
Technical Handbook 5.8

Table of contents

1. Knowledge-Builder . 1

1.1. Global actions and settings . 1

1.1.1. Global context menu . 1

1.1.2. Personal settings. 5

1.1.3. System settings . 17

1.1.4. Index configuration. 33

1.1.5. Configuration file kb.ini . 39

1.2. Access rights and triggers . 41

1.2.1. Checking of access right . 41

1.2.2. Trigger . 55

1.2.3. Filter types. 67

1.2.4. Operation parameters . 76

1.2.5. Operations. 86

1.2.6. Testbench . 92

1.3. View Configuration . 97

1.3.1. Concept . 98

1.3.2. Menus . 105

1.3.3. Actions. 108

1.3.4. View configuration elements. 136

1.3.5. Knowledge Builder configuration . 187

1.3.6. Style . 193

1.3.7. Detector system for determining the view configuration . 196

1.4. JavaScript API . 199

1.4.1. Introduction . 199

1.4.2. Examples . 203

1.4.3. Modules . 221

1.4.4. Editor and debugger. 223

1.4.5. API extensions. 227

1.5. REST services. 230

1.5.1. Configuration . 230

1.5.2. Services . 230

1.5.3. Resources . 231

1.5.4. CORS . 243

1.5.5. OpenAPI documentation . 244

1.6. Reports and printing. 249

1.6.1. Create print templates . 249

1.6.2. Create print templates for lists . 257

1.6.3. Document format conversion with OpenOffice/LibreOffice . 259

1.7. Tagging . 261

1.7.1. Configuration . 261

1.7.2. View configuration . 268

1.7.3. Tagging by Script. 270

1.7.4. Required software . 270

1.8. Development support . 271

1.8.1. Dev tools . 271

1.8.2. Dev service . 271

1.9. KB plugins and components . 272

1.9.1. Units component . 272

1.9.2. Custom components . 273

1.10. External Index . 299

1.10.1. Application Areas . 299

2. Admin Tool . 300

2.1. Admin tool configuration . 300

2.2. Launch window. 302

2.2.1. Server . 302

2.2.2. Knowledge Graph . 302

2.2.3. Administrate, New and Start . 302

2.2.4. About. 303

2.3. Create a new Knowledge Graph . 305

2.3.1. Server . 305

2.3.2. New Knowledge Graph. 305

2.3.3. Server password . 306

2.3.4. License. 306

2.3.5. User name. 306

2.3.6. Password (user) . 306

2.3.7. Ok and Cancel . 306

2.4. Server administration. 307

2.4.1. Graph overview . 307

2.4.2. Message area . 308

2.4.3. Menu line . 308

2.5. Individual Knowledge Graph administration . 312

2.5.1. User authentication . 312

2.5.2. Individual Knowledge Graph administration window . 312

3. View Configuration Mapper . 343

3.1. Introduction . 343

3.2. Interaction patterns . 344

3.2.1. Building blocks of dynamic behavior . 344

3.2.2. Application state. 350

3.2.3. Interaction patterns and recipes . 351

3.3. Configuration . 361

3.3.1. Frontend configuration . 361

3.3.2. View configurations for the View Configuration Mapper . 363

3.3.3. Login configuration. 374

3.3.4. The View Configuration Mapper component. 374

3.3.5. Create a project with the View Configuration Mapper . 377

3.3.6. Modify templates . 377

3.3.7. Operate the frontend . 377

3.4. Actions. 379

3.5. Panels . 380

3.5.1. Activation of panels . 382

3.5.2. Layout panels . 382

3.5.3. View panels . 383

3.5.4. Dialog panels. 383

3.6. Viewconfig elements . 387

3.6.1. General . 387

3.6.2. Alternative. 387

3.6.3. Layout . 388

3.6.4. Flexible view . 390

3.6.5. Hierarchy . 390

3.6.6. Properties . 392

3.6.7. Property. 394

3.6.8. Edit. 399

3.6.9. Form inputs . 401

3.6.10. Table . 404

3.6.11. Search . 411

3.6.12. Graph configuration . 425

3.6.13. Text . 428

3.6.14. Image. 428

3.6.15. Script generated HTML . 429

3.6.16. Script generated view . 430

3.7. Bookmarks and history . 431

3.7.1. Bookmark Resource . 431

3.7.2. Link to Panels . 434

3.7.3. In-app navigation with bookmarks . 437

3.8. Plugins . 438

3.8.1. vcm-plugin-calendar. 438

3.8.2. vcm-plugin-chart. 439

3.8.3. vcm-plugin-html-editor . 443

3.8.4. vcm-plugin-maps . 445

3.8.5. vcm-plugin-markdown . 446

3.8.6. vcm-plugin-timeline . 448

3.8.7. vcm-plugin-page . 450

3.8.8. vcm-plugin-net-navigator. 450

3.9. Special configuration . 454

3.9.1. Switching language of web frontend . 454

3.9.2. Display change history in a web frontend . 454

3.10. Installation . 459

3.10.1. Configuration of web servers . 459

3.11. Extension project . 461

3.11.1. Development environment . 461

3.11.2. Technical details . 461

4. i-views services . 462

4.1. General . 462

4.1.1. Configuration file . 462

4.2. Mediator . 472

4.2.1. General . 472

4.2.2. System requirements . 472

4.2.3. Operating modes . 472

4.2.4. Installation . 478

4.2.5. Operation . 485

4.3. Bridge . 490

4.3.1. General . 490

4.3.2. Common command line parameters . 490

4.3.3. Configuration file "bridge.ini" . 491

4.3.4. REST bridge . 492

4.3.5. KEM bridge . 497

4.3.6. KLoadBalancer . 498

4.4. Job-Client . 502

4.4.1. General . 502

4.4.2. Configuration of the Jobclient . 502

4.5. Batch tool . 513

4.5.1. Common command line parameters . 513

4.5.2. Configuration file options . 513

4.5.3. Commands . 514

4.5.4. Running scripts . 520

4.5.5. Importing or exporting schema. 521

4.5.6. Importing licenses . 522

4.5.7. Upgrading components . 522

4.5.8. Executing a series of commands . 523

4.5.9. Example: Importing per batch tool . 524

4.6. Blob service. 526

4.6.1. Introduction . 526

4.6.2. Configuration . 526

4.6.3. SSL certificates . 528

4.7. Login with OAuth 2.0 . 529

4.7.1. Limitations. 529

4.7.2. Authorization flow . 529

4.7.3. Configuration . 529

4.8. Installation of i-views . 534

4.8.1. General information . 534

4.8.2. Operating Systems . 536

4.8.3. Service configuration . 542

4.8.4. Typical Requirements . 546

5. Appendix . 552

5.1. docker-compose configuration . 552

5.2. kubernetes configuration. 553

1. Knowledge-Builder
This technical handbook comprises all advanced configuration of the i-views Knowledge-Builder,

Admin-Tool, View Configuration Mapper and services as well. Basic fundamentals about how to use

the Knowledge-Builder are described in the User’s Manual.

1.1. Global actions and settings

All actions and settings, which are independant from the Knowledge Graph context, are so-called

"global actions" or "global settings". They are available in the upper right corner of the Knowledge-

Builder as long as the start screen is visible or when an element in the organizer is chosen on the

left side of the Knowledge-Builder:

• Global context menu: Provides actions for administrative purposes

• Global settings: Contains user-changeable settings or overall settings that can be changed by

the administrator only

• New window: Useful for opening a selected item (e. g. import mapping, view configuration…) in

a new dialog window.

Advantages:

◦ View doesn’t get lost when another item is chosen in the main window of the Knowledge

Builder

◦ View is opened without organizer, thus offering more display space

1.1.1. Global context menu

Change password

For the logged in account (non-administrative and administrative), this option provides changing

the backend password for accessing the Knowledge Graph by means of the Knowledge Builder.

Technical Handbook 5.8 - 1. Knowledge-Builder

1

Recently closed windows

Since i-views 5.4, this feature is included as standard in this menu. Recently closed windows can be

reopened again without the need to search for the respective element view.

Tools

The tools actions provide several functionalities:

• Volume information: Shows a dialog window with detailed information about the amount of

types and instances of the Knowledge Graph and the size of the volume in which the

Knowledge Graph is stored.

• Script messages: When using or debugging JavaScript, the script messages dialog can be used

for displaying feedback returned by the $k.log() method in the script itself.

NOTE The visibility of script messages depends on the configuration of the bridge.

• RDF: Provides the options "RDF import" and "RDF export". For more information, see Chapter

1.5.4 "RDF-import and -export".

• Exports: Provides export options concerning JavaScript-API, viewconfig JSON-schema, REST-API

as OpenAPI 2.0 and KScript XML Schema.

Technical Handbook 5.8 - 1.1. Global actions and settings

2

• Dev Service: By means of the DEV Service, the i-views browser extension tool can be used to

open the respective element/view/panel of the viewconfiguration in the Knowledge Builder by

right-clicking onto the relevant part in the browser. The i-views browser extension is an extra

which is available upon request. Pay attention that several Knowledge-Builders cannot use the

DEV Service at the same time if they use the same DEV Service port as specified in the global

settings.

Administrator

• Flush client caches: This action triggers in all tools connected to this graph the invalidation of

caches. In normal operation caches should be invalidated automatically. In rare cases the

invalidation fails, this action can trigger it manually.

• Revoke admin rights: This option allows an administrative user to revoke the own

administrative access in order to test rights management configuration in the Knowledge

Builder. The administrative access can be restored again by deactivating the option.

• Lookup semantic element with ID: For analyzing messages returning a semantic element ID (=

Technical Handbook 5.8 - 1.1. Global actions and settings

3

"frame ID"), the ID can be input here to determine the corresponding semantic element.

• Lookup registry key: Offers search for registered objects within the Knowledge-Builder (e. g.

registered queries, scripts or types).

• Audit log analysis

• Update REST interface: Global available action for updating the REST interface, serves as

substitute when local REST update button is not present (visible) at the moment.

• Rebuild view configurations: Global available action for updating the viewconfiguration, serves

as substitute when the local viewconfiguration update button is not present at the

moment.

• Edit configured editors: If detail editors are configured as a view for elements of the Knowledge

Graph, they can be administered here in one space.

• Tool window: Provides an overall avalilable tools menu for often needed actions. This comes in

handy when many windows are opened at the same time:

About

Recalls information about configuration, licensing and components of the Knowledge Graph as

available in the login window.

Exit

Exits the Knowledge Builder.

Technical Handbook 5.8 - 1.1. Global actions and settings

4

1.1.2. Personal settings

Personal settings are available and adjustable for the logged in Knowledge Builder user exclusively.

The options are described in the following subchapters in detail.

1.1.2.1. Folder

• Show folder elements in the tree: Determines whether the content of the folder is displayed as

subnode in the folder tree. This option can be useful to improve clarity of the tree in case of

many folder sub elements.

Technical Handbook 5.8 - 1.1. Global actions and settings

5

• Folders hide siblings Should all siblings folders become invisible while a folder is opened.

