019
9 010106 LP Oldies Eleanor Rigby The Beatles 010106 Playlist Summer 2019
10 010107 LP Oldies | Want To Tell You The Beatles 010107 Playlist Summer 2019
11 010109 LP Oldies I'm Only Sleeping The Beatles 010109 Playlist Summer 2019
12 010110 LP Oldies Love To You The Beatles 010110 Playlist Summer 2019
13 010200 MD Oldies Taxman The Beatles 010200 Playlist Summer 2019
14 010201 LP Rock About A Girl Nirvana 010201 Playlist Summer 2019

Functioning and sequence of regular expressions
The previously shown regular expression work as follows:

¢ The regular expression "m(mp3|ogg)" matches all entries either containing "mp3" or "ogg".

e The letters "*." outside the parentheses simply will be added to the result in order of their
appearance.

e The regular expression <Smedia$|> transforms all letters into lower case letters.

For the sequence of the regular expressions, it is important to set the filtering regular expression
before the transforming regular expression:

<SmediaSm(mp3|ogg)> filters the entries which will be transformed by <SmediaS|> afterwards.

The complete regular expression <SmediaSm(mp3|ogg)>*.<SmediaSI> returns the intentded result,
whereas another sequence of the expressions *.<SmediaSI><SmediaSm(mp3|ogg)> result into all
entries being transformed. Because the transforming expression works like an immediate output,
the filtering expression it is not obeyed anymore, leading to the rather unusual music filename
extensions *.Ip, *.cd or *.md:

154

Users' Manual 5.8 - 1.5. Import and export

Media Item number Title Artist Genre <lux *.<SmediaSl> <SmediaSm(mp3|ogg)> Playlist Summer 2019

2 CcD 010000 The suburbs Arcade Fire Postwave cD *.cd Playlist Summer 2019
3 cD 010100 Modern Man Arcade Fire Postwave cD *.cd Playlist Summer 2019
4 LP 010101 Empty Room Arcade Fire Postwave LP *lp Playlist Summer 2019
5 mp3 010102 Half Light | Arcade Fire Postwave MP3 *.mp3 Playlist Summer 2019
6 ogg 010103 Half Light Il Arcade Fire Postwave 0GG *.0ag Playlist Summer 2019
7 LP 010104 Maonth Of Day Arcade Fire Postwave LP *lp Playlist Summer 2019
8 LP 010105 Deep Blue Arcade Fire Postwave LP *lp Playlist Summer 2019
9 LP 010106 Eleanor Righy The Beatles Oldies LP *lp Playlist Summer 2019
10 LpP 010107 I Want To Tell You The Beatles Oldies LP *lp Playlist Summer 2019
11 LP 010109 I'm Only Sleeping The Beatles Oldies LP *lp Playlist Summer 2019
12 P 010110 Love To You The Beatles Oldies LP *lp Playlist Summer 2019
13 MD 010200 Taxman The Beatles Oldies MD *md Playlist Summer 2019
14 LP 010201 About A Girl Nirvana Rock LP *lp Playlist Summer 2019

1.5.1.7. Configuration of further table oriented data sources

Databases

The database, user and password must be specified in the mapping for a PostgreSQL, Oracle or
ODBC interface.

Database specification

The database specification consists of the name of the host, the port, and the name of the
database. The syntax is:

Database system Database specification

PostgreSQL hostname:port_database

Oracle //hostname:[port][/databaseService]

ODBC Name of the configured data source

MysQL Separate configuration of database and host name

Configure user name and password

The user name and password are specified as stored in the database. Under the Table option it is
possible to specify the table to be imported. However, for import there is also the option of going to
the “Query” option and formulating a query that specifies which data are to be imported.

Encoding
In case of PostgreSQL mapping, it is possible to specify the encoding on the “Encoding” tab.
Special requirements of the Oracle interface

The function for direct import from an Oracle database requires that certain runtime libraries are
installed on the computer performing the import.

What is required directly is the “Oracle Call Interface” (OCI), and it is required in a version that,

155

Users' Manual 5.8 - 1.5. Import and export

according to Oracle, matches the database server to be addressed. That means that the OCI in
version 11 must be installed on the importing computer in order to address an Oracle 11i database.
The easiest way to install the OCl is to install the “Oracle Database Instant Client”. The “Basic”
package version is sufficient. The client can be obtained from the company operating the server, or
from Oracle after registering at http://www.oracle.com/technology/tech/oci/index.html.

After the installation, it must be ensured that the library can be found by the importing client,
either by placing it in the same directory or by defining environment variables that match the
relevant operating system (documented for the OCI).

Depending on the operating system on which the import will be executed, further libraries are
necessary, and these are not always installed.

e MS Windows: next to the required “oci.dll”, two further libraries are required: advapi32.dll
(extended Windows 32 Base-APIl) and mscvr71.dll (Microsoft C Runtime Library)

Apart from the XML import/export, all imports/exports are table-based and differ only in terms of
the configuration of the source. For a description of a table-oriented display, you can consult the
Example of the CSV file.

1.5.1.8. Mapping of an XML file

The principle of XML files is to make the different details for a record explicit by means of tags (<>)
(and not by means of table columns). Accordingly, tags are also the basis for display when XML
structures are imported to i-views.

Example: Let’s assume that our list of songs is available as an XML file:

<?xml version="1.0" encoding="IS0-8859-1"?>
<Contents>
<Album type="0ldie">
<Title>Revolver</Title>
<Song nr="1">
<Title>Eleanor Rigby</Title>
<lengthSec>127</lengthSec>
<Artist>The Beatles</Artist>
<Topic>Mental illness</Topic>
<Mood>Dreamy</Mood>
<Mood>Reflective</Mood>
</Song>
[...]
</Album>
[...]
</Contents>

If we want to import this XML file, we choose the “XML file” data source when selecting the type,

156

http://www.oracle.com/technology/tech/oci/index.html
http://www.k-infinity.de/doku/4.0/dispatch_getFullDocument.do?dmid=ID564579_534626329#docPartID568281_31039691-chapter

Users' Manual 5.8 - 1.5. Import and export

which causes the editor for the import and export of XML files to open. Even the specification of the
file location is different than in the editor for CSV files. We can now choose between a local file path
and specification of a URI.

JSON preprocessing makes it possible to convert a JSON file to XML before the actual import.

You can choose Transform with XSTL if you want to convert the XML data from the selected XML
file to different XML data before the import, for example in order to change the structure or further
separate individual values. Use the “Edit” button to open the XML file, where you can then define
the changes by means of XSLT.

Once the file has been selected, use the “Read from data source” button to read out the XML
structure, which is then displayed in the right-hand window.

=] 0CALSLER

w' XML import example XML import example

KMLfile Options Log Registry Tools

@ File Coyser\Desktopisongs.xm Show
O R o
[JSON preprocessing O Transform with ¥5LT gt

<Album>
<Album type="..">
<Song >
< Title>
<Artist>
<Contents>
<Album:=
<lengthSec>
<Mood>
<Song>
<Song nr="...">
<Artist>
<lengthSec>
<Mood>
<Titlex
< Topic>
<Title>

<Topic>

Add Edit Remove Mappings Read from data source

XPath expressions:

Add Edit Remove Mappings

We want to import the individual songs on our list. So we create a new object mapping and use the
“Map to” button to select the <Song> tag. In contrast to a CSV import, where only the attribute
values have an equivalent in the CSV table and where an individual row represents an object, which
means that only the attribute values need to be mapped, semantic objects are here mapped by the
XML structure. Therefore a corresponding tag of the XML file must be specified for each of the
objects to be mapped.

157

Users' Manual 5.8 - 1.5. Import and export

= ASELEESaX
! XML import example 1: Instances of undefined

@ 1: Instances of undefined Mapging | Identify | Log | Options

Map to: m Remove
Type i
Import: Update or create if not found

Export: Export all

X

Please choose

<Album type="..">
<Album>

<Artist>
<Contents>
<lengthSec>
<Mood>

As our example shows, the tags are not always unambiguous without context: <Title> is used for
both album titles and song titles. The object type only becomes clear in combination with the
surrounding tag. Often the context of the XML structure and the context of the mapping hierarchy
are synchronous: As we have already specified that the objects should be mapped to the <Song>
tag, the XML structure makes clear which <Title> tag we actually mean when we map <Title> with
the name attribute of songs. Where the mapping hierarchy and the tag structure are not parallel,
we can use XPath to form strings in the XML import in addition to the tags occurring in the XML file.

158

=
' XML import example
4 @ 1:Instances of Song
44 2: Attribute Name Current language

Users' Manual 5.8 - 1.5. Import and export

ASEEOalmX

2: Attribute Name Current language

Mapping Import Identify Log Options

Value assignment

Map to: <Title> m Remove
Source 55 __:— MNew...
Import: Please choose
Album type="...">»
Export: =
[+ <Album>
<Artist>
- . | =Contents>
Attribute: Name_ <lengthSec> f
<Mood:>
Possible attributes ~ <5ong nr="..."> Apply
LS o
also known as ([~ <Title> .
= lopis
Aternative Nam
= [oc] Gonce
description
EID

lcon

level

Name Primary name
MName

Rating

As with the CSV import, it is necessary to use the “ldentify” tab to specify for object mapping which
attribute values should be used to identify the object in the Knowledge Graph. The first created
attribute for an object is once again used automatically as the identifying attribute.