• Size of the query result folder: Number of search result sets of the structured queries that have

been recently executed within the KB. The search result set will then be listed within FOLDER >

Query results. A search result set entry consists of the timestamped search result list,

containing the found semantic elements which can be display in the graph, including their

causes. Reducing the size will take effect when executing the next query.

• Continue query when navigating to another folder

• Show folders also on upper level that are sorted into subfolders

• Show registered objects without public ID

1.1.2.2. Windows

The windows settings determines the behaviour of the Knowledge Builder itself and its dialog

windows.

• Center windows: New windows will always be opened in a centered position.

• Keep window positions: Reopens the same view in a window with the same window position.

• Cascade windows: Stacks all windows of the same type in a cascading manner so that all their

titles can be seen at once.

• Bring existing window in front, do not open new window: Reuses windows if they are already

open, preventing the increase of opened windows for clarity reasons.

• Window color for this session: If several Knowledge Builder are opened at once, this option

helps to distinguish between the different Knowledge Graphs by setting a temporary color of

the window frames per Knowledge Builder per session:

• Open new windows for this session always on screen of primary window: If several screens

are used, a new window always is opened on the main screen.

• Show information about volume and server in the window title: For distinguishing between

the windows of different Knowledge Graphs from different Knowledge Builder, the Knowledge

Graph name and the server will be shown in the title of all opened windows. Serves for the

same purpose of clarity like setting the window color.

Technical Handbook 5.8 - 1.1. Global actions and settings

6

1.1.2.3. Editors

• Group starting at […] items: This option leads to properties of the same type being bundled

into a dropdown accordion if the given number is reached.

• Remember and restore last selected tab: Allows the detail editors being displayed with the

same tab selected as in a previous access during the session.

• Write back changes immediately: This option takes effect on the backend (Knowledge Builder)

only. When activated, element properties are written to the Knowlede Graph immediately in

order to validate them against schema rules first before applying the changes. If disabled,

properties can be edited and the changes are written to the graph using the additional "Apply"

button, which is displayed at the bottom of the editor view. For the web frontend, (buttons

with) actions of the action type "validate" and "save" serve this purpose.

• Type selection switch from tabs (top) to list (left) after […]: When the relation target selection

dialog is openend due to editing a relation, the relation targets are not shown separated by

tabs on the top edge but in forms of categories listed on the left side of the dialog.

1.1.2.4. Structured query

Technical Handbook 5.8 - 1.1. Global actions and settings

7

• Show condition labels: If activated, query labels for properties are shown additionally to the

symbol:

• Show condition labels inlined if possible: If enabled, relation targets and attribute values are

shown inline to their property types:

Technical Handbook 5.8 - 1.1. Global actions and settings

8

• Always show finder numbers: Within structured queries, all elements are identified by means

of an inherent numbering system. However, the numbers only will be shown when needed for

building the query or when adding result columns to the results list. When this option is

enabled, the numbering will keep persistent:

• Show access rights checks: Shows additionally the associated access rights concerning the

particular property.

Technical Handbook 5.8 - 1.1. Global actions and settings

9

• Show message for the search definition: This option enables messages for comments,

warnnigs and errors to be shown at the right side legend of the structured query.

NOTE
Besides that, the local option "Suppress warning" is available via context menu for

each query label.

Technical Handbook 5.8 - 1.1. Global actions and settings

10

1.1.2.5. Graph

The graph options are for the graph editor within the Knowledge Builder. For settings about the

graph in forms of the net navigator component, see chapter 3 "vcm-plugin-net-navigator".

• Show bubble help with details Shows further information about the element on mouse-over:

• Auto hide nodes

• Auto layout nodes

• Node alignment

• Use Cairo library to display the graph

Technical Handbook 5.8 - 1.1. Global actions and settings

11

• max. nodes: As in the graph editor itself, this option determines the maximum amount of

nodes that can be expanded or retracted via a relation without opening a dialog for selecting

the relation targets.

• max. label length: Defines the number of letter a node label can have without being shortened

by an ellipsis ("…")

• View: Determines the icon size of the nodes.

• Legend configuration: Normally the graph editor legend only shows either the types which

elements are displayed momentarily in the graph editor or types that have been added

momentarily to the legende via the context menu. If certain types always have to be shown

initially, thay can be specified here.

1.1.2.6. Search field

For the Knowledge Builder search, queries from within the working folder or the private folder can

be added by drag&drop. To administer the added queries (e. g. removing them), the search field

settings are used. Added queries are available in a dropdown selection when clicking on the query-

button next to the search field.

1.1.2.7. Font size

This option allows the permanent setting of the font size within the Knowledge Builder. When

changing the font size, an example text is shown. Changes only take effect after restart of the

Knowledge Builder.

Technical Handbook 5.8 - 1.1. Global actions and settings

12

1.1.2.8. View configuration

The view configuration options take effect on the behaviour of the Knowledge Builder view

configurations exclusively. Options for the view configuration of the web frontend are configured by

means of the viewconfiguration mapper settings.

• Hard coded / Configured: For the folder structure within the organizer of the Knowledge

Builder, type-dependent view configurations can be specified. The options "Hard coded" and

"Configured" therefore allow switching between the default Knowledge Builder view

configuration and the customized view configuration. If certain types have a customized view

configuration which are defined for both the detail view and the folder structure, the folder

structure view will have priority when the view confguration is switched to "Configured".

• Beginner/Expert: Concerning the viewconfiguration mapper, two kinds of user oriented views

of the viewconfiguration mapper itself can be selected: "Beginner" splits up the configuration

tabs of the detail editors into "Configuration" and "Extended", "Expert" shows all configuration

options at once.

Technical Handbook 5.8 - 1.1. Global actions and settings

13

1.1.2.9. Keyboard shortcuts

For the ease of use, custom shortcuts can be defined for the actions as shown in the following

image:

Technical Handbook 5.8 - 1.1. Global actions and settings

14

Often there are also inherent shortcuts available. If applicable, these shortcuts are described in

forms of a Shortcut note in the relevant chapter.

An overall principle of shortcuts within the Knowledge Builder: The combination of Ctrl + Click

removes items (e. g. elements from structured queries or proerties in the detail editor) or makes

them draggable (e. g. drag&drop of semantic elements from the Knowledge Builder into the graph

editor).

Within JavaScripts, elements assigned by internal names can be invoked with Ctrl + o (provided a

registry key or a configuration name has been given to the element so that it actually can be

referenced). Eqiuvalent terms within one script can be browsed easily by marking the term through

double-clicking it and then by pressing Ctrl + g.

1.1.2.10. Timeline

The timeline feature allows configuring a timeline view for the Knowledge Builder by means of a

structured query. For the timeline, several element types can be chosen as a dimension for the

timeline for their instances to be displayed according date values, flexible time values or time

intervals. The timeline view then needs to be configured as view configuration for the Knowledge

Builder to be applicable.

Technical Handbook 5.8 - 1.1. Global actions and settings

15

1.1.2.11. Dev tools

These options allow the setting of the port used for Dev services and if the Dev service is to be

started automatically when the Knowledge Builder is started. When using several Knowledge

Builder at the same time, the corresponding Dev services only can be used in parallel when they are

given different ports.

Technical Handbook 5.8 - 1.1. Global actions and settings

16

1.1.3. System settings

The system settings are available for accounts with administrator status only and allow overall

configuration of system-wide settings for the Knowledge Builder.

1.1.3.1. Folder

The folder options are for optimizing the list views according specific use cases when dealing with

large amount of data - thus improving usability by limiting additional features which otherwise are

active by standard.

• Maximum size of query result: Determines the maximum amount of hits that will be processed

and rendered for query results.

• Maximum number of results in objects lists: Determines the maximum amount of objects that

is displayable for an object list. If the amount exceeds the limit, a message will be shown

accordingly in the objects list instead of the listed objects.

• Free assortment up to number of results: The entries of object lists can be assorted by means

of the column header actions and filtering options. For large amounts of objects, the

assortment can be disabled to prevent unnecessary load.

Technical Handbook 5.8 - 1.1. Global actions and settings

17

• Auto query up to object count: Determines the amount of list objects up to which the table

queries the list results automatically. If the number of objects to be shown in the object list

exceeds the given limit, the query for rendering the table will only start if the search button is

clicked by the user. Additionally, for object lists within the KB everey table configuration has

separate options for activating the query automatically (tab "KB").

1.1.3.2. User

This option category administers the backend users that have access to the Knowledge Graph via

the Knowledge Builder.

• Create: Creates a backend user for the Knowledge Builder.

• Associate: Associates the backend user to a frontend user account object.

• Drop association: Removes the association of the frontend user account object from the

backend user account.

• Change password: Allows changing the own password or resetting the password of another

backend user. Additionally a password change can be enforced for the first/next login.

• Logout: Logs out the selected user.

• Delete: Deletes the selected user. Caution: Deleting the own user is also possible, leading to an

Technical Handbook 5.8 - 1.1. Global actions and settings

18

immediate deletion and logout!

• Rename: Renames the selected user.

• Message: Sends a message to the selected user, similar to sending a message via the

community section on the lower left corner of the Knowledge Builder. If the person is not

available because not logged in, a message can be sent here nevertheless. The message will be

displayed to the user at next login.

• Administrator: Determines if the selected user is an administrator.

NOTE

In order to enable non-administrative access to the Knowledge-Builder, a

dedicated KB folder structure has to be configured in advance which provides

access to the relevant content and functions.

• Password change: Enforces a password change for the selected user at next login.

• Private: Shows the content of the private folder of the selected user account.

• Administrator: Shows the amount of user accounts with administrator status.

• User: Shows the number of user accounts with user status.

• Active: Shows the number of currently logged in users/administrators.

1.1.3.3. System accounts

System accounts are needed for authentication of external services that communicate via TCP/IP

and services that communicate via the REST interface (e. g. bridges for webfrontend).

• Create: Creates a system account; after specifying a name, a token will be shown only once for

copying it for further usage (e. g. for bridge *.ini files).

• Update token: Updates a token and shows a suggestion once. Here a token value can also be

Technical Handbook 5.8 - 1.1. Global actions and settings

19

entered manually.

• Test token: Allows testing if a token string is valid.

• Delete: Deletes the selected system account.

• Refresh: Refreshes the current system account view.

• Show user accounts: Shows the user accounts additionally to the system accounts.

1.1.3.4. Rights

Technical Handbook 5.8 - 1.1. Global actions and settings

20

• Access rights activated: The access rights system and its access rights checks are only activated

if this option is enabled. The access rights system comprises the access check of web-frontend

users.

• User type: Specifies which type is used for access rights checks. Objects of this type can be

assigned as account-instances to a backend users in the administration section "User".

1.1.3.5. Trigger

This option enables/disables the trigger system.

NOTE
The trigger section only is available within the TECHNICAL part when triggers are

activeted via this option in the global settings.

Technical Handbook 5.8 - 1.1. Global actions and settings

21

1.1.3.6. Top types

Top types can be administered her. Each top type comprises one separate Knowledge Graph within

the Knowledge Builder, shown as separate entry in the organizer of the Knowledge Builder.

By standard, properties are handled separately for each top typ and isolated from one top type to

another, but can be accesed by queries nevertheless.

Each top typ is a subtype of the overall "Top-level type" from the core Knowledge Graph.

Technical Handbook 5.8 - 1.1. Global actions and settings

22

1.1.3.7. Languages

When the value of a given translated attribute is not present in the sessions' current language, this

list defines the order of languages which are to be used as replacement values.

Technical Handbook 5.8 - 1.1. Global actions and settings

23

1.1.3.8. Locking

Technical Handbook 5.8 - 1.1. Global actions and settings

24

1.1.3.9. Print configuration

Technical Handbook 5.8 - 1.1. Global actions and settings

25

1.1.3.10. Registry

Technical Handbook 5.8 - 1.1. Global actions and settings

26

Strict conventions for registry keys: The conventions apply when creating a registry key and e. g. in

case of an XML schema transfer between volumes by means of the admin tool. The strict

conventions are as follows:

• All 26 letters of the ASCII code table (small letters and capital letters as well)

• Signs period ".", underscore "_" and dash "-"

• The first sign should be a letter

NOTE

The conventions are case insensitive , which means that a distinction of registry

keys by small letters and capital letters is not possible. Example:

"myVolume.myQuery1" and "myVolume.MYQuery1" cannot be used within the

same volume. This also applies to the XML schema transfer from one volume to

another.

Apply to internal names: If enabled, the conventions also apply to internal names.

1.1.3.11. RDF

The RDF options comprise the settings for base URL, qualifier and additional namespaces that come

into account for identification entry nodes when importing or exporting RDF files.

Technical Handbook 5.8 - 1.1. Global actions and settings

27

NOTE
The additional namespaces are for export only. For more information, see chapter

"RDF-import and -export" of the users' manual.

1.1.3.12. Certificate authorities

Technical Handbook 5.8 - 1.1. Global actions and settings

28

1.1.3.13. SMTP

Technical Handbook 5.8 - 1.1. Global actions and settings

29

1.1.3.14. LDAP authentication

Technical Handbook 5.8 - 1.1. Global actions and settings

30

1.1.3.15. Maintenance

Technical Handbook 5.8 - 1.1. Global actions and settings

31

1.1.3.16. Client performance analysis

Technical Handbook 5.8 - 1.1. Global actions and settings

32

1.1.4. Index configuration

The configuration of indexes for semantic elements within the Knowledge Builder can be specified

here. Furthermore, already configured indexers can be applied for each kind of element via the

detail editor of the respective element type.

Index filter

Index filters are needed for fulltext query indexes, comprising the settings for tokenizing, filtering

and splitting query strings.

Technical Handbook 5.8 - 1.1. Global actions and settings

33

Indexes

• Metrics: The metrics comprise classified entries about the amount of objects, leading to

performance improvement in queries. Dependent from the extent of changes within the

Knowledge Graph (creating/removing semantic elements), the metrics have to be synchronized

from time to time.

• System: The system index is reserved for system properties (relation and attributes for core

functionalities); they are persistant and cannot be changed.

• Further indexes: In most cases, these are the pluggable indexes which can be built up according

individual needs.

Technical Handbook 5.8 - 1.1. Global actions and settings

34

1.1.4.1. The index-report

The index-report analyses which indexings are necessary. Comparing this "demand" to the actual

indexings will show missing and unnecessary ones. The index-report analyses structured queries,

search-configurations, view-configurations and scripts. Since scripts are only analysed regarding

their references, it is impossible to determine the usage of the referenced elements.

NOTE

It is possible for structured queries to need rarely used properties because of

inheritance. These properties do not need to be indexed but the structured query

itself will still show a warning.

Where to find the index-report

Admins can find the index-report in the kb settings under "Index configuration". At first you can see

the "simple view". Using the buttons in the top right, you can switch to the "detailed view" and the

settings page.

When opening the index-report it immediatly starts its analysis. It will show which area is currently

being analysed and how it got to which property.

NOTE For larger graphs the analysis may take a while.

1.1.4.1.1. The simple view

Technical Handbook 5.8 - 1.1. Global actions and settings

35

All propertytypes that were scanned by the analysis are listed here. The table shows the name

(Property type), the kind of property type (Type), the domains (Domains of Definition) and the

number of suggested actions (# Actions) consisting of adding indexings (# +) and removing indexings

(# x). A property type can be opened by double clicking its row.

All indexings of a property type can be seen on the right. Suggested changes have a "" or "x" in front

of the index name. "" means that this index should be assigned to this property type and "x" means

that this indexing can be removed as it is unnecessary. Using the corresponding buttons on the

right, selected indexings can be added or removed.

In the settings page you can change when an index should actually be added when clicking the "+".

Below this list, you can see where the analysis found missing indexings of a selected index that is

not already assigned to the property type (meaning those with a "+" in front). Upon selecting one of

these usages the details of how the analysis got there is shown below and every step can be

opened by double clicking it.

The list of propertytypes can be filtered using the input field below. The filter applies to the name of

the property type, the type and the defined domains. You can also use +/x/# a number to filter for

propertytypes with that number of suggestions to add or remove indices or total suggestions.

If no action should be suggested for an index, property type or usage, you can create an exception

by clicking the "No entry" (-) button.

Creating an exception

Exceptions define which Property types, Idexes or referencing elements should be ignored by the

analysis.

Technical Handbook 5.8 - 1.1. Global actions and settings

36

When creating an exception you can choose wether the usage of the property type or index should

be ignored. Additionally you can choose specific steps. A few examples for exceptions are: "No

indexings for queries in script xyz", "Ignore property abc", "Ignore index ijk" or all at once "in script

xyz ignore index ijk for property abc". Exceptions can also prevent suggestions are made for specific

property types. Additionally suggestions for a whole index can be prevented or a property type and

index can be removed from the list of suggestions. Obviously there are no steps for unused

indexings.

Every exception needs a comment describing its intention.

Exceptions also prevent the check wether an indexing is necessary.

1.1.4.1.2. The detailed view

This view answers why a specific index is suggested for a property. Instead of properties the main

table contains the individual index requests. Additionally it has new columns: The number of causes

because of which an index is suggested, milliseconds (as measured by the performance analysis)

and a tag that can have the values "Used in query" (used in registered query), "Used in script" (used

in registered script), "Used in Mapping" (used in registered tablemapping), "View configuration"

(used in the view configuration) and Performance (used in the performance analysis). If a property

was found via a starting point, that was configured in the options, the tag is "Query", "Script" or

"Identifier" depending on the type of the starting point. "Identifier" is used for RDF-

Systemproperties as well.

All references regarding a request are listed under "Reasons" on the right.

All suggested actions of a request are listed in the bottom left.

Technical Handbook 5.8 - 1.1. Global actions and settings

37

Unnecessary indexings are listed in the bottom right under "General actions".

In both of the tables of actions you can select one or more actions and execute them via the "Play"-

button above the tables.

1.1.4.1.3. Settings

The settings can be used to configure what gets analysed and what is suggested as a result.

Manually configuring startingpoints

If there are scripts that are only used via the batch-tool but should still use indexes, they can be

added as a startingpoint for the analysis: On the left side under "Enter internal name or registry-

key" you can specify single or even multiple elements using wildcards (eg. "all*base*"). Additionally

you need to specify if the startingpoint is a script, query or type. Once the definition is done the

startingpoint can be created by pressing the "Add startingpoint" button. Obsolete startingpoints can

be selected and then deleted by clicking the "Remove selected startingpoint" button.

Exceptions

The exceptions that were created in the simple view can be managed in the bottom right. They can

be removed ("Remove exception") or the configured property ("Edit property conept") or usage

("Edit usage") can be shown.

Miscellaneous Settings

Technical Handbook 5.8 - 1.1. Global actions and settings

38

Setting Description

Additionally show all indexed properties

(Default: off)

Additionaly shows properties without suggested

actions.This setting will only take effect after the

next scan.

Rescan after changes (Default: off) Automatically start a new scan after executing a

suggested action.

Scan view-configuration(Default: on) Analyses the view configuration if present.

Scan registered queries(Default: on) If turned off, registered queries are not scanned.

Scan registered mappings(Default: on) If turned off, registered mappings are not

scanned.

Scan registered scripts(Default: on) If turned off, registered scripts are not scanned.

Include performance-analysis(Default: on) If measurements of the performance-analysis

are available (see client-analysis), they will be

used as startingpoints.

Only show properties with analysed

performance (Default: off)

If no measurements are available for a property,

ignore its usages.(Can only be activated if the

performance-analysis is included.)

Check all properties (Default: on) Also takes indexings into account, that were not

scanned by the index-report, regarding their

necessity.

Maximal number of targets for a collection-

index(Default: 10)

Relations with few targets should have a specific

index. Usually this affects relations to catalog-

values. This integer defines the threshold for

such indexes.

Minimal occurances to index(Default: 50) Properties with few occurances don’t need an

index. This integer defines the threshold for

suggesting an index.

When adding an index:(Default: Synchronize

immedietly)

Defines what actually happens when adding a

indexing.Options: * Synchronize immedietly *

Mark synchronisation required * Add sync job

Ignore properties of system-components

(Default: on)

Indicates wether to scan properties of system-

components aswell.Only visible to developers.

Prevent removal of indices for

uniqueness(Default: on)

Prevents the removal of indices for

uniqueness.Only visible to developers.

1.1.5. Configuration file kb.ini

As for every i-views product, an *.ini file can be created for the Knowledge Builder. In the following,

exemplary excerpts for the Knowledge Builder configuration file are listed:

Technical Handbook 5.8 - 1.1. Global actions and settings

39

; pre-fill corresponding fields in the login window
host=demo-server.empolis.com
user=peter
volume=demo
; configure logging if needed
logTargets=kb-log
; activate and configure file caching
; file caching speeds up data loading in subsequent sessions
cacheDir=cache
; maxCacheSize sets the size limit of the file cache (in MB)
; default is 50 (MB)
maxCacheSize=200
; the language parameter forces the kb to use the given language
; without this setting, the language is specified by the OS
; possible values are "eng" und "ger"
; fallback is "ger" if the OS language is unsupported
;language=eng

[kb-log]
type=file
file=kb.log

Technical Handbook 5.8 - 1.1. Global actions and settings

40

1.2. Access rights and triggers

This attribute handles the checking of access rights and triggers:

• Access rights regulate which operations on the Knowledge Graph may be executed be specific

user groups. They are defined in the rights system in i-views. The rights system is located in the

section Technical > Rights .

• Triggers are automatic operations that are triggered on a certain event and execute the

corresponding actions. The Trigger section is located under Technical > Trigger .

The rights system and triggers are initially not activated in a newly created Knowledge Graph. These

areas have to be activated before they can be used.

The procedure for creating rights and triggers is basically identical. Filters are required that check if

certain conditions are met or not. If these conditions are met, the rights system grants or denies

access, and a log entry is made or a script is executed for triggers. In the rights system, the

arrangement of filters is referred to as rights tree while that for triggers is called trigger tree.