Options with XPath expressions

Let’s assume we only want to import songs from albums with the “Oldie” music style. In our XML
document, the information for the music style is specified directly in the album tag under type="..."
. That means we have to use the editor to define an XPath expression describing the path in the
XML document that contains only songs from oldie albums. The right-hand lower section of the
editor contains a field for adding XPath expressions.

XPath expressions:

\
i

Edit Remove Mappings

=

- Add

i

The correct XPath expression is: //Album[@type="01die"]/Song
Explanation in detail:
® //Album: Selects all albums; their position in the document is irrelevant.

159

Users' Manual 5.8 - 1.5. Import and export

® Album[@type="01ldie"]: Selects all albums of the “Oldie” type

® Album/Song: Selects all songs that are sub-elements of albums.

We can now use this expression to define an equivalent for the object mapping of songs.

= ASEEEOaRX

! XML import example 1: Instances of Song

4 -
.1'|n5tanCESOfsong Mapping Identify Log Options

&\ 2: Attribute Name Current language -
Map to: XPath: //Album[@type="0ldie"]/Seng m Remove
Type Song i
Import: Update or create if not found
Export: Export all

XPath also offers many other useful selection functions. We can, for example, select elements by
their position in the document, use comparative operators, and specify alternative paths.

Basic tips for the XML import

¢ Use one absolute path.
e Express all other paths relatively to the absolute path.

e An incremental import only is possible if no cross-references are going to be imported. If so,
define the node with the absolute path as a partitioning element (see option on the second tab
of the import mapping).

e If the structure branches out into the depth, an import mapping going from deeper level
towards upper level is recommended, since there is only one parent element instead of several
child elements.

¢ In case of more complex XML documents, it can be beneficial to import all objects including
their identifying attributes first and the relationships in a second step. This ensures that all
objects can be found for building relationships.

Alternative: XML import mapping for RDF files

If the schema in the semantic network is too specific for the existing RDF file or if the RDF file is too
specific or the rdf schema is missing so that it cannot be imported by the import mechanism
correctly, we can use the XML import mapping for specified import.

In most cases, we will need to use XPath expressions for dedicated value assighment. Pay attention
that for the XML import mapping, an interactive step-by-step import is not available.

For Xpath expressions, the namespace (built up on to the qualifier) is not

NOTE
considered by the system for import mapping.

160

Users' Manual 5.8 - 1.5. Import and export

Input RDF-XML XPath Meaning
// Top-level of the RDF
. One level above
AIxyz Two levels above, from there

the node below called “xyz”

/label/ Tag “label”
<rdf:label>
prefLabel[@lang="en"] Node with attribute and certain
<rdf:preflLabel attribute value. Output =
xml:lang="en"> "Example".
Example

</xdf:preflLabel>

ancestor::termEntry/attribute:: Superordinate node on any
id level with name (“termEntry”)
and attribute (“id”)

/myparent/mychild[text()] Text between certain tags

1.5.1.9. Further options, log and registry

1.5.1.9.1. Further options at the import

In the “Options” tab, the following functions are available for selection irrespective of the data
source:

Import

) Import in a single transaction
(®) Use multiple transactions for import Update metrics

Triggers activated

[] Automatic generation of name for nameless objects

Import in one transaction : This is slower than an import with several transactions and should only
be used if a conflict would occur during an import with several transactions because many people
are working in Knowledge Builder at the same time or because you want to import data where it
matters that individual pieces of data are not viewed separately from each other.

Example 1: Every hour, an import is executed with the machine load status. The combined load
values must not exceed a certain value as that could result in a power failure. To ensure this rule can
be taken into account (e.g. by means of a script), all values must be viewed jointly and then
imported.

Example 2: An import is executed with persons of which no more than one person may have a

161

Users' Manual 5.8 - 1.5. Import and export

master key because only one master key exists. The import must also be performed in one
transaction here because several transactions could result in missing the error that the attribute for
the master key has been set for two persons.

Use several transactions : Default setting for fast import.

Journaling : Journaling should be used if very large amounts of data are deleted or modified in one
import. The changes or deletions for these entries are only to be made to the index after 4,096
entries (the figure is variable). This speeds up the import because the index does not have to be
used for every single change/deletion. Instead, these changes are copied to the index after a
maximum of 4,096 changes.

Update metrics : Metrics are supposed to be updated if the import significantly affects the number
of object types or property types, that is, if a large number of objects or properties of a type are
added to the Knowledge Graph. If the metrics were not updated, this could negatively affect the
performance of searches in which the corresponding types play a role.

Trigger activated : You can use this checkmark to determine if the trigger is supposed to be
activated or not during import. If you wish to apply one trigger but not another one, you have to
define two different mappings with the corresponding semantic elements. For information on
triggers, refer to the Trigger chapter.

Automatic name generation for nameless objects : Enables the automatic name generation for
nameless objects.

If there is a table-oriented source, we can make the following settings:

Data source
() Read full table {contains forward references)

(® Read row by row (no forward references)

Separator within cne cell:

Column Separator b
Media

[tern number

Title

Artist W

Import entire table : Even though it can take longer to import the entire table at once, it makes
sense to select this option if there are forward references, i.e. if relations are to be drawn between
the objects to be imported. In this case, both objects must already be available, which is not the
case if the table is imported one row at a time. Furthermore, the progress display is more precise
than for importing one row at a time.

Import table row by row : A table should always be imported one row at time when the table

162

Users' Manual 5.8 - 1.5. Import and export

contains no source reference since this procedure speeds up the import.

Separators within a cell: Refer to the chapter Mapping several values for an object type for an
object.

If we have an XML-based data source, the following functions are available:

Data source
Incremental XML import

Partitioning element:

[] Filein DTD

Incremental XML import: The XML import is performed step-by-step . These steps are specified by
the partitioning element.

Import DTD: Imports the document type definition (DTD) .

1.5.1.9.2. Log

The functions in the “Log” tab allow changes that are made upon import to be tracked.

CSV/Excel file Options Log Registry
[] Add created semantic elements to a folder
[] Add medifed sernantic elements to a folder

[] Add affected semantic elements to a folder

() Mew folder
i® Folder

[] Write errors to a file

Letzer Import

Letzer Export

Place generated semantic elements in a folder: If new objects, types or properties are generated
by the import, they can be placed in a folder in the Knowledge Graph.

Place changed semantic elements in a folder: All properties or objects with properties that were
changed by the import can be placed in a folder.

163

Users' Manual 5.8 - 1.5. Import and export

Write error messages to a file: Errors can occur during import (for example, there may have been
an identifying attribute for several objects, which is why the object could not be identified
uniquely). These errors are displayed in a window following import by default, and the option of
saving the error log is provided. If this is to occur automatically, then a checkmark can be placed in
the box and a file can be specified here.

Last import / Last export : The date and time of the last import performed and the last export
performed are displayed here.

1: Instances of Song
Mapping Identify Log Options
(@) Dont categorize log entries

() Category of log entries

L] Write value in error logs

The “Log” tab is also available in the case of the individual mapping objects. When necessary, a
category can be entered for log entries here. Moreover, it is possible to define that the value of the
corresponding object/corresponding property should be written into the error log. This is not
activated by default, in order to avoid revealing sensitive data (e.g. passwords).

1.5.1.9.3. Registry

The function “Set registry key” can be found under the “Registry” tab, and can be used to register
the data source for other imports and exports.

The function “Link existing source” allows a registered source to be used again.

“References” shows other places where a data source is being used:

164

Users' Manual 5.8 - 1.5. Import and export

CSV/Excelfile Options Log Registry
The data source is registered as "song-1" and is used in 2 mapping(s)

Set registry key Link existing source

‘81 References — O X

Ba-:

Description Part of Type
C5V/Excel file Songs (ID: songs1) Mapping
CSV/Excel file Sengs (ID: songs2) Mapping

Sov Yoy YL R

w Songs (songs1)
4 @ 1:Instances of Song

Songs

C5V/Excel file Optiens Log Registry
& 2: Attribute Name Current language

A 3: Attribute run-time (seconds) Import file: Ch\User\Desktop' Moods.c | | .. Show table...
4 " 4: Relation has mood Export file: Show table...
4 @ s Instances of Mood Options
& 6 Attribute Name Current language Table file type CSV file v

1st row contains heading Cell values are enclosed in quotes

References: 2

1.5.2. Attribute types and formats

One frequent job of attribute mapping is to import specific data from concrete objects, for example
from persons: Telephone number, date of birth etc.

For the import of attributes for which i-views uses a specific format (e.g. date), the entries of the
column to be imported must be provided in a form that is supported by i-views. For example, a
string in the form ‘abcde... cannot be imported to an attribute field of the date type; in this case,
no value is imported for the corresponding object.

The following table lists the formats that i-views supports during the import of attributes. A table
value ‘yes’ or ‘1’ is, for example, imported correctly as a Boolean attribute value (for a
correspondingly defined attribute), while a value such as ‘on‘ or similar is not.

Attribute Supported value formats

Selection The mapping of import to attribute values can be configured
with the “Value allocation” tab.