NOTE

For straight-on success in creating adequate query filter conditions based upon the

operation, please check the table in chapter 1.2.5 "Operations". In principle, the

operations filter work in an "AND" logic, leading to the requirement that all

conditions of an operation filter and all conditions of the subcomponents of the

operation filter have to be fulfilled. Therefore, it is recommended to choose the

most precise condition.

1.2.1. Checking of access right

We use rights to regulate user access to the data in the Knowledge Graph. The two basic objectives

enabled by the rights system are:

• Protection of confidential data: Users or user groups may only see data that they are allowed

to read. This ensures that secrecy and confidentiality restrictions are applied.

• Work-specific overview: Certain users only need a section of the data of a model for their work

with the system. The rights system enables them to display only those elements that they need

in order to complete their tasks.

The i-views rights system is very flexible. It can be configured precisely for different requirements of

a project. By defining rules in a rights tree, consisting of individual filters and deciders, a graph-

specific configuration of the rights system is created. There are many options for compiling these

rules for the rights system, which generates even more differentiated rights. It is not possible to list

all possible combinations of configurations; this requires consulting in individual cases.

How does the rights system work?

Access rights in the system are always checked when a user executes an operation on the data. The

basic operations are:

Technical Handbook 5.8 - 1.2. Access rights and triggers

41

• Read : An element is supposed to be displayed.

• Modify : An element is supposed to be changed.

• Generate : A new element is supposed to be generated.

• Delete : An element is supposed to be deleted.

If the access right is supposed to be changed in a certain access situation, the Rights tree is

processed until a decision for or against access can be made in this situation. The Rights tree

consists of conditions that are checked against the access situation. To check the conditions, filters

are used which filter the elements of the Knowledge Graph and operations. Deciders are located at

the end of a subtree of filters in the rights tree. These deciders either allow or prohibit access.

In relation to the access situation, aspects are selected which are used as the condition for allowing

or prohibit access. In access situations, the following aspects are often used for the decision:

• The operation (generate, read, delete or modify)

• The element that is supposed to be accessed

• The current user

It is possible that only one aspect of the access situation is selected as a condition but it is also

possible to query a combination of the aspects listed.

Example: "Person A [user] is not allowed to delete [operation] descriptions [element]”.

1.2.1.1. The activation of the rights system

In a newly created Knowledge Graph the rights system is deactivated by default. Before it can be

used, it has to be activated in the settings of the Knowledge Builder.

Instructions for activation of the rights system

1. In the Knowledge Builder, call up the Settings menu and select the System tab. Select the Rights

field there.

2. Place a checkmark in the Rights system activated field.

3. In the User type field, specify the object type whose objects are the users of the rights system.

This is usually the “Person” object type. (Type must not be abstract.)

4. Once you have connected the i-views knowledge portal, enter a user (object of the previously

defined person object type) in the Standard web user field.

Before activation of the rights system, the folder is called Rights (deactivated) . Once the rights

system has been activated, the folder is called Rights . When the rights system is deactivated,

checks of the access rights are no longer performed. However, the rules defined in the rights tree

are retained and used again after renewed activation of the rights system.

NOTE If you access an element from the web front-end without special log-in, the person

Technical Handbook 5.8 - 1.2. Access rights and triggers

42

specified under Standard web user is used. It is common to create a fictitious

person called “anonymous” or “guest” here.

To ensure the rights system also functions in the Knowledge Builder, the user accounts of the

Knowledge Builder must be linked to an object from the Knowledge Graph. The user account can

only be linked to objects of the type for which activation of the rights system was specified in the

user type field.

The link is generally required for using the operation parameter User in query filters, or for using

the access parameter User in structured queries when the rights system or the search is not

executed in an application, but rather in the actual Knowledge Builder.

Instructions for linking Knowledge Builder users to objects of the person type

1. Open the Settings menu in the Knowledge Builder and select the System tab. Select the field

User there.

2. Select the user who is to be linked. Link can be used to link the user to a person object that is

not yet linked to a Knowledge Builder account. The Unlink function results in the Knowledge

Builder account link to the person object is canceled.

NOTE The user currently logged in cannot be linked.

In general, users with administrator rights may perform all operations, regardless of which rights

were defined in the rights system. The definition as administrator is also implemented in the

Settings menu in the User field on the System tab.

1.2.1.2. The rights tree

Traversing the rights tree

The rights tree is comprised of rules that are defined in a tree. The branches of the tree, also

referred to as a subtree, are comprised of the conditions that should be checked. The conditions are

defined in the system as filters that are nested in each other. The system works through the tree

from the top to bottom when the evaluation occurs. When a condition matches the access

situation, then the check continues with the next filter in the subtree. This filter is, in turn, checked.

This is implemented until the end of the subtree, when there is an access right or denial. If a

condition does not match the access situation, then a switchover to the next subtree occurs. When

the system encounters an access right or denial when working through the rights tree, the rights

check ends with this result. The branches (subtrees) of the tree are therefore worked through

successively, and the tree is “traversed“ until a decision can be made.

Filters and deciders are nested in each other in the form of folders, so that a tree construction is

produced that is comprised of different subtrees. A folder can have several subfolders (several

successor filters on one level), which produces branching in the rights tree. Folders that are defined

on one level are worked through successively (from top to bottom).

Structure of the rights tree

Technical Handbook 5.8 - 1.2. Access rights and triggers

43

When creating the rights tree, it is important to group the rules in a sensible way because once a

decision as to whether access is allowed or denied has been made, no further rules are checked.

Hence, exceptions should be defined ahead of global rules.

The two main cases that you have to distinguish are:

• Negative configuration : Everything is allowed at the lowest subtree; denials are defined above

it.

• Positive configuration Everything is prohibited at the bottom, except for what is allowed above.

The order of the subtrees is therefore crucial when creating the rights tree. The order of the

conditions in a subtree in contrast (whether we check the operation first and then the property or

vice versa) can be chosen freely.

You don’t necessarily have to define all filter types to define a subtree of a rights tree. A subtree

consists of at least one filter and one decider. An exception is the last subtree which generally

consists of a decider only, which allows all remaining operations (which have not been prohibited in

the rights tree beforehand) or which prohibits all remaining operations (which have not been

allowed in the rights tree beforehand).

Example: rights tree

This basic example shows a rights tree consisting of a rights tree part and a default decider that

allows everything:

Technical Handbook 5.8 - 1.2. Access rights and triggers

44

In the rights branch, the deletion or modification of the attributes name, duration and publication

date is prohibited. To do this, an operation filter is used that has the operations delete or modify as

the condition. Only these operations are let through by the operation filter. The next filter is property

filter that filters on certain properties. In this case, the attributes Name, Duration and Publication

date are filtered irrespective of the object or property on which these are stored. The last node of

the rights branch is the decider "Forbidden", which prohibits all access operations that match the

two preceding filters. If one of the two conditions does not apply to the access situation, the default

decider "Allowed" is executed.

This simple rights tree would look as follows in i-views:

Checking an operation using the rights tree example:

Technical Handbook 5.8 - 1.2. Access rights and triggers

45

The left side shows the operation to be checked: Person A wants to delete the Description attribute.

The rights tree is depicted on the right side. The check of the condition of the first filter returns a

positive result because Person A wants to execute the operation Delete. In the rights tree, the next

filter of the rights sub-tree is executed. This is the property filter of the attributes, Name, Duration

and Publication date. The check of the filter returns a negative result because the Description is not

one of the filtered properties. Processing of the subtree is terminated. The next subtree of the rights

tree is processed next. This is already the default decider “Allow” which allows everything that is not

explicitly prohibited in the rights tree.

1.2.1.3. Decision maker in the right tree

Deciders are always at the last position of a rights sub-tree. The combination with filters is used to

determine access situations in which access is explicitly allowed or denied. If a decider is reached

while traversing the rights tree, the check of rights is answered with this decision. The operation to

be checked is then either allowed or rejected. The rights tree is then not checked any further.

Symbol Access right Description

Access granted Access is granted in the access situation to be checked.

Access denied Access is not granted in the access situation to be

checked.

In general, there are two different deciders, a positive one called "Access granted" and a negative

one called "Access denied". **

NOTE
Like all labels of the rights tree, "Access granted" and "Access denied" are standard

labels which can be modified if needed.

Instructions for creating a decider

Technical Handbook 5.8 - 1.2. Access rights and triggers

46

1. In the rights tree, choose the position at which you want to create the decider.

2. Use the buttons and to create new deciders as subfolders of the currently selected

folder.

3. Assign a name to the folder.

1.2.1.4. Composing rights

To define rights, filters and deciders are combined in the rights tree. The Filters chapter explains the

different filter types and how they can be used. The deciders Grant access or Deny access each

represent the last node of the subtree of the decision tree. If the decider is reached, this decision

terminates the traversing of the rights tree.

The following functions are available for defining rules in the rights system:

Symbol Function Description

New operations filter A new operation filter is generated.

New query filter A new query filter is generated.

New property filter A new property filter is generated.

New script filter A new script filter is generated.

New lock filter A new lock filter is generated.

New organizing folder A new organizing folder is generated.

Grant access A positive decider that grants access is generated.

Deny access A negative decider that denies access is generated.

Organizing folders can be used to structure rights in a meaningful way. They do not affect the

traversing of the rights tree. Their only purpose is to group large numbers of rights into subtrees of

the rights tree that have related content.

Changing the arrangement of folders in the rights tree

In order to sort the filters and deciders in the rights tree into the right order, right-clicking opens a

context menu:

Technical Handbook 5.8 - 1.2. Access rights and triggers

47

The filter or decider can be renamed, deleted and exported in this context menu, and its position in

the rights tree can be changed. If two folders (filters or deciders) are on the same level, the Upward

or Downward function can be used to shift the folder further to the front or the back in the rights

tree. To the top and To the bottom shifts the folder to the first or last position of the level in the

rights tree accordingly.

If folders are to be nested in each other, meaning the level in the decision tree be changed, this can

be done using Drag&Drop.

Assembly of rights

Assembling filters and deciders in the rights tree creates a large number of possible combinations

for defining rights. By principle, there are 3 different procedures for defining rights:

• Definition of rights for every possible access situation

• Positive configuration

• Negative configuration

Because defining access rights for every possible access situation is a very complicated procedure,

one of the two other means of configuration is generally used. They are explained in the following

two sections.

1.2.1.4.1. Positive configuration of rights

If rights are defined in the rights tree which only allow specific accesses and deny all other accesses

about which nothing is specified, then this is referred to as a positive configuration of the rights

tree. Rules are defined in each subtree of the rights tree, which allow specific operations. All

operations to be checked traverse the rights tree: If the operation to be checked does not match

the conditions of the subtrees, it is rejected at the end of the rights tree.

Technical Handbook 5.8 - 1.2. Access rights and triggers

48

Example: Positive configuration

This example shows how a positively formulated rights tree might look like in the Knowledge

Builder:

 The first rights subtree defines read access to

the attributes name, duration and publication date. The read operation is allowed for these

attributes. The second rights subtree allows new objects of the type song to be created. All other

operations are generally denied at the end of the rights tree.