Boolean The mapping of import to attribute values can be configured
with the “Value allocation” tab.

165

Attribute

File

Date

Date and time

Color
Fixed point figure

Integer

Internet link

Time

String

Users' Manual 5.8 - 1.5. Import and export

Supported value formats

It is possible to import files (e.g. images). For this to happen,
either the absolute path to the file must be specified, or the files
to be imported must be in the same directory (or a subdirectory
that needs to be specified) as the import file.

e <day> <monthName> <year>, e. g. 5 April 1982, 5-APR-1982
e <monthName> <day> <year>, e. g. April 5, 1982

e <monthNumber> <day> <year>, e. g. 4/5/1982

The separator between <day>, <monthName> and <year> can be
a space, a comma or a hyphen, for example (but other characters
are also possible). Valid month names are: * ‘January’, ‘February’,
‘March’, ‘April’, ‘May’, ‘June’, ‘July’, ‘August’, ‘September’,
‘October’, ‘November’, ‘December’ * 'lan', 'Feb', ‘Mar', 'Apr,
‘May', 'Jun', Jul', 'Aug', 'Sep', ‘Oct’, 'Nov', ‘Dec'.

Two-digit years are expanded to 20xy (so 4/5/82
becomes 4/5/2082). If mapping is set to “Freely
definable format”, the following tokens can be
used: YYYY and YY (year), MM and M (month
number), MMMM (name of month), MMM
(abbreviated name of month), DD and D (day)

NOTE

For date and time see the corresponding attributes. The date
must come before the time. If the time is omitted, 0:00 is used.

Import not possible.
Import possible.
e Integers of any size

e Floats (separated by a point), e.g. 1.82. The figures are
rounded during import.

Any URL possible.

<hour>: <minute>: <second> <am/pm>, e.g. 8:23 pm (becomes
20:23:00) <minute>, <second> and <am/pm> can be omitted. If
mapping is set to “Freely defined format” , the following tokens
can be used: hh and h (hour), mm and m (minute), ss and s
(second), mmm (millisecond)

Any string. No decoding is performed.

Boolean attributes and selection attributes

Selection or Boolean attributes can only assume values from a specified set; for selection attributes

this is a specified list, and for Boolean attributes this is the value pair ‘yes/no’ in the form of a

166

Users' Manual 5.8 - 1.5. Import and export

clickable field. When importing these attributes, you can specify how the values from the import
table are translated to attribute values of the Knowledge Graph. One option is to adopt the values
as they are listed in the table; if they do not correspond to any possible attribute values defined in
the Knowledge Graph, they are not imported. The other option is to specify value allocations
between table values and attribute values, which are then imported.

1.5.3. Configuration of the export

The export of data from a Knowledge Graph into a table is prepared in the same editor and in the
same way as the import.

1. A new mapping is created in a table mapping folder in the main window.

2. In the table mapping editor, the file to be generated is specified.

The difference to the import is that the columns are not imported from the table now but have to
be created in the table mapping editor. Since the import and export editor are one and the same,
you first have to select whether a new column to be created is a standard column or a virtual
property . However, virtual properties cannot be used for export.

1.5.3.1. Exporting structured queries

It is possible to export the result of a structured query. This procedure makes sense if only certain
objects that have been restricted by a search are supposed to be exported. Let’s assume, for
example, we want to export all bands that have written songs that are more the 10 min long. To do
this, we first have to define a structured query that collects the desired objects.

=20
+ N0 parameters

dentifier | SongRunTime10Min
/N Attribute ¢ | M run-time (seconds) | BF Value >

We then access this structured query from the configuration of the export. To do this, we select the
mapping of a query rather than an object mapping in the mapping configuration header. The
structured query can only be accessed with a registration key.

CrEL 00 A MALWAQ

Mew mapping of a query
W' Example export Example export

C5V/Excelfile Options Log Registry

167

Users' Manual 5.8 - 1.5. Import and export

This has the effect that only the results of the structured query are exported. For these objects, we
can now create properties that are to be included in the export: e.g. the year the band was
founded, members and songs. However, we might not want to export all of the songs of the bands
we have thus compiled but only those songs that also match the search criterion, which is songs
longer than 10 min in our example. To do this, we can assign identifiers to the individual search
conditions in the structured query. These identifiers in turn can be addressed in the export
definition.

&y 2 ¥ (o

o A/ REE (e o
New mapping of a query identifier

' Example export 1: Query: Bands with songs longer than 10 min.

4 [0 1: Query: Bands with songs longer than 10 min. Mapping | Identify | Log
& 2: Attribute Name Current language
4 @ 3: Identifier SongRunTime 10Min
A 4: Attribute Name Current language

&\ 5: Attribute run-time (seconds)

Query

Bands with songs longer than 10 min. Open

1.5.3.2. Exporting collections of semantic objects

Collections of semantic objects can also be exported. These also need a registration key, which you
can set under TECHNICAL -> Organizing folder.

OO Y YIOR

MNew mapping of a semantic elements folder
' Example folder export Example folder export AL

CSW/Excel file Options Log Registry

1.5.3.3. Exporting the frame ID

The mapping of the frame ID enables us to export the ID of a semantic element assigned in the
Knowledge Graph. To do this, we simply select the object, type or property for which we need the
ID and then choose the “New mapping of Frame ID” button:

CELR ASZHEE X

MNew frame-1D mapping

w' Example export 3: |dentifier songrun Itme 1UMIn

4 [0 1: Query: Bands with songs longer than 10 min,

Mapping Log
& 2: Attribute Name Current language =
5 . Identifier SengRunTimel0Min
4 1 3: Identifier SongRunTime 10Min
& 4: Attribute Name Current language o Do nat import
A\ 5 Attribute run-time (seconds)
Export: Export all

168

Users' Manual 5.8 - 1.5. Import and export

We can also decide if we want to output the ID in string format (ID123_456) or as a 64-bit integer.

1.5.3.4. Export via script

Finally, we have one additional powerful tool for the export: script mapping.

For the export, we have to specify the columns for the properties to be exported. For the mapping
of the individual property, we then can asssign the output column ("Map to"):

e

'w Export

4 @ 1: Instances of Song
A 2: Attribute Name Current language
| 3: Script JavaSeript

3: Script JavaScript
Mapping Log
Map to:

Mood Remove

00AL LA
Export

CSV/Excelfile Options Log Registry
Import file:

Export file:

Options
Table filat.

1
Column type:
Identi

closed in quotes

ncoding: v

® by

O by position

Virtual Property

Show table...

Show table...

) Space
O dber Zeichenp isition ®

Line Separator auto detect ~

Columns: | Read fr 'm data source

Position Heading Field lengtt Type
Variable

Variable

Mappings Identifier Column
1 Song title 2: Attribute Name Currer A

2 Mood

String

String 3: Script JavaSeript B

[edit [Add column { | Remove columns| | Move up

Move down Mappings

The script mapping is, for example, used when we wish to combine three attributes from the
Knowledge Graph to form an ID. However, this may slow down the export. (In the case of an import,

this could be mapped using a virtual property more easily. The use of virtual properties is explained
in the chapter "Table Columns".)

The following case is another example of the use of a script in the case of an export. It shows how
several properties can be written into a cell with a separator. In this case, we wish to generate a

table which lists the song names in the first column and all moods for the songs separated by
commas:

wl Export 3: Script JavaScript

4 @ 1:Instances of Seng

Mapping Log

4 2: Attribute Name Current language

. : : Map to: Mood

| = 3: Script JavaScript
Source 1: Instances of Song
Import: Do not import
Export: Export all
Script JavaScript

To generate the second column, we require the following script:

169

Users' Manual 5.8 - 1.5. Import and export

function exportValueOf(element) {
var mood = "";
var relTargets = $k.Registry.query("moodsforSongs").findElements
({songName: element.attributeValue("objectName")});
if(relTargets && relTargets.length > @) {
for(var i=0; i < (relTargets.length-1); i++) {
mood += relTargets[i].attributeValue("objectName") + ", ";
}
mood += relTargets[relTargets.length-1].attributeValue("
objectName");

}
return mood;

The script contains the following structured query (registration key: “mood ForSongs"):

:
o Relation e Q) has Target
&N Attribute He Q Value = &P songName A=afg

The expression “findElements” allows us to access a parameter (in this case “songName”) within
the query. The “objectName” is the internal name of the name attribute in this Knowledge Graph.

Within the if-instruction we state that when an element has several relation targets, these should
be shown separated by a comma. After the last relation target that runs through the loop, there
should no longer be a comma. Even when an element only has one relation target, this is shown
without a comma accordingly.

The result is a list of songs with all their moods, which appear separated by a comma in the second
column in the table:

170

Users' Manual 5.8 - 1.5. Import and export

Song title Mood
Black Country Rock

19™ Nervous Breakdown
A Maniac Depressive Mamed Laughing Boy

A Place For My Head aggressive

All the Madmen

Bipolar

Bleed It Out

Bleed Like Me

Breaking The Habit

By Myself aggressive

Back To Black dramatic, bittersweet, swinging
China Girl (Bowie) melancholic/dull, cold

Climbing up the Walls

Crawling aggressive

Creep anthemic, elegiac, dramatic, lethargic, melancholic/dull

Digging In The Dirt

1.5.3.5. Export actions for database exports

Mapping the properties of an object for an export into a database takes place exactly like mapping
for an import and all other types of mapping. The only difference is that the export action has to be
specified for the export. This specifies which type of query is to be executed in the database. Three
export actions are available:

The following actions are available in the selection dialog that opens:
e Create new data records in table : New data records are added to the database table. This

action corresponds to an INSERT.