Technical Handbook 5.8 - 1.2. Access rights and triggers

49

1.2.1.4.2. Negative configuration of rights

When rules are defined in a rights tree to reject specific operations and permit all the operations

that, after a check, are identified as not matching those operations, this process is described as a

negative configuration. Specific operations are prohibited in the subtrees of the rights tree. If one of

the operations to be checked does not match the conditions of the subtrees, the operation is

permitted at the end of the rights tree.

Example: Negative configuration

This example shows how a negatively formulated rights tree might look like in the Knowledge

Builder:

Technical Handbook 5.8 - 1.2. Access rights and triggers

50

 Unlike with a positive configuration, for

example, the first rights subtree rejects the access rights for deleting and modifying the Name,

Length and Publication date attributes. The second rights subtree prohibits deletion of the relation

that links the songs to the album they are contained in. All other operations may be executed.

1.2.1.4.3. Example: Each user is allowed to change and delete items that he has created himself

What do you need to define this right in i-views? On the one hand, you need an operation filter

since this is about changing and deleting elements. On the other hand, the connection between the

user and the element on which the user wants to execute an operation must be defined, which is

only possible by means of query filters.

Operation filter

In the operation filter, the operations Delete and Modify were selected.

Query filter

Technical Handbook 5.8 - 1.2. Access rights and triggers

51

In the query filter, “Relation created by” is selected with relation target “Person.” On the relation

target Person, the access parameter User was specified. The settings All parameters must apply and

Search condition must be met are selected. In this case, the operation parameter “Primary

Knowledge Graph element” was selected.

A question relating to the schema is: On which elements is the relation was created by defined?

There are different options for implementing this relation in a Knowledge Graph:

1. Definition on objects and types: The relation is only used on objects and types.

2. Definition on all elements: The relation is used on all objects, types, extensions, attributes and

relations.

In the first case, it makes sense to use the operation parameter “Primary Knowledge Graph

element” or “Superordinate element.” If you define the right using the superordinate element, this

does not apply only to the object itself but to all properties stored on the objects that were created

by the user. If you use the operation parameter “Primary Knowledge Graph element,” the right also

applies to all meta properties of the object. In the second case, the operation parameter “Accessed

element” is used because only elements may be changed on which the relation was created occurs

with the corresponding relation target, the user.

Compiling the right in the rights tree

There are two different variants for combining the filters. If there are no branches in the rights

subtree, the order of the subtrees is not relevant.

Technical Handbook 5.8 - 1.2. Access rights and triggers

52

The graphic illustrates the two possible combinations: Version 1 (left) first operation filter, then

query filter, version 2 (right) first query filter then operation filter, in both cases the decider

“Allowed” then follows last.

Recommendation: It makes sense to have the operation filter in the first position, which makes it

possible to create underneath it all other rights that filter on the same operation. This creates a

more simple, traceable structure in the rights tree.

Advanced right: Elements that were not created by the user may not be changed or deleted

The right implies the denial for all elements that were not created by the user but we have not yet

expressed this in the definition of rights. To do that, we have to take into account the Access denied

decider during the creation of rights. If you look at both versions of rights and combine these with a

negative decider, this results in the following variants. However, the two variants have different

effects in the rights system.

If you add one decider Denied to each of the combination options presented above, the two versions

are created: Version 1 (left) first operation filter, then query filter and decider “Allowed.” The

operation filter is also followed by a decider Denied in a second subtree. Version 2 (right) first query

filter then operation filter, and decider “Allowed.” In the version, the query filter is followed by a

second subtree with the decider “Denied.”

Technical Handbook 5.8 - 1.2. Access rights and triggers

53

Effects on the different versions on the rights system

Version 1 (left)

• Allows modification and deletion of elements created by users themselves.

• Prohibits modification and deletion of all other elements.

• No statement is made in relation to all other operations.

Version 2 (right)

• Allows modification and deletion of elements created by users themselves.

• Prohibits all other operations on elements created by users themselves (e.g. read).

• No statement is made in relation to all other elements.

The items show that version 2 does not express the requested access right. Only version 1

formulates the desired access right: All users can modify or delete elements they have created

themselves and elements that were not created by the users may not be modified or deleted.

1.2.1.5. Configuration of own operations

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs are

available in the main window. A number of operations can be configured in the Configure tab.

Technical Handbook 5.8 - 1.2. Access rights and triggers

54

The configuration of custom operations is generally only used when the Knowledge Builder is used

with other applications. A number of operations are application-specific operations that should be

checked together. This is a matter of checking a chain of operations, and not just an operation.

Instructions for the configuration of custom operations

1. In the Knowledge Builder, select the Rights folder in the System area.

2. Select the Configuration tab in the main window.

3. Click on Add to create a new operation.

4. In the windows that follow, enter an internal name and a description for the new operation.

5. The new operation is added as a user-defined operation .

6. User-defined operations can be deleted again using Remove .

1.2.2. Trigger

Triggers are automatic operations that are executed in i-views when a specific event occurs. They

Technical Handbook 5.8 - 1.2. Access rights and triggers

55

help support work flows by automating steps that always remain unchanged.

Examples for the use of triggers:

• Sending emails due to a specific change

• Editing of documents in a specific order by specific persons

• Marking jobs as open or done on the basis of a specific condition

• Creating objects and relations when a specific change is performed

• Calculating values in a previously defined way

• Automatically generating the name attribute for objects (e.g. combining properties of the

object)

How do triggers work?

Triggers are closely related to the rights system. They use the same filter mechanisms in order to

determine when a trigger is initiated. The filters are arranged in a tree, the trigger tree, which is

structured like the rights tree. It consists of filters that are used to define conditions for the

execution of a trigger action. If an access situation occurs because an operation is performed, and

that access situation matches the defined conditions, the corresponding trigger action is executed.

Trigger actions are in most cases scripts that, depending on the elements of the access situation,

use them to execute operations. This makes it possible to automate steps that remain unchanged or

perform intelligent evaluations on the basis of specific constellations in the Knowledge Graph.

Scripts can be used to execute any operations on elements that are dependent on complex

evaluations, and thereby ensure situation and application-specific requirements for the Knowledge

Graph. Most triggers are therefore usually project and Knowledge Graph specific; a consultation

should be performed for each individual case.

1.2.2.1. Activate trigger

In order to be able to work with triggers, the trigger functionality must first be activated in the

Knowledge Builder.

Instructions for the activation of triggers

1. Call up the Settings for the Knowledge Builder.

2. Select the System tab there, and the Trigger field.

3. Place a checkmark in the Trigger activated field.

A Limit for recursive triggers can be specified here. The default setting is “None”. Triggers that call

themselves are referred to as recursive triggers. This occurs when even operations in the

Knowledge Graph are implemented in the trigger script that, in turn, themselves match the filter

definition of the trigger.

Before activation of the trigger functionality, the Trigger folder in the technical area of i-views is

Technical Handbook 5.8 - 1.2. Access rights and triggers

56

called Trigger (deactivated) . The folder is renamed Triggers by the activation.

NOTE

If the current user is used in triggers (e.g. in query filters or using the

corresponding script function) and the user does not execute operations in an

application, but rather in the actual Knowledge Builder, then the Knowledge

Builder user account must be linked to a person object. The chapter Activation of

the rights system explains how a link like this is created.

1.2.2.2. The trigger tree

The trigger tree has the same structure as the rights tree. It is comprised of branches (subtrees),

which are comprised of filters and triggers. The filters are the conditions that must be checked for

the trigger to be able to be executed at the end of the subtree when all conditions to be checked

beforehand have been satisfied.

The trigger tree is queried for the data when each operation is performed – the tree is “traversed”.

If a subtree applies to the access situation, then the trigger is executed. If the condition of a filter

does not apply to the access situation, then a switchover to the next subtree occurs. Once the

trigger action has been executed, traversal of the trigger tree continues, in contrast to the rights

system, which stops being worked through when an decider is reached. In order to define that no

other filters should be checked in the trigger tree after execution of an action, the Trigger no other

triggers button is used:

Symbol Function Description

Trigger no other triggers The traversal of the trigger tree is ended.

At the end of a subtree, no decider is available, in contrast to the rights system, but rather actions

are available.

Symbol Function Description

Define trigger A new trigger action is created.

The available trigger actions are:

• Enter log : A log entry is written.

• Execute script > JavaScript : A script file in JavaScript is executed.

• Execute script > KScript : A script file in KScript is executed.

Structure the trigger tree

The order in which you define the triggers when designing the trigger tree usually has no effect on

the performance of i-views. There are design recommendation for the rights tree, but these cannot

be applied to the trigger tree, as the trigger tree is further traversed after a trigger action has been

executed.

Technical Handbook 5.8 - 1.2. Access rights and triggers

57

To provide a clearer structure for triggers, they can be collected in organizing folders. The organizing

folders themselves do not affect the traversing of the trigger tree.

Symbol Function Description

Organizing folder Organizing folder for grouping subtrees

Example: trigger tree

This example shows a trigger tree that combines the names of persons and concerts automatically

from properties of the objects:

This simple trigger tree begins with an operation filter and splits into two separate subtrees after

the operation filter. If either the modify or the create operation is executed, it is let through by the

operation filter. The persons subtree filters operations that are performed on attributes and

relations of person type objects. If the operation affects either the first name attribute or the last

name attribute, it is let through by the property filter. The corresponding script that compiles the

name attribute of a person from their first and last name is executed. The second subtree also

applies to the modify or create operation filter. However, it filters attributes and relations that are

Technical Handbook 5.8 - 1.2. Access rights and triggers

58

saved in company type objects. The property filter only lets operations through if they are

performed on the attributes or relations of the city, the street or the ZIP code. If these conditions

apply, the corresponding script that compiles the complete address string of the company is

executed.

This is what this trigger tree would look like in i-views:

1.2.2.3. Create trigger

As described in the Trigger tree section, triggers consist of filters and trigger actions. These are

combined in such a way that a specific trigger action is executed only when it is required.

The following functions are available in the trigger area:

Symbol Function Description

New operation filter A new operation filter is generated.

New query filter A new query filter is generated.

New property filter A new property filter is generated.

New delete filter A new delete filter is generated.

New organizing folder A new organizing folder is generated.

New trigger A new trigger action is created.

Trigger no other triggers A new “Stop” folder is created. It ends the traversing of

the trigger tree.

When creating triggers, you should consider two fundamental properties of the trigger mechanism:

• Execution of a trigger script can cause further triggers to be triggered. This occurs if operations

in the Knowledge Graph are executed in the trigger script itself.

• After a trigger action has been executed, traversal of the trigger tree continues. All trigger

actions of the subtrees that apply to the access situation are executed.

Technical Handbook 5.8 - 1.2. Access rights and triggers

59

1.2.2.4. Trigger actions

Trigger actions are used to perform intelligent operations in the Knowledge Graph, which, for

example, automate or support work flows. However, they are only executed when the access

situation and the links in the Knowledge Graph assume a specific state defined by the filter.