¢ Update existing data records : The data records are identified via an ID in the table. They are
only overwritten if the value has changed. If there is no suitable data record, a new one is
added. This action corresponds to an UPDATE.

e Overwrite table content during export : All data records are first deleted and then written
again. This action corresponds to an DELETE on the entire table followed by an INSERT.

1.5.4. RDF-import and -export

RDF is a standard format for semantic data models. We can use the RDF import and export to
exchange data between the semantic graph database and other applications, and also to transport
data from one i-views semantic network to another.

NOTE Only the RDF/XML representation is supported, N-Triple files cannot be read or
written.

During an RDF export, the entire semantic network is exported into an RDF file. RDF import, in
contrast, is interactive and selective. We can specify at schema level as well as for individual objects

171

Users' Manual 5.8 - 1.5. Import and export

and properties what is supposed to be imported and what not.
Reconciliation from RDF with the existing objects in the semantic network

During import, types and their instances can be identified by means of the following attributes:

rdf:about

RDF-URI-Alias: Allows the assignment of different URIs to a semantic element

rdf:id: For more information, see W3C - RDF Syntax Grammar

¢ i-views Frame-ID: Depending on the settings of the previous export; only applicable if Frame-
ID of the element in source network and target network are identical

If the RDF data originates from the same schema as the network into which it is imported, e.g. from
a backup copy, the RDF import automatically assigns objects and object types by means of their ID.

There are two possibilities/stages for determining the import mapping of RDF data:

¢ Using global settings: The basic settings allow to determine whether schema is allowed to be
changed or not, regardless of the kind of types. Identified objects always are going to be
updated, non-identifiable objects are going to be created.

e Secifying detailed settings manually: When due to external RDF files a type-dependent
correction of the assignment is needed, both the import strategy and the assignment for each
type can be specified manually. Since this manual kind of mapping can be error-prone and
exhaustive for extensive RDF files, it is recommended to prefer the import by using global
settings and adequate RDF-URI assignment.

If the data originates from another source, the default setting of the import is into a separate
subnet. Pay attention that a lossless export and import of metadata structure is not always possible,
especially regarding meta relations.

1.5.4.1. Basic principles

In this section we have a look on the basic principles of RDF and the special cases to be obeyed for
import mapping. For further information about the RDF standard, see: W3C.

For identifying the content within the RDF file and the Knowledge-Builder as well, the RDF-URI is
used. It comprises the base URI (= base URL) and the RDF-ID:

[RDF-URI] = [Base URI] + [RDF-ID]

The Base URI syntax in RDF is constructed by the "xml:base" prefix, like in
"xml:base=http://example.org/". The base "base" is only a namespace for individual domains; the
qualifier "xml" is for readability reasons in terms of XML transportation, which is irrelevant for
import.

172

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax-ID-xml-base
http://www.w3c.org/rdf

Users' Manual 5.8 - 1.5. Import and export

A relative URI in RDF is built up by the syntax "rdf:about". Attribute values are most likely text
between tags, surrounded by the translation layer identified by "xml:lang":

<rdf:prefLabel xml:lang="en"> **Example** </xdf:preflLabel>

Relations will be formed by RDF-entries like "rdf:resource".

RDF-IDs will only be created via import in the Knowledge-Builder if they are
literally written in the RDF file. The RDF-ID is no absolute identifying characteristic!
It is not recommended to set RDF-IDs manually in the RDF file, since duplicate
values can lead to data being mislocated.

NOTE

Global settings

The Knowledge-Builder Base URL is defined in the settings menu ﬁ and it is valid for both
import and export:

Personal System Index configuration

Folder Base URL: hitps://i-views.com/kb#
User Qualifier: v

Systern accounts L.
4 Additional namespaces

Rights Add Remowve

Trigger

Qualifier Mamespace

iirds hittp:/firds.tekom.de/iirds#
schema http://schema.org/

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

“Additional namespaces” is for export only.

Always use a local copy of the network for trying out RDF-Import. If all settings led

NOTE . . .
to a successful import, then make the import on the real instance.

Possible issues

173

Users' Manual 5.8 - 1.5. Import and export

e In most cases when importing external RDF (RDF which didn’t have been created by the
Knowledge-Builder itself out of the same knowledge network), the namespaces possibly won’t
fit. This results into lots of types within separate main types being created in the network.
Therefore we can prepare the import as described at the end of this section.

¢ In RDF, the definition and assignment of properties can lead to creation of many objects in the
network which normally should be formed into an attribute value of some certain object
instead. B Therefore a manual correction of the type assignment in the mapping or an
alternative XML import using XPath expressions (Xpath 1.0) might be needed.

e Don’t choose the option “Identify objects with global URI also by local ID” if the base URL in the
RDF differs from the Knowledge-Builder base URL. Furthermore, some RDF-ID in the RDF file
could be identical by accident with some existing ID in the network, resulting into the object in
the network being overwritten! & Always use the RDF-URI for identification.

e |f your RDF file doesn’t contain a base URL, the file path of the RDF will be used as the base URL
instead. B This can be checked by opening the import dialog first. We then can add the RDF-URI
or RDF-URI-Alias accordingly and then check the assignment again by opening the import dialog
once again.

Preparation before import

Imports can be prepared regarding type assignment in the case that the RDF files contains foreign
base URLs. Because RDF imports can lead to schema changes, it is always recommended to try the
RDF import on a local copy of the knowledge-network before. To do so, we continue as follows:

1. Before importing, first create the scheme manually (object types, attribute types and relation
types).

2. For the types, add the RDF properties by clicking on “Add attribute or relation” :

174

Users' Manual 5.8 - 1.5. Import and export

3 Choose property

- O x
Choose property
rdif
Mame Defined for Supertype
RDF-URI-Alias Instances of Top-level type, Types of Top-level type Attribute
rdf:about Instances of Top-level type, Types of Top-level type Attribute
rdf:ID Instances of Top-level type. Types of Top-level type Attribute
rdf.ID-Prefix

Types of Top-level type Attribute

Concel

e RDF-URI-Alias : Further attribute, if the element is being fed by several RDF with different
URIs rdf:about: Attribute for “rdf:about” rdf:ID: rdf:ID-prefix:**

1. Open import dialog and check import mapping.

2. If the adjustments lead to the intended mapping, start the import and check the result.

1.5.4.2. RDF import

For accessing the RDF import mechanism, go to the global actions settings and choose Tools > RDF >
RDF-Import.

175

Users' Manual 5.8 - 1.5. Import and export

e

Change password

Recently Closed Windows >

Yolume information Tools »
Script Messages Administrator -
RDF » ROF import

Exports » RDF export

Meod »

Dev Service >

A dialog opens for choosing the import file:

‘# RDFimport - O Py

L] Import referenced resources
Ignore HTTP errars
[Identify objects with global URl also by local ID

Mext Cancel

Options:

¢ Import referenced resources: If this option is chosen, all referenced resources specified in the
RDF file are going to be imported additionally.

Be aware that the referenced resource itself can contain further references,
NOTE . L s .
leading to much more data being imported than initially intended.
¢ Ignore HTTP errors: The Knowledge-Builder will return error messages if the RDF namespace
label is missing after the URL; only the namespace http-URL at the top will be considered.

¢ Identify objects with global URI also by local ID: This option only makes sense if the rdf to be
imported is originated from the same knowledge network for which it is intended to be
imported. Importing RDF with only considering the ID can lead to data being overwritten when
the RDF is from another domain and the IDs match accidently. This option does not make sense
when the RDF base URL differs from the knowledge network base URL.

When importing RDF, for every unknown namespace a separate main type will be

NOTE created in the knowledge network. The assignment of RDF content to dedicated

176

Users' Manual 5.8 - 1.5. Import and export

knowledge network types depends on how the information is represented in the
RDF file.

Setting the supertypes

Per default, the RDF-URL (RDF ontology) will be used as supertype assignment. For every type
within the RDF, you can choose the supertype mapping in the semantic network manually if a
different type assignment is needed:

Hierarchy = Schema changes Legend

Search
v W http://localhost/knowledgeGraph# Import | Default (Update or create if not found) -
v ¢ Classes
& city Choose for subelements
& person
w t} Properties Map to:
& citizenOf
v & Instances Open Remowve
v &% Instances of city
g Berlin Details
@ New York Name: Berlin
.ﬁ Instances of person Label [German]: Berlin

Type: Instance

In order to be sure about which supertypes will be created by the import, you can check this in the
“Schema changes” tab. By clicking on “Show in tree”, you can quickly jump to the location of a type
in the hierarchy structure. The “Legend” tab explains the import mapping symbols.