Instructions for the creation of trigger actions

1. Select the position in the trigger tree at which the trigger action is to be created.

2. Used the button to create a new trigger.

3. Select the action type from the list: Enter the log or execute the script (if you wish to execute a

script, select the script language).

4. The trigger is created as a subfolder of the currently selected folder.

Logging actions

In principle, there are three different possibilities for logging changes that have been initiated by

the trigger system:

• Log trigger: Special logging element that is used additionally to the respective trigger element

in order to log the trigger action itself. Advantage: The log trigger can be added quickly to any

script trigger, but an initialization file (*.ini) needs to be configured before. The log trigger is

described in the sub chapter "Log trigger".

• Script trigger with output in forms of "$k.log()": Within any trigger script, entries for logging

can be added by means of the $k.log method. Advantage: The log output can be defined in a

highly customized manner, restricted by the scope of the JavaScript API only. The log

information is output within the "Script messages" dialog and/or in the respective logfile as

configured by the initialization file. For more information, see the JavaScript API

documentation.

• changeLog trigger: A predefined registry key for a string attribute in combination with a

JavaScript method can be used for logging. Advantage: Log entries will be created in forms of a

"changeLog" attribute directly attached to the respective semantic element on which the

changes take effect, depending on the definition range of the changeLog attribute type. The

changeLog trigger is described in the last sub chapter.

1.2.2.4.1. Script trigger

An operation parameter must be output for the script to be executed. In contrast to query filters,

only one operation parameter can be specified. Execution of the script starts on the element

contained in the operation parameter.

Time/type of execution

• Before the change: The trigger is executed before the operation is performed.

• After the change: The trigger is executed immediately after the operation has been performed.

Technical Handbook 5.8 - 1.2. Access rights and triggers

60

• End of transaction: The trigger is executed only at the end of the shared transaction.

• Job-Client: The Job-Client determines the time of execution.

NOTE

Triggers that are executed for delete operations should preferably use before the

change as their time, as the element to be deleted will no longer be available

otherwise. For other operations, a more suitable time is after the change or end of

transaction , as it is then possible, for example, to add a property to the newly

created element or automatically generate the name from various properties of an

object if one or more properties were changed.

The import chooses the order in which the properties will be imported in i-views.

Therefore a trigger that is initiated during the import should not rely on the

properties being available in full.

Execute once only per operation parameter

If this setting is selected, the element selected in operation parameter is executed no more than

once per transaction. If this setting is chosen, the time of execution should be set to end of

transaction so that the final state of the element is used in the script.

Example: For persons, the name of the object is meant to consist of the first name and last name.

With this setting, the trigger is executed only once if the first and last names are changed at the

same time.

Execution does not initiate trigger

This setting specifies that the operations executed within a trigger cannot initiate any further

triggers. This setting can be used to avoid endless loops.

Continue to execute script in case of script errors

If this setting is active, an attempt is made to restart after an execution error and continue with the

execution of the script. This setting is predominantly useful for scripts that are supposed to execute

instructions that are independent of each other, and not for scripts that build on previous steps of

the script.

Abort transaction if trigger fails

This setting defines the termination behavior in the event of script errors. If an error occurs while

the script is being executed and this setting is active, all actions of the transaction are reversed. If

this setting is not active, all actions are executed apart from the ones affected by the error. The

original action that led to the trigger being called is nevertheless written to the Knowledge Graph.

Execution during data refactoring

The term data refactoring describes operations for restructuring the Knowledge Graph, e.g. Change

type or Choose new relation target .

Technical Handbook 5.8 - 1.2. Access rights and triggers

61

Caution: Data refactoring operations can, in some circumstances, initiate unwanted trigger actions

and, in some cases, even generate errors during execution of the script. For this reason, it is

possible to set for each trigger whether it is to be executed during data refactoring.

Example for data refactoring: Reengineering to single-sided relation. Changing a relation type from

a double-sided relation into a single-sided relation causes a re-saving of relation targets. Although

this is not a factual change, this can trigger the execution of a trigger script that originally was

intended to react on relation target changes only.

Following processes are considered as data refactoring:

In the Knowledge Builder:

• "Choose new semantic element for property" (for attribute)

• "Choose new relation target" (at relation)

• Copying

• "Change subtypes into objects" (context menu "Reengineer")

• "Merge" (of nodes in Graph Editor)

• Relocating relations

• Change relation source/target in Graph Editor by means of Drag&Drop

• Converting relations from/to one-way relations

In general:

• Changing data storage of file attributes

• Changing relation source/target by RDF import

Deprecated:

• Behavior function "adsorbRelationTarget" (not needed anymore)

• Change relation source/target in edit view in web ui (pre version 5.4)

The function body for script triggers is created automatically.

The script has three parameters:

parameter $k.SemanticEleme

nt / $k.Folder

The selected parameter

access object Object with data of the change (new attribute value etc.)

user $k.User User who triggered the change

The following example sets the attributes with the internal name “changedOn" / “changedBy.”

“Primary semantic core object" should be selected as the parameter here.

Technical Handbook 5.8 - 1.2. Access rights and triggers

62

/**
 * Perform the trigger
 * @param parameter The chosen parameter, usually a semantic element
 * @param {object} access Object that contains all parameters of the
access
 * @param {$k.User} user User that triggered the access
**/

function trigger(parameter, access, user)
{
 parameter.setAttributeValue("modifiedAt", new Date());
 var userName = $k.user().name();
 if (userName)
 parameter.setAttributeValue("modifiedBy", userName);
 else
 parameter.attributes("modifiedBy").forEach(function(old) { old
.remove });
}

The parameter "access" may contain the following properties (varies in each operation):

Property Description

accessedObject Accessed element

core Core object

detail Detail

inversePrimaryCoreTopic Primary relation target

inverseRelation Inverse relation

inverseTopic Relation target

operationSymbol “read," "deleteRelation" etc.

primaryCoreTopic Primary semantic core object

primaryProperty Primary property

primaryTopic Primary semantic element

property Property

topic Superordinate element

user User (identical to “user” parameter of the function)

1.2.2.4.2. Log trigger

If the user would like to monitor or document the trigger functionality for when which trigger was

Technical Handbook 5.8 - 1.2. Access rights and triggers

63

triggered and which operators were executed in the Knowledge Graph, log triggers are suitable. The

log is written to the respective log file (bridge.log, batchtool.log etc.) in the application environment

that the operation that triggered the trigger is performed in.

Lines of the log entry Current state of the Knowledge Graph

pre before triggering

post after triggering

end at the end of the transaction

commit when the transaction has been processed successfully

Log entries are used to retrace whether a trigger was executed in a specific access situation that

actually occurred, and what it did. In contrast to this, a test can be performed in the test

environment to determine whether a trigger would be triggered or not in a specific access situation,

without the specific access situation being performed.

The operability of the log trigger feature actually depends on how the logging is configured by the

respective *.ini file (kb.ini, mediator.ini, jobclient.ini).

Example: For logging the trigger actions when using a local Knowledge Graph wihout mediator, a

"kb.ini" file is needed with a minimum set of configuration parameters:

[Default]
logTargets = kblog

[kblog]
type = file
format = plain
file = kb.log

This initialization file creates a logfile called "kb.log" in the Knowledge Builder folder.

For more information about different configuration files, see the respective chapter about "i-views

services".

Instructions for the creation of log triggers

1. Select the trigger script that is to be logged in the trigger tree.

2. Using the button to create a trigger of type Logging in the trigger tree directly above the

Technical Handbook 5.8 - 1.2. Access rights and triggers

64

script trigger.

Example:

Log entry that documents the change of the attribute e-mail using a trigger.

1.2.2.4.3. ChangeLog Trigger

If you want to monitor the activities that users perform on objects, you should set up a changeLog

trigger, also referred to as a change history.

For this purpose, you must first define a string attribute with the internal name “changeLog.” This

changeLog attribute must be defined for all elements for which it is to document user activities.

Click “Open” to open the table showing who made the change, when they did so, what the change

is, to which semantic element it applies, and which value was used.

NOTE

Since operation filters like "create relation", "create relation half" or "delete

relation half" only apply to the relation origin (the semantic element itself), logging

of changing relation targets cannot be triggered. For this purpose, the trigger script

can be used if specified accordingly.

Modifications in attribute values will be logged only when they are created

(simultaneously when the attribute itself is created), but not when the attribute

value is deleted.

Technical Handbook 5.8 - 1.2. Access rights and triggers

65

The trigger must contain the operation filters that will log the change history, and the elements

where the attribute is to be visible.

The trigger script looks like this:

/**
 * Perform the trigger
 * @param parameter The chosen parameter, usually a semantic element
 * @param {object} access Object that contains all parameters of the
access
 * @param {$k.User} user User that triggered the access
**/

function trigger(parameter, access, user) {
 $k.History.addToChangeLog(access,parameter);
}

Example

A change log is to be saved in all objects in a Knowledge Graph. The aim is to log the modification,

creation and deletion of properties in the objects. First, an operation filter is created that reacts to

the operations “Delete attribute”, “Modify attribute value”, “Create relation”, “Create relation part”

and “Delete relation part”.

In the next step, a query filter was defined to determine the Knowledge Graph on which operations

are performed.

Technical Handbook 5.8 - 1.2. Access rights and triggers

66

The “Superordinate element” operation parameter was added to the trigger script, because it

corresponds to the query filter.

The trigger rules (operation filter, query filter and trigger script) are located in the hierarchy tree as

follows due to their checking sequence:

1.2.3. Filter types

With the aid of filters, the conditions are defined in the rights tree or in the trigger tree to allow

access situations to be restricted when a decider or trigger should be executed. New filters are

created under the node currently selected in the tree. This way, they are nested in each other.

The three filter types operation filter, query filter and property filter are available in the rights

system. In addition to the three basic filter types, the trigger area provides a specific filter – the

deletion filter.

There are different types of filters – when do we use which filter?

Symbol Filter Description

Operation filter Filters the operations; selection from list

Query filter Filters elements by means of structured query

Property filter Filters relations and attributes; selection from list

Technical Handbook 5.8 - 1.2. Access rights and triggers

67

Symbol Filter Description

Delete filter Filters the deletion of elements

Operations can only be determined using an operation filter. Users can only be determined using a

query filter. Properties can be determined using either query filters or property filters. The use of

property filters makes sense when properties should be filtered regardless of other properties in

the Knowledge Graph such as relations to the user. Above all, when large sets of properties are to

be filtered, it is more straightforward and clearer to do so in a list instead of in a structured query. If

relations to the accessed element or to the user are to be factored in, then a query filter must be

used.

Instructions for creating a filter

1. In the rights or trigger tree, choose the position at which you want to create a new filter.

2. Use the buttons , , or to create a new filter.

3. The filter is created in the tree as a subfolder of the currently selected folder.

4. Assign a name to the folder.

1.2.3.1. Operation filter

To specify the operations for which an access right should apply or a trigger should be executed,

operation filters are required. By selecting the required operation it is possible to add it to or

remove it from the filter.