Import options

Options Log

Allow schema changes [] Create folder with imported objects
[] Awvoid duplicate properties (] With relation targets

[] Allow deferred relation creation Transaction

L] Triggers activated () Import in a single transaction

[] Import qualifier/namespaces (®) Use multiple transactions for import

¢ Allow schema changes: Since yon’t want a file to change the schema, it is recommended to
disable this option

¢ Avoid duplicate properties: Because in RDF properties cannot be assigned with an ID, a unique
identification of properties and their values within the knowledge network is not possible when
importing RDF without KRDF. When you want to import a foreign RDF without KRDF, it is
recommended to enable this option.

When transferring RDF between knowledge networks, knowledge network specific attributes
can be identified by means of the enhanced KRDF syntax. This includes properties for view
configuration, REST configuration, attribute values, relation targets, meta-properties on

177

Users' Manual 5.8 - 1.5. Import and export

relations etc. In this second case, it might be needed to disable the option. Pay attention that
KRDF adds the internal frame IDs for instances and properties whereas external IDs have no
impact on identification of such content. The Knowledge-Builder automatically creates unique
frame IDs when new elements are created within the knowledge network — either by an import
or by the user.

¢ Allow deferred relation creation: When importing data from public resources, the attribute
“reference to URL” can be created as a substitute reference for (temporarily unavailable)
dependencies. The attribute then can be used for re-identification in deferred imports. This
might be useful when empty parts including URL without type definition exist within the RDF
file.

e Triggers activated: Normally, triggers are not activated during RDF import. If you nevertheless
wish triggers being activated, enable this option.

¢ Import qualifier/namespace: This option only makes sense when re-importing RDF that has
been previously created out of the same network. If you import a RDF with a foreign
namespace, skip this option.

Log options
¢ Create folder with imported objects:: This option allows you to inspect the imported objects

within a folder that will be created in the working folder.

e With relation targets: When the RDF file contains new objects with relations to targets that
already exist in the knowledge network, the relation targets will be included in the folder of
imported objects.

Transaction options

¢ Import in a single transaction: This is the most common import method.

e Use multiple transactions for import: This option is recommended when the RDF file contains
a huge amount of content or when the connection to the external resource might be weak or
unstable. When an error occurs, the amount of content affected by a rollback will be less due to
the increased import steps in terms of transactions.

If you checked all settings, start the import and check the result.
Alternative: XML import mapping

If the schema in the semantic network is too specific for the existing RDF file or if the RDF file is too
specific or the rdf schema is missing so that it cannot be imported by the import mechanism
correctly, we can use the XML import mapping for specified import. For more information, see
chapter "XML Import Mapping".

Further RDF import/export possibilities

RDF files also can be imported or exported via the REST interface by means of a JavaScript mapping.
In this case, only global options for import are available as specified in the JavaScript API

178

Users' Manual 5.8 - 1.5. Import and export

documentation: Sk.RDFImporter.html.

Exceptions: Within i-views content, URIs are generated automatically for the semantic elements
when being created in the knowledge network.

1.5.4.3. RDF export

Exporting the whole semantic network as RDF

On the global actions menu, select Tools > RDF > RDF export.

Change password

Recently Closed Windows

e W h
Ill

Volurne information Teels

Script Messages Adrninistrator
ROF 5 ROF import
Exports > ROF export
Meod >

Dev Service >

Exporting parts of the network
It is possible to export just a part of the knowledge network, for example:

e Listed elements from an objects list
¢ Elements from within a semantic elements folder

¢ Elements from within a graph editor bookmark
If you wish to export listed elements without collecting them in a folder:

e Select the list elements to be exported. Open the context menu by means of a right click. Then
choose “RDF export”.

For collecting the elements to be exported, there are severely possibilities:

1. Create a semantic network elements folder and add the elements:
1. In your private or working folder, create a semantic network elements folder.

2. Go to the objects list of your choice an add the elements to the folder by dragging &
dropping them. -or- Select the elements in the object list and open the context menu by
means of a right click. Then choose “Store selected elements in folder”.

2. Right-click on the semantic network elements folder and choose “RDF export”.

179

http://documentation.i-views.com/{ivews-version}/javascript-api/$k.RDFImporter.html

Users' Manual 5.8 - 1.5. Import and export

If you wish to put all selected list elements into a semantic network elements folder:
1. Open the context menu by means of a right click. Then choose “Copy semantic elements to
new folder”.
2. Right-click on the semantic network elements folder and choose “RDF export”.

If you have already created a bookmark of a graph editor view , you simply can export them: Right-
click on the bookmark and choose “RDF export”.

Note that only the content of the selection (of the folder or bookmark) will be exported. In terms of
an object, this will be the cluster containing the attributes and the relation halves directly attached
to the contained object only.

When no base URL is specified in the global settings of the Knowledge-Builder, the

NOTE
path name of the RDF export file will be used as base URL instead.

RDF Exporting settings

File: [

Base URL: https://i-views.com/kb#

Cualifier: v
Syntax IDs
Use QWL () Local IDs (rdf:ID)
Use KRDI (® Use full URLs (rdf:about)
Create attributes for generated URLs and [Ds
9
Scope

[] De net use stered URLs and IDs
[Export scherma only

Export labels Frame-IDs

Export meta properties Use frame URLs (krdffrarﬂé::i

Export extensions Export Frame-1Ds of types and chjects

Enhanced comments [] Export Frame-IDs of attributes and relations
Syntax

e Use OWL: Since OWL (web ontology language) allows more options than the conventional RDF
syntax, this option is always recommended except the case that the RDF is going to be reused
for another system which does not accept OWL.

e Use KRDF: The KRDF syntax is i-views specific. It allows more enhanced constructions or
representations compared to RDF or OWL like the following:

o Instances that have several supertypes

180

Users' Manual 5.8 - 1.5. Import and export

o Domains that consist of an intersection of supertypes

o Frame IDs of semantic knowledge network elements

Scope

NOTE The scope options comprise only schema (types) of the whole export

IDs

Export schema only: This is a simplified feature for ensuring only to export schema of the
Knowledge Graph and not Instances.

Export labels: If activated, labels will not be exported as an attribute but in forms of a label
literal with the syntax <label xml:lang="eng”>.

Export meta properties: In terms of official RDF specification, meta properties are out of scope.
Nevertheless, meta properties can be regarded as a construct with statements about
statements, as described in the reification rules of the RDF specification. Therefore, this option
is useful when re-importing into an i-views semantic knowledge network is intended.

Export extensions: This option allows the export of extensions of semantic objects.

Enhanced comments: When enabled, XML comments with real name will be created. The
exported RDF file will contain comments for dividing up into sections for objects, related
objects and referenced schema hereafter, including statements about the relationships from
each individual object to the related object.

Local IDs (rdf:ID): This option only makes sense when re-importing the resulting rdf into the
same knowledge network or into a highly similar knowledge network with the same namespace
and correct IDs. If the target network accidently has existing elements with same ID, the
elements might be overwritten without further recognition.

Use full URLs (rdf:about): This option should be preferred, since the full RDF URL contains the
namespace and thus ensures correct mapping when reimporting the RDF, provided the base
URL of both RDF file and settings being identical.

Create attributes for generated URLs and IDs: The generiertegenerated RDF-IDs/URIs are
stored in the attributes rdf:ID / rdf:about

Do not use stored URLs and IDs: New RDF-IDs/URIs are generated, instead of using the values
stored in the attributes rdf:ID / rdf:about

Frame-IDs

Use frame URLs (krdfframe): This option is only available in combination when used with full
URLs instead of IDs. It provides internal URLs built up by frame IDs of the semantic knowledge
network elements additionally.

Export Frame-IDs of types and objects: Exporting frame IDs only is useful in the case if
duplicating parts of the existing network is intended. Since frame-IDs change in various cases
and differ highly due to their randomized creation, they cannot be used for another knowledge

181

Users' Manual 5.8 - 1.5. Import and export

network.
Frame-IDs do not change when:

¢ Changing the type of an instance
¢ Downloading a network

e Updating a network
Frame-IDs change when:

e Changing relations into single-sided relations
e Another instance of knowledge network is used

¢ Creating objects, even if they will be given identical properties

Export Frame-IDs of attributes and relations: Exports frame-IDs of properties (attributes and
relations) as well. As for exporting frame-IDs of objects and types, this option is useful for (partial)
duplicating networks, but not for reuse into foreign networks

1.5.5. External Index in Elasticsearch

Elasticsearch is an open-source search engine based on Lucene, designed for indexing, searching
and analyzing large volumes of data. Its strength lies primarily in value and full-text searches. In i-
views, it is possible to export data from the semantic network to Elasticsearch using a Mapping. This
creates an external Index that can be used with numerous search functions and options. For more
information, the official website of Elasticsearch can be found here.

1.5.5.1. Creating a data source

To utilize the interface from i-views to Elasticsearch, the first step is to create a new data mapping.
For this purpose, in the working folder, select the 'Elasticsearch' data source using the New
mapping of a data source button, and define a name (see 1.5.1.2). After confirmation, the
configuration view will then open:

182

https://www.elastic.co/

Users' Manual 5.8 - 1.5. Import and export

Elasticsearch

& =music-example
Gow ¥ 00ALS LW
& music-example " music-example

Elasticsearch Options Log Analyzer Settings Registry

= @

+5%X2 S Fitds oc schems)

Field Type Modifiers Mappings

©

s &

| No URL specified

The view can be divided into four areas:

1. Mapping
2. Metadata
3. all defined fields (local schema)

4, later an overview of all fields in Elasticsearch (schema in Elasticsearch)

At first, all necessary metadata for the external index should be specified.

music-example

Elasticsearch Options Log Analyzer Settings Registry

URL

Uzer name: |@

Password: |@

Index

1. (mandatory) The URL on which the external index in Elasticsearch is hosted
2. (optional) A username, if a user is defined
3. (optional) A password, if a user is defined

4. (mandatory) The preferred name of the external index

After filling out all mandatory fields, the local schema can now be defined.

183

Users' Manual 5.8 - 1.5. Import and export

1.5.5.2. Local scheme

The schema, which is initially created locally, determines how the external index will appear on
Elasticsearch. Fields are defined to specify how the data will be stored. The fields represent the
columns of the external index. For each field, a name and data type must be defined as a basic
requirement. This can be done in the following view:

+ Fields {local schema)

e Type Meodifiers Mappings

1. Add Adds a new field with the specified name and data type.

2. Edit Name, data type and modificators can be changed. Analyzers can be set as modificator for
the selected field. These will be explained in a later section (see 1.5.5.9)

3. Delete Deletes all selected fields.
4. **Import fields from data source

o Overrides the local schema with the schema in Elasticsearch.
5. **Export properties to data source

o Uploads the local schema to Elasticsearch.

The local schema, which includes all fields, defines the structure of the external index. An example
of such a schema is as follows:

+ f ‘ Fields (local schema)

Field Type Modifiers Mappings
Artist text

performs on text

plays instrurnents keyword

After defining a new schema, the local schema can be exported to Elasticsearch by using the arrow

down Export properties to data source . This opens the view of fields in Elasticsearch where the
transferred schema is displayed:

@ 67 properties data source

o Type Modifiers
Artist text
performs on text
plays instrurnents keyword

1. Refresh (F5) The schema is reloaded from Elasticsearch.

184

Users' Manual 5.8 - 1.5. Import and export

2. Reset all fields The entire external index is reset. All exported data is deleted. Only the schema
remains intact.

In general, handling fields requires great care, and it’s advisable to make minimal
NOTE or, ideally, no changes to them during operation. Modifying fields while an external

index exists could lead to anomalies. Therefore, significant schema changes should

prompt the recreation of the external index using the eraser Reset all fields .

After creating the desired schema, the next step is to define a mapping.

1.5.5.3. Mapping

The mapping defines which data will ultimately be exported to the external index. To do this, the
data source is selected in the mapping section. Then, step by step, the structure of the mapping can
be defined (see 1.5.1.3). An example of a mapping could look like the following:

O
! music-example (elasticexport music_example)
4 © 1: Instances of Actor
£ 2: Attribute Name Current language
4 " 3: Relation Plays Instrument
4 O 4: Instances of Instrument
£\ 5: Attribute Name Current language
4 /" 6 Relation Role Is Present on Song
4 O 7: Instances of Song
£ 10: Attribute Name Current language
4 /" 8 Relation Is Performer Of
4 © 9 Instances of Album
& 11: Attribute Name Current language

If the local schema has already been created, a selection dialog will pop up for each mapping part,
allowing to choose a field:

185

Users' Manual 5.8 - 1.5. Import and export

.

Please choose

- none - Ll
Artist

performs on

plays instruments

_id -7

Cancel

Here, the currently created part of the mapping can be assigned to a field for export. If - none - is
selected or if there is no local schema yet, an assignment can also be made later on. For this, a part
in the mapping must be selected, and the desired field must be chosen for Map to :

d
=0
vow 8§
' music-example (elasticexport.music_example)
4 @ 1:Instances of Actor

ASLEEOLa RN

2: Attribute Name Current language

Mapping Import Identify Log Options Language Value assignmey
£\ 2: Attribute Name Current language
- Map to: Remove
4 ” 5: Relation Role Is Present on Song
4 © 6 Instances of Song fa e lnstances of Actor MNew...
&\ 9: Attribute Name Current lang Please choose adate or create if not found
4 " 7. Relation Is Performer Of - none - A loortal
Artist =
4 © 8 Instances of Album performs on :
& 10: Attribute Name Current [gn| plays instruments f
id b -
4 " 11; Relation Plays Instrument r
Cancel Appl
4 © 3: Instances of Instrument PPY

After the mapping was defined and assigned to the fields in the local schema, configuring a unique
identification of the objects to be exported is essential for smooth and protracted operation.

1.5.5.4. Identification

For a clear identification, Elasticsearch automatically generates unique IDs for every exported
Object. However, it is advisable to use the existing IDs of the objects in the semantic network to
ensure a unique identification. This establishes a direct connection between the objects in the
semantic network and the entries in the external index, making future operations much easier.

This can be achieved by reimporting the schema from Elasticsearch after exporting the local
schema. This process reveals a new field named "_id" in the local schema, which is generated
automatically by Elasticsearch in order to store unique IDs for every entry in the external index.

+ 4

Fields (local schema)

Field Type Modifiers Mappings
Artist text

performs on text

plays instruments keywoard

_id keyword

186

Users' Manual 5.8 - 1.5. Import and export

The ID field should only be used for mapping unique IDs from the semantic
NOTE network. Mapping other types to this field can significantly affect the functionality
of the external index or even lead to a complete loss of functionality.

Previously, the ID field provided by Elasticsearch was only loaded into the local schema. However, a
new mapping for the ID must be added specifically for the root object of the mapping:

=0
O ASEEECalX

wl music-example (elastif] Sport.music_example) 1 Instances of Actor
A .
@ 1: Instances of Actor Mapping Identify Log Options Experimental
& 2: Attribute Name Current language
_ Type Actor Y
4 " 3:Relation Plays Instrument
4 © 4:Instances of Instrument
& 5: Attribute Name Current lang

% |pdate or create if not found

e
=0

Please choose kport all

4 * 6: Relation Role Is Present on Song

- none - 4]
@ 7:Instances of Song Artist
. . performs on
& 10: Attribute Name Current [an plavs instruments
4 /" 8: Relation Is Performer Of _id M
4 O 9: Instances of Album Cancel

& 11: Attribute Name Current language

The IDs of the objects to be exported from the knowledge network have now been added to the
mapping and assigned to the ID field. Additionally, it should be ensured that the root objects are
also identified by these IDs. When selecting the root object, in the Identify tab under Identify object
using the following mappings, only the previously added ID mapping should be defined. If the root
object is identified by one or more other attributes, these should be deleted and only the ID
mapping should be added. It should look like this:

1: Instances of Actor
Mapping | Identify | Leg Options Experimental
Identify object using the following mappings:
12:1D New attribute mapping

Add

Remove

Ignore mappings with empty values

Compare values
(®) Search exactly equal values (without filters/wildcards)

) Equal

() Case sensitive

During an export, the entries in the external index are now identified through the IDs of the root
objects defined in the mapping. This is crucial for associating objects in the semantic network with
187

Users' Manual 5.8 - 1.5. Import and export

the corresponding entries in the external index and enables additional functions, such as automatic
updating of the external index when data has changed internally (synchronization).

1.5.5.5. Synchronization

In order to keep the external index current and consistant to the semantic network, before the
initial export, automatic synchronization should be activated under the Options tab:

music-example
Elasticsearch | Options | Log Analyzer Settings Registry
Import

() Import in a single transaction
(® Use multiple transactions for import [] Update metrics

Triggers activated

[] Automatic generation of name for nameless objects
Data source

Export-Aktion: Add new index entries

Automatic synchronization

Generate auxiliary index for automatic synchronization

This generates a new field with the name '_dependantIDs' for the external index which is used as an
auxiliary index for keeping data current. In addition to that, a trigger must be configured that
activates when data in the semantic network is changed and also starts the update process:

£ 1 R aGID

i‘ FOLDER Test cases

= MUSIC EXAMPLE H Y
TECHNICAL Trigger

~o Execute script i"'-
* @ Rights Logging

A Trigger Trigaer for test cases

;] Update external index i
» % Registered objects
Cancel

» £} Printing component

Afterwards a configuration view for the trigger will open where the following settings should be
configured:

188

Users' Manual 5.8 - 1.5. Import and export

Mapping music-example Open X Operation parameters:

Primary core element
Query Open X

Possible operation parameters: Apply

[Abort transaction if trigger fails

[Execute while refactoring data Accessed element

[Pert ‘b Primary core element
EIMTOrm a5 Jol

Primary relation target
Update automatically y g

1. Selecting the mapping on which the trigger should be applied on.
2. Selecting the Primary core element parameter.
3. Activating Update automatically.

After the trigger was configured, the external index will now be automatically updated when
internal data is changed accordingly.

1.5.5.6. Import and Export

At this point, an import/export can now take place. The buttons for these actions are located above
the mapping section:

W -
i Asfampai el ic.export. music_example)
4 © 1: Instances of Actor
25 12:1D
£\ 2: Attribute Name Current language

1. Import Data is imported from the external index to the semantic network.
2. Interactive import

3. Export Data is exported from the semantic network to the external index.
4. Move up Moves up the selected part of the mapping

5. Move down Moves down the selected part of the mapping

After exporting data to the external index, the interface between i-views and Elasticsearch provides
a variety of options.