Technical Handbook 5.8 - 1.2. Access rights and triggers

68

The operations are divided into groups. When you select the higher-level node of a group, all lower-

level operations are included in the filter. If, for example, you choose the Create operation, the filter

considers the operations Create attribute , Create extension , Create folder , Create relation , Create

relation half , Create type and Create translation .

The Operations chapter lists all available operations and also specifies which operation parameters

can be used in combination. The various operation parameters are explained accordingly in the

Operation parameters chapter.

1.2.3.2. Property filter

You can use property filters to filter attributes and relations. There are two different procedures for

using a property filter:

• Restriction on properties : Specify the properties to which the condition is supposed to apply.

Subsequent filters or deciders of the subtree are only executed if the access property matches

the selected property.

• Exclude the following properties : Specify the properties to which the condition is not supposed

to apply. If the access property matches one of the selected properties, subsequent filters,

deciders or triggers are not executed.

Technical Handbook 5.8 - 1.2. Access rights and triggers

69

You can use Add and Remove to select the properties listed below. All properties below can be

selected using All . None removes all selected properties. You can use the Edit field to call up the

Detail editor of the attribute or relation that is selected in the top selection field. The tabs All

properties , Generic properties , Attribute, Relation , View configuration and Knowledge Graph are

designed to help users find the filtering properties more quickly. The Knowledge Graph tab shows

all relations and attributes that the user has created.

1.2.3.3. Query filter

Query filters make it possible to include elements in the environment of the element that is to be

accessed. This allows not only individual properties, but also relationships between objects,

properties and attributes to be included in the rights or trigger definition. When using query filters,

it is necessary to specify an operation parameter to which the result of the structured query is

compared. All available operation parameters are explained in the Operation parameters chapter.

There are two ways to define query filters:

• Search condition must be met : This setting is selected initially. If the search result of the

structured query matches the operation parameter, the condition of the filter is met and

subsequent filters, deciders or triggers are executed.

• Search condition must not be met : If the structured query returns the same element as the

Technical Handbook 5.8 - 1.2. Access rights and triggers

70

access parameter as its result, the condition is not met and the check of the rights or trigger

tree switches to the next subtree. If the result of the structured query differs from the result of

the access parameter, the condition is met and the subsequent filter, decider or trigger is

executed.

The objects of the type at the top left that match the search condition are the result of the

structured query. These are compared to the element that is transferred by the operation

parameter. It is possible to use access parameters in the structured query. They can be used, for

example, to include the user, accessed element etc. in the query.

During selection of the operation parameter it is possible to configure whether

• all selected parameters must apply (All parameters must apply)

• or only one parameter must apply (One parameter must apply).

NOTE

Initially, the setting All parameters must apply is selected. If, for example, the

operation parameters Accessed element and Primary semantic element are

selected, the condition is met only if the result of the structured query is both the

accessed element and the primary semantic element of the operation to be

checked.

Example 1: Query filter in the rights system

A right should be defined that determines that already modified object may be read by everyone;

Technical Handbook 5.8 - 1.2. Access rights and triggers

71

unmodified objects, in contrast, may not.

In this example, the user "Person A" would like to read "Object A". This operation is now checked by

the rights system. A query filter has been defined in the rights system which checks whether the

object has already been modified. The structured query of the query filter searches of objects of the

“Subtype A” type, with the restriction that the attribute “modification date” is in the past. The

structured query delivers all objects that meet this condition. If "Object A" is one of them, then the

check by the filter returns a positive result and the folder that follows the query filter (with a filter or

decider) is executed.

In the case of the query filter, the search condition settings must be met, and “All parameters must

apply” must be selected.

Example 2: Query filter in the rights system

In most cases, there is a connection between the user who wants access and the objects and

properties that the user wants to access. An example of this would be: “Employees of a department

who look after a branch may edit all customers of this branch.” Another version of this example that

is illustrated below would be: “Users who maintain an object may edit and delete this object.”

Technical Handbook 5.8 - 1.2. Access rights and triggers

72

The left side shows a section of the Knowledge Graph: The object "Person A" is linked to the objects

"Object A", "Object B" and "Object C" via the relation "maintains". The inverse relation of

“maintains” is “maintained by,” which exists between the objects Object A, Object B and Object C

and the object Person A, and is queried in the query filter. This relation in the Knowledge Graph

represents that one person maintains object data relating to "Subtype A".

Technical Handbook 5.8 - 1.2. Access rights and triggers

73

In this example, user "Person A" wants to delete "Object A". The corresponding query filter delivers

all objects of "Subtype A" that were maintained by a certain user as the query result. The current

user is transferred to the structured query as an access parameter. The “Structured query” chapter

explains access parameters in structured queries. Hence the search in this access situation returns

all objects that were maintained by Person A. Since Object A is one of them, the query filter check

returns a positive result.

In this example, the access situation adds two aspects to the query filter: the object to be deleted

and the user. The query filter can thus be defined in two different ways. The object is either

transferred to the query filter as an accessed element and the user is used as the access parameter

in the structured query. Or the user is transferred to the query filter as the operation parameter

“User” and the object is used as the access parameter “Accessed element” in the structured query.

1.2.3.4. Delete filter

Delete filters are only available for defining triggers. They are used for testing in a deletion situation

whether the higher-level element is also affected by the delete operation. For example, you want a

trigger to not be executed if an object including all its properties is deleted but a deletion filter must

be used if a certain property of the object is deleted.

When defining a delete filter, at least one operation parameter must be specified which determines

which deletion of an object is to be tested.

• All parameters must apply : All specified operation parameters must apply. For example, if two

operation parameters are specified (accessed element and primary element), then it is checked

whether the delete operation applies to both the accessed element and the primary element.

This can only be the case if the primary element is also the accessed element.

• One parameter must apply : Only one of the specified operation parameters has to apply.

NOTE

In most cases, the operation parameter offers a superordinate element or primary

object because a check is to be performed as to whether only the property is

deleted or if the property is deleted because the entire object has been deleted.

Technical Handbook 5.8 - 1.2. Access rights and triggers

74

• Not affected by the delete operation : The condition of the filter is positive if the element

transferred in the operation parameter is not deleted in this transaction.

• Affected by the delete operation : The condition of the filter is thus positive if the element

transferred in the operation parameter is deleted in this transaction.

Example: Delete filters in triggers

In this example, a trigger is only to be executed if the city, street or ZIP code of a company is

modified or deleted, but not if the object containing the properties is deleted. The setting Not

covered by deletion is used for this purpose. If the delete operation affects the superordinate

accessed element, which in this case is the company object itself, then the checking of the subtree

is aborted because the filter has returned a negative result.

The superordinate element operation parameter is used along with the Not affected by the delete

operation setting.

In this example access situation, the ZIP code attribute with the value “12345” in the “Company X”

object is deleted. The object itself is not deleted. The “Company” query filter, which is defined by the

“Superordinate accessed element” operation parameter, and the “City, street and ZIP code”

property filter receive a positive response. The subsequent delete filter also returns a positive

response, as the object containing the property (superordinate accessed element) is not affected by

the delete operation – in line with the “Not covered by deletion” setting of the delete filter.

Technical Handbook 5.8 - 1.2. Access rights and triggers

75

In this access situation the “Company X” object is deleted by user Person A. Deleting the object

automatically deletes all properties of the object – and thus all attributes of the object as well. The

check of the trigger tree is executed for the deletion of both the object and the attribute. The

“Company” query filter and the “City, street and ZIP code” property filter are fulfilled for the delete

process of the attribute in the check of the trigger tree. The delete filter itself is not fulfilled in this

situation, as the “Company X” object containing the “ZIP code 12345” property is deleted.

Use of delete filters makes sense, for example, if the trigger script compiles the name of the object

from its properties. As a result, the name of the object is not modified several times when the

properties of the object are deleted; instead, the object and all related properties are deleted

without the script for compiling the name being executed. This usually saves unnecessary

calculation times and can make sense in specific application scenarios, e.g. if the trigger sends an

email notification that an object has been renamed (and this avoids sending numerous

superfluous emails regarding the name change).

1.2.4. Operation parameters

Operation parameters control the element to which the result of the structured query for the

condition check should be compared in query filters. In the simplest case, the result is compared to

the element that is to be used to execute the operation to be checked. Operation parameters can

be used to modify the transferred element. You can choose the current user or elements from the

element environment that will be used as the comparison element for the query filter.

They are also used, among other things, in delete filters and script triggers. Based on the element to

which access is executed, they specify there the element on which the script is to be executed, or

on which the deletion of elements (and which elements) is to be filtered.

When is this useful? It can be essential if you cannot use an element from the environment of the

affected object instead of the object itself for comparison: when, for example, you want to check

access rights for creating new objects or types. It is not possible to define a structured query that

returns the object that has not been created yet. In this case, the query filter must be compared to

something else, i.e. the type of object to be created and, in case of object types, to the super-type

of the type to be created.

Technical Handbook 5.8 - 1.2. Access rights and triggers

76

Operation parameter Description

(Super) type In the case of types, the (super) type is the super-type of the

type. In the case of objects, the (super) type is the type of the

object type. In the case of attributes or relations, the (super)

type is the type of the property.

Accessed element The accessed element is the element affected by the operation.

Application Objects of the type "application" (to be found within TECHNICAL

> View configuration > Object Types > Application).

Core semantic element If the higher-level element is an extension, then the core

semantic element is the object on which the extension is stored.

Otherwise, the core semantc element is identical to the accessed

element.

Folder The Folder operation parameter is the folder affected by the

operation.

Inverse relation If the property affected by the operation is a relation, the

parameter contains the inverse relation half.

Inverse relation type The inverse relation type is the type of the inverse relation. This

can be used for the generation of relations.

Parent element The parent element is the object, the type or the extension

affected by the operation. In the case of properties, the parent

element is the object, the type or the extension on which the

property is saved.

If the accessed element is a meta property and the parent

element is a relation, the following needs to be obeyed:

• Due to the symmetric storage of meta properties at relation

halves, the returned direction of the relation is not unique

for double-sided relations (= conventional relations) or

symmetric relations. In this case, the required relation half

needs to be determined by means of a script or a structured

query.

• In case of single-sided relations, the parent element is the

real relation half (meaning: not the virtual relation half).

Primary core element If the primary element is an extension, then the primary core

element is the core element of the extension. Otherwise, the

primary core element is identical to the core semantic element.

Primary element If the superordinate accessed element is a property, the primary

element is the object, the type or the extension on which the

property is stored (transitive). Otherwise, the primary element is

identical to superordinate element.

Technical Handbook 5.8 - 1.2. Access rights and triggers

77

Operation parameter Description

Primary property In the case of meta properties, the primary property is the

property closest to the object, type or extension. Otherwise, the

primary property is identical to property.

Primary relation target The primary relation target is the primary semantic element of

the relation target.

Property The property is the property that the operation affects (attribute

or relation). If the operation is performed on an object, type or

extension, the operation parameter property is blank.

Relation target If the property affected by the operation is a relation, the

Relation target parameter contains the relation target of the

relation half. (The source of the relation would be the higher-

level element in this case.)

User The user is the object of the users which executes the operation.