1.5.5.7. Browser tool Elasticvue

The exported data can be viewed using the browser extension Elasticvue. The extension supports
the most popular browsers and can be downloaded from elasticvue.com/.

189

https://elasticvue.com/

Users' Manual 5.8 - 1.5. Import and export

After successful installation, Elasticvue can be opened among the installed extensions. Upon initial
opening, a setup is required where the address, through which the Elasticsearch cluster is running,
is entered under URI. Optionally, a username and password can also be provided.

NOTE The URI must be identical to the URL entered in the mapping.

After the initial setup, a redirection is performed to the dashboard, which will now appear directly
when reopening the extension. The navigation bar of the dashboard looks as follows:

éc\) default cluster = HOME NODES SHARDS |INDICES SEARCH REST SNAPSHOTS UTILITIES ¢

Under default cluster , all existing clusters can be selected, managed, and new clusters can be
created. Additionally, the address of a cluster can be viewed here, which must be entered in the
metadata of the mapping in the Knowledge-Builder. Under Home , many more metadata about all
clusters are displayed. Each cluster consists of multiple nodes. Information along with a resource
overview for each node can be found under Nodes . Each external index can be distributed across
multiple shards, which is displayed under the Shards tab. The most important tab for viewing the
exported data is Indices , where all external indexes are listed. Selecting an index provides a
detailed overview of the exported data:

Search

* X music-example select indices m

bports the query string DSL matches 1 indices

v CUSTOM SEARCH

Filter *current* page. Q &

_index pe _id Lscore _dependantids (_dependanti0s. keyword) Artist plays instrusents
nusic-example doc 10285_207917319 1 ["1D246_310078637"] Till Ottinger Bass SHOW
nusic-example o o3e_ssrrsize 1 [~10383_524350656"] Alexander Meyland Keyboard sHow
sosic-oxample _doc o3e_seEszea 1 [~10341_205327865"] Tobias Hampl citarre SHow
nusic-example _doc 1D343_498670220 1 ["I0342_4g64556"] Stefan Hopf Schlagzeug SHOW
nusic-example doc 10374_480524136 1 ["ID384_358326733", "ID383_524350656", " 1D246_310078637", " I0341_205327805"] Steven uilson [“Gitarre”, "Keyboard”, "Mellotron”, "Bass"] SHOW

lc-oxmple _doc 10300 200792015 1 0 Beth Gibbons SHow
nusic-example _doc 10305 15076133 1 [*104e0_79010641"] Geof £ Barrou Turntable sHow
misic-eample _doc 10306 gs3s3ssse 1 [“I0381_265327885", "10335_269214026"] Adrian Utley [“cttarre", “synthesizer] sHow

tc-exsmple _doc oo ssi72288 1 [*104a5_s14688515"] andy Barlon Progreming sHow

nusic-example _doc 10441_123236959 1 8] Lou Rhodes SHOM

DOWNLOAD AS JSON Rows per page 100 ~ 1100 of 591 > 51

Each row shown represents an exported object from the semantic network in i-views. Since
Elasticsearch stores all data in JSON, individual records can be displayed as JSON under Show or all
data can be downloaded in this format using the Download as JSON button. The overview also
provides the option to search the data using the search field Search , which is based on a simplified
search syntax. For more complex searches, a more intricate query can be defined under Custom
Search using JSON.

Comprehensive documentation for everything related to Elasticsearch, particularly helpful for
custom searches, is available on the Elasticsearch website at https://elastic.co/guide/index.html.

190

https://elastic.co/guide/index.html

Users' Manual 5.8 - 1.5. Import and export

1.5.5.8. Queries and facets

To make effective use of the external index, Elasticsearch queries need to be configured. Using
these queries, Elasticsearch’s search functions and options can be employed to search through the
exported data and retrieve relevant results. To configure such a query, it must be created in the
working folder. A configuration view will then appear:

Mapping
Mapping .

Parameters

£ elastic_query

Add Remove
Fields

Field Parameters Facets Cause Highlight

Add Facet Remove Facet Refresh

Settings

[Restrict result set size Hits: [Minimal Elasticsearch Score

The configuration view is divided into four sections:

1. Data source Here it is defined for which mapping the query should be provided. Again, the
mapping must be registered first before it can be selected.

2. Parameters In this section, the parameters to be used for the query are defined. Additionally, the
search logic, which plays a crucial role in the query, is established here. To define logic for the query,
search criteria must be added:

191

Users' Manual 5.8 - 1.5. Import and export

Parameters

£ elastic_query

x

Choose
combination ~
Existance
Fulltext

Fuzzy
Range
Term e

Cancel

Remove

The selection offers the following options:

e Range — A match occurs when the value of a field falls within the specified range.

e Existance — A match occurs when the value of a field exists.

Combination — Combines individual search criteria into a consolidated logic.

Term — A match occurs when the value of a field is identical to the given value.

e Fuzzy — A match occurs when an indexed expression is similar to the provided expression
(tolerant to swapped, modified, missing, and extra characters).

Fulltext — A match occurs when the specified expression is found in another using full-text
search.

Depending on the selected search criterion, there are various settings in the configuration view.

With a few exceptions, these are similar, so the key settings can be demonstrated using the example
of the range criterion:

192

Users' Manual 5.8 - 1.5. Import and export

Range

Field

Parameter 2 v

Parameter < v

Cocur rmust v

[] mandatory

[J Match if no index entry exists

Boost 1.0

1. Here, the field of the external index on which the search criterion is applied is specified.

2. In general, this is where parameters for a query can be specified. In the case of the range
criterion, for example, there are two parameters that form the upper and lower bounds, and
the option to change the comparison operators.

3. Here, the logic can be selected based on which the query operates. The following options are
provided: must — Equivalent to logical AND. A match ocurs when all search criteria are satisfied.
Increases the Elasticsearch score for a match. should — Equivalent to logical OR. A match occurs
when at least one criterion is satisfied. Increases the Elasticsearch score for a match. must not —
Opposite of must: A match occurs when the specified value does not satisfy the search
criterion. Filter - Equivalent to must, but the Elasticsearch score remains unaffected.

4. If enabled: Checks whether the specified parameters have already been defined in the system.
If the parameters do not exist yet, the query will not be executed.

5. Returns an empty set if the value does not exist in any entry.

6. Can be used to weight individual search criteria. The entered value (float) serves as a factor that
is applied to matches when calculating the Elasticsearch score. The default value is 1.0. The
higher the value, the more weight the search criterion carries in the Elasticsearch score
calculation.

Exceptions with additional specific configuration options include:

Term:

193

Users' Manual 5.8 - 1.5. Import and export

Term
Parameter
Oeeur rmust >
Field
[] mandatory
Type Equal w
Case sensitive
[] Match if no index entry exists
Boost 1.0

1. Here, a type for the search criterion 'Term' can be selected. Possible types are: Prefix - A match
occurs when the specified search term matches the beginning of an indexed expression
(Example: Search term 'Te' - Match with Term'). Wildcards - Wildcards can be used in the
search, replacing any parts of a term (Example: Search term 'Wild*' = Match with 'Wildcards' |
The asterisk serves as a placeholder for any number of letters). Regular Expression — Makes use
of regular expressions for searching (see 1.3.6.2). Equal — A match occurs only if the specified
search term is identical to the indexed expression.

2. If disabled: A search term is considered identical to an indexed expression even if the

capitalization of any letters is different.

Full text:
Fulltext

Parameter
Qceur must ™

Field
[] mandatory

Type Matching ~

* %k

1. Similar to the search criterion 'Term’, a type can also be selected here: Matching — A match
occurs when the specified expression is identical to the indexed full text. Contains phrase —
A match occurs when the specified expression matches a part of the indexed full text.
Begins with phrase — A match occurs when the indexed full text begins with the specified
expression. Apply query syntax — A pre-defined search syntax by Elasticsearch is applied.
Simple query syntax — A pre-defined simplified search syntax by Elasticsearch is applied. It
offers fewer options than the normal search syntax but is more error-tolerant.

194

Users' Manual 5.8 - 1.5. Import and export

3. Fields After selecting a mapping, the fields of the external index are displayed here. Additional
functions and options can be assigned to each field individually. For this, there is the following
configuration view:

Fields

Field Parameters Facets Cause Highlight
[Anist
l:l performs on
% plays instruments

_id

KOoOoOd
ooOoo

< >

Add Facet Remove Facet Refresh

The fields of the locally created schema are visible here. If a specific field is specified in a query to
be searched with a custom parameter, the name of the parameter is displayed in the corresponding
row under Parameters . For each field, the Cause can be activated. If this is the case, the values of
this field will be displayed in the result table. Highlight can be activated for each field to highlight
matches on this field in the result table. Additionally, a facet can be added to each field, which is
done by selecting the field and using the Add Facet button. Facets can also be removed with
Remove Facet . Facets provide the ability to group and categorize matches using terms or values.
The Refresh button reloads the view.

Facets are not compatible with every data type, such as Text or Search-as-you-
NOTE type, but only for groupable values like integers and floats, keywords, or time and
date values.

4. Settings Additionally, further settings can be made that affect the result set:
Settings

[] Restrict result set size Hits [1 Minimal Elasticsearch Score

1. Restrict result set size If enabled: The results of a query to the external index can be limited by
inserting a limit (integer) into the input field. All results are based on a score assigned by
Elasticsearch, where a higher score indicates greater relevance. Limiting involves listing the
most relevant results in descending order.

2. Minimal Elasticsearch Score If enabled: The results of a query are limited based on the score
assigned by Elasticsearch. The value entered into the input field (float) serves as the threshold.
Only results with a score above this value are considered.

To test the search behavior of a query, the testing environment can be opened to the right of the

195

Users' Manual 5.8 - 1.5. Import and export

settings:

11 Test environment - elastic_query (Elasticsearch Query) - a X

Search string

Parameters

Mame Required Type Value Type of value Set value

searchString (] Fulltext
Reset

Search

.

Name Reason Quality

< >

Query not yet executed

1. Here, a search text can be entered.

2. If parameters are defined during the configuration of queries, they are listed here. It is possible
to set a custom value for each parameter individually using Set value for the test search. The
value can also be cleared with Reset . Once all values are set or a search text is entered, the test
search can be initiated by clicking Search .

3. After executing the test search, all matches of the query are listed here. The Reason column
indicates for each match why the object is considered a match with respect to the query. In the
Quality column, each match is assigned a score. This is displayed as a float, where a value of 1.0
represents the highest score. The score indicates how precisely the search criterion matches
the result compared to all other matches. The higher the score, the more match and relevance.

NOTE It is advisable to refrain from setting values for the parameters and using the
search text simultaneously, as unexpected effects may occur.

1.5.5.9. Settings

In addition to exporting data, metadata for the external index can also be exported. These can be
displayed using Elasticvue:

O music-example yellow open EQT1AX18RAqMKQ2volbQie [] 1/1 o1 7ieke Q| -

After expanding the gear icon, metadata can be viewed under Show info . Among the metadata are
details such as the name of the external index, possible aliases, the exported schema with all
defined fields, as well as settings. Some settings are automatically generated during the creation of
the external index. However, there are also settings that can be manually configured, including
analyzers, for example. More information can be found here.

196

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html

Users' Manual 5.8 - 1.5. Import and export

In the Knowledge-Builder, the settings can be configured in the Elasticsearch mapping under the
Settings tab. The input field can be used to define it in JSON:

music-example

Elasticsearch Options Log Analyzer Settings Registry

Templaté9| Sync. q Send q

1. The input field for the settings. The definition of the settings is done in JSON.

2. This allows inserting a template into the input field, serving as a basis.
3. The settings from Elasticsearch are loaded into the local input field.

4. The defined settings are sent from the input field to the external index.

Both successful setup of the settings and an error display a status under the input
NOTE field. In case of an error, the type of error is also indicated. This could be, for
example, an invalid format or a connection error to the external index.

1.5.5.9.1. Analyzer

Another feature of Elasticsearch is the so-called analyzers. Elasticsearch provides a variety of text
analysis functions that can be formulated in JSON and bound to a field of the external index as an
analyzer. This allows data for individual fields to be adjusted during export and expands search
capabilities. Detailed documentation on Elasticsearch can be found here.

In the Knowledge-Builder, there is a configuration view similar to the one for the settings when
selecting the Analyzer tab. After defining an analyzer und exporting it to the external index, it can
then be selected by editing a field:

197

https://elastic.co/guide/en/elasticsearch/reference/current/analysis.html

Users' Manual 5.8 - 1.5. Import and export

HoeX 2§ Fields (local schema)
Field Type Modifiers Mappings
Artist text
performs on text 9: Attribute Narme Current language, 10: At
plays instruments text 4: Attribute Mame Current language
_id keyword
" X X
Type text 2 Please choose
custom_analyzer A
Mame Artist english
fingerprint
Analyzer french
s german
keyword
pattern
Cancel simple
standard
stop b
Cancel

Next to a few basic preset analyzers, the custom analyzer is shown at the top of the list. If more
than one custom analyzer is defined, it will also be shown at the top. After choosing an analyzer, it
will now be displayed under Modifiers in the local schema.

NOTE Analyzers are only compatible with text fields!

After an analyzer was bound to a field, it will be applied to the external index which extends the
search options for that specific field.

1.5.6. Restore deleted individuals from a back up

The RDF export and import is suitable for restoring deleted individuals from a backup Knowledge
Graph. Proceed as follows to do so:
1. Open the backup Knowledge Graph in the Knowledge Builder

2. Create a new folder and save the individuals to be restored to it. To do so, right-click to open
the context menu in the list view of the individuals to be copied, and select “Copy content to
new folder” while selecting the new folder as the destination.

3. Open the RDF export on the newly created folder using the context menu

4., Specify a file name in the export dialog, select the options “Use URLS (rdf:about)” and “Use
frame URLs (krdfframe:)” and execute the export:

198

Users' Manual 5.8 - 1.5. Import and export

File: CUser Desktophexport.rdfs

Base URL: http://localhost/test

Cualifier: export
Syntax IDs
Use OWL O Local IDs (rdf:ID)
Use KRDI (®) Use full URLs (rdf:about)
[] Create attributes for generated URLs and IDs
Scope

[] De net use stered URLs and IDs
[] Export schema only

Export labels Frame-|Ds

Export meta properties Use frame URLs (krdfframe:}

Export extensicns Export Frame-1Ds of types and chjects

[] Enhanced comments [] Export Frame-IDs of attributes and relations

The option “Use KRDF” results in i-views additionally copying specific content that

NOTE
cannot be mapped in full by means of RDF syntax.

1. Close the Knowledge Builder and open the target graph in the Knowledge Builder

2. Open the RDF import dialog in the main menu under Tools > RDF > RDF import:

-—
Passwort dndern —

Volume-Information Werkzeuge b
Skriptmeldungen Adrninistrator b

ROF » RDF-Import

Exporte 5 ROF-Export

MNeod; b

Dev Service *

1. Select the file and press “Next”:

199

Users' Manual 5.8 - 1.5. Import and export

URL: file:/ ¥/ CafUser/Desktop/export.rdfs

[] Referenzierte Resourcen importieren
HTTP-Fehler ignorieren
[] Objekte mit globaler URI auch durch lokale ID identifizieren

Weiter

Abbrechen

1. Deactivate the option “Allow changes to the schema” in the selection dialog, and activate

“Create folder with imported objects”:

Hierarchy = 5chema changes Legend

Search
v I http://dbpedia.org/ontology 2
i Classes
i Properties
% Instances
v 1 httpy//localhost/test®
i Classes
i Properties
2 Instances
~v I http://purl.org/dc/elements/1,12
i Classes
i Properties
& Instances
wv W1 httpy//purl.orgfontology/mod
i Classes
i Properties
& Instances
v 1 httpy//wwwintelligent-views.de/kinfinity/ component/pri
¢ Classes
¢ Properties
% Instances v
£ >
Options Log
[] Allow scherma changes Lreate folder with imported objects
[Awoid duplicate properties [] With relation targets
[Allow deferred relation creation TeresTen
[] Triggers activated (O Import in a single transaction
[] Import qualifier/namespaces (®) Use multiple transactions for import

1. Execute import

2. Check the restored individuals

Import

Cancel

200

Users' Manual 5.8 - 1.5. Import and export

1.5.7. Transport selected schema

The Admin tool can be used to transfer the entire schema from one Knowledge Graph to another
via RDF export and import. However, if you only want to transfer selected types, you should
consider using the “Copy schema to folder” function, which is available for all types via the context
menu. This function creates a reference to the selected type together with all other (property)
types that are required to create the selected type or objects of this type in the target graph.

Once you have collected all required information in a folder, you can export this and import it into
the target Knowledge Graph in the same way as described in the previous chapter. However, the
“Allow changes to schema” option should be deactivated in this case.

201

	Users' Manual 5.8
	Table of contents
	1. Knowledge-Builder
	1.1. Basics
	1.1.1. The Knowledge Builder application
	1.1.2. Building blocks
	1.1.3. Type hierarchy - Inheritance
	1.1.4. Create and edit objects
	1.1.5. Graph editor

	1.2. Definition of schema / model
	1.2.1. Define types
	1.2.2. Relation types and attribute types
	1.2.3. Model changes
	1.2.4. Representation of schema in the graph editor
	1.2.5. Metamodeling and advanced constructs
	1.2.6. Indexing

	1.3. Searches / Queries
	1.3.1. Structured queries
	1.3.2. Simple Search / Fulltext search
	1.3.3. Search pipeline
	1.3.4. Model "Hit"
	1.3.5. Search in the Knowledge Builder
	1.3.6. Special cases

	1.4. Folder and registration
	1.4.1. Registration
	1.4.2. Move, copy, delete
	1.4.3. Folder settings

	1.5. Import and export
	1.5.1. Mapping of data sources
	1.5.2. Attribute types and formats
	1.5.3. Configuration of the export
	1.5.4. RDF-import and -export
	1.5.5. External Index in Elasticsearch
	1.5.6. Restore deleted individuals from a back up
	1.5.7. Transport selected schema