1.2.4.1. Operation parameter (Super) type

The “(super) type” parameter is used, for example, if operations that create new elements are to be

checked in the rights system. When elements are created, the query filter cannot be defined so that

it finds elements that have not been created yet. The query filter must work on the super-type or

type of the element to be created. During the creation of objects, attributes and relations, the type

of the objects, attribute or relation is used. For types, the super-type of the type to be displayed is

used.

Accessed element (Super) type

Object or extension The type of object or extension

Type The super-type

Property The type of property

1.2.4.2. Operation parameter Accessed element

The accessed element is the element of the Knowledge Graph that is currently being accessed. For

query filters in the rights system, for example, the accessed element is the element that is to be

accessed by an operation. When checking an access situation, the element is then transferred to

the query filter on which the operation is supposed to be executed. The query filter then compares

the accessed element to the result of the structured query.

1.2.4.3. Operation parameter Application

The operation parameter "Application" refers to the application context within which the element is

actually being accessed. Examples for applications are the Knowledge Builder or the

Viewconfiguraiton mapper.

Technical Handbook 5.8 - 1.2. Access rights and triggers

78

Accessed element Application

Object, type or extension Object of the currently used application

1.2.4.4. Operation parameter Core semantic element

The core element is used when work is done with extensions. Instead of the extension, the core

element delivers the object to which the extension is saved.

Accessed element Core object

Object, type or property The actual accessed element

Extension The object to which the extension is saved

1.2.4.5. Operation parameter Folder

If a folder from the Folder area of the Knowledge Graph is to be transferred to the search as a

parameter, the Folder operation parameter must be used.

Accessed element Folder

Folder The actual accessed element

Object, type, extension or

property

Blank

1.2.4.6. Operation parameter Inverse relation

The inverse relation is the “opposing direction” of a relation half. If the relation half is considered as

directed graphs, then there is a relation between two opposing graphs (the “forward direction” and

the “reverse direction” of the relation) that is attached between two elements. The inverse relation

is therefore the opposing relation half. The inverse relation has the relation source of the relation

half as its relation target and vice-versa.

Accessed element Inverse relation

Relation half The inverse relation half

Object, type, extension or

attribute

Blank

1.2.4.7. Operation parameter Inverse relation type

The inverse relation type is the type of the inverse relation.

Accessed element Inverse relation type

Relation half Type of inverse relation half

Technical Handbook 5.8 - 1.2. Access rights and triggers

79

Accessed element Inverse relation type

Object, type, extension or

attribute

Blank

1.2.4.8. Operation parameter Parent element

The semantic element is used if the direct properties of an element are to be retrieved.

Accessed element Superordinate element

Object, type or extension The actual accessed element

Property Object, type or extension on which the property is stored

Meta-property Property on which the meta-property is stored

1.2.4.9. Operation parameter primary core element

If you want the corresponding object or type to be addressed for an accessed element, you must

use the primary core element. In contrast to the primary element, no extensions are

addressed/permitted when using the primary core element. In case of extensions as accessed

element, the core object is output.

Accessed element Primary core element

Extension The object to which the extension is saved

Object or type The actual accessed element

Property or meta-property of

an extension

The object to which the extension is saved

Property or meta-property of

an object or type

Primary semantic element – object or type to which the property

is saved (transitive)

1.2.4.10. Operation parameter primary element

The core semantic element always delivers an object, type or extension. If the core semantic

element is executed on meta properties, the properties are processed transitively until the object,

type or extension to which the properties are appended is found.

Accessed element Core semantic element

Object, type or extension The actual accessed element

Property Object, type or extension on which the property is stored

Meta-property Object, type or extension on which the property is stored on

which in turn the meta-property is stored (transitive)

Technical Handbook 5.8 - 1.2. Access rights and triggers

80

1.2.4.11. Operation parameter Primary property

The primary property is always a property. It resembles the primary semantic element in that it

transitively processes meta properties. However, it delivers the last property that precedes the

primary semantic element, that is, the property stored directly on the primary semantic element.

Accessed element Primary property

Property The actual accessed element

Meta-property (or meta-

property of a meta-property)

The property that is closest to the object, type or extension

Object, type or extension Blank

1.2.4.12. Operation parameter Primary relation target

In contrast to the primary semantic element of a relation half, the primary relation target is not the

object, type or extension on which the relation half is located but the object, type or extension to

which the inverse half of the relation is connected.

Accessed element Primary relation target

Relation half The primary semantic element of the relation target (object, type

or extension on which the inverse relation half is stored)

Relation half whose relation

target is a property or meta-

property

The primary semantic element of the relation target (object, type

or extension of the meta-property or property on which the

inverse relation half is stored)

Object, type, extension or

attribute

Blank

1.2.4.13. Operation parameter Property

Attributes and relations are understood to be properties. The operation parameter contains the

attribute or the relation on which the operation is performed. If the operation is performed on an

object or type, the operation parameter property is blank.

Accessed element Property

Attribute or relation The actual accessed element

Object, type or extension Blank

1.2.4.14. Operation parameter Relation target

The relation target is not the source, but rather the “target” of a relation half. It can also be

considered the inverse relation half.

Technical Handbook 5.8 - 1.2. Access rights and triggers

81

Accessed element Relation target

Relation half The relation target is the relation source of the inverse relation

Object, type, extension or

attribute

Blank

1.2.4.15. Operation parameter User

The “User” parameter is always the user object of the user who is currently logged in, regardless of

the accessed element. For this purpose, the Knowledge Builder account must be linked to a

Knowledge Graph object. The chapter on activation of the rights system describes how this link is

created.

Accessed element User

Object, type, extension or

property

Object of the user who is currently logged in

1.2.4.16. Examples: The use of operation parameters

Example 1: Accessed element and property in the rights system

The example below shows the access situation on the left side and the corresponding query filter

on the right side.

Access situation: Person A wants to change the attribute ZIP Code of company X.

Query filter: All attributes created by a certain user are filtered. In the structured query, the access

parameter “User” is used, which restricts the objects of user to the person who wants to execute

the operation. This corresponds to all attributes that were created by Person A.

Checking the access rights: To check the access rights, the attribute (accessed element/property)

on which the operation is to be executed is transferred to the query filter. If this attribute is

Technical Handbook 5.8 - 1.2. Access rights and triggers

82

included in the set of search results, the query filter check returns a positive result.

Operation parameter: The attribute Duration is transferred to the query filter. In this case, both the

operation parameter “Accessed element” and the property can be used because the attribute “ZIP

Code” is actually a property and represents the accessed element of the operation.

Example 2: Superordinate element and primary semantic element in the rights system

This example shows the access situation on the left side and the corresponding query filter on the

right side.

Access situation: Person A changes the Zip Code attribute, which currently has the value 12345 and

is part of the Company X object.

Query filter: The query filter is defined in such a way that it searches for all objects that were

created by a specific user; the currently logged-in user is the accessed element. Accordingly, the

query filter finds all the objects created by Person A.

Checking the access rights: If the result set of the query filter contains Company X, the following

folder (filter or decider) is executed.

Operation parameter: Use of the “Superordinate element” operation parameter has the effect

that, instead of the “Zip Code” attribute to be changed being transferred to the query filter, the

object in which it was defined is transferred to the query filter. This is the case for Company X.

In addition to the superordinate element, it would also be possible to use the “Primary semantic

element” operation parameter in this case. The “Superordinate element” operation parameter

would have the result that all properties and the object itself are rated positive by the filter. In

addition, the “Primary semantic element” operation parameter would also permit meta properties

of the object, no matter how many properties are between the object and the meta property.

Example 3: (Super) type in the rights system

The example shows the access situation on the left-hand side and the query filter applied in this

situation on the right-hand side.

Technical Handbook 5.8 - 1.2. Access rights and triggers

83

Access situation: Person A wants to create the attribute Zip Code on the object Company X. The

value is to be 12345.

Query filter: The query filter returns the attribute type “ZIP Code”.

Checking the access rights: If the attribute to be created has the “ZIP Code” type, the check of the

query filter returns a positive result.

Operation parameters: When creating elements, it is not possible to define a query filter that

returns the element to be created and is thereby able to check the access rights. This means that a

different operation parameter must be chosen as the accessed element when creating elements.

The “(super) type” operation parameter is suitable in these situations. In this example, the attribute

type is used, which is the ZIP Code attribute type.

Example 2: Superordinate element and primary semantic element in the rights system

This example shows the access situation on the left side and the corresponding query filter on the

right side.

Access situation: User Paul changes the Length attribute, which currently has the value 02:30 and is

part of the Song X object.

Technical Handbook 5.8 - 1.2. Access rights and triggers

84

Query filter: The query filter is defined in such a way that it searches for all objects that were

created by a specific user; the currently logged-in user is the accessed element. Accordingly, the

query filter finds all the objects created by Paul.

Checking the access rights: If the result set of the query filter contains Song X, the following folder

(filter or decider) is executed.

Operation parameter: Use of the “Superordinate element” operation parameter has the effect

that, instead of the “Length” attribute to be changed being transferred to the query filter, the object

in which it was defined is transferred to the query filter. This is the case for Song X. In addition to

the superordinate element it would also be possible to use the “Primary semantic element”

operation parameter in this case. The “Superordinate element” operation parameter would have

the result that all properties and the object itself are rated positive by the filter. In addition, the

“Primary semantic element” operation parameter would also permit meta properties of the object,

no matter how many properties are between the object and the meta property.

Example 3: (Super) type in the rights system

The example shows the access situation on the left-hand side and the query filter applied in this

situation on the right-hand side.

Access situation: User Paul wants to create the attribute Length on the object Song X. The value is

to be 02:30.

Query filter: The query filter returns the attribute type “Length.”

Checking the access rights: If the attribute to be created has the “Length” type, the check of the

query filter returns a positive result.

Operation parameters: When creating elements, it is not possible to define a query filter that

returns the element to be created and is thereby able to check the access rights. This means that a

different operation parameter must be chosen as the accessed element when creating elements.

The “(super) type” operation parameter is suitable in these situations. In this example, the attribute

type is used, which is the Length attribute type.

Technical Handbook 5.8 - 1.2. Access rights and triggers

85

1.2.5. Operations

Operation filters can be used to specify operations that are then permitted in the filter process of

operation filters. If a different operation is executed in the access situation than specified in the

operation filter, the system switches to the next subtree when traversing the rights or trigger tree.

The general operations Create , Read , Modify and Delete consist of multiple individual operations.

If one operation group is prohibited, that means that all the operations it contains are also not

permitted; vice versa, if an operation group is permitted, all the operations it contains are

automatically permitted as well.

The table shows an overview of all available operations that can be applied in operation filters.

Depending on the operation, only specific operation parameters can be used in query filters. These

are specified in the “Operation parameters” column.

NOTE

Derived operation parameters such as primary semantic elements or primary

semantic core objects, for example, can be used whenever the parameter from

which they are derived can be used.

Special features of triggers No read operations can be used for triggers. In addition, the operation

groups Display of objects (operation: Display in graph editor) and Edit (operation: Validate attribute

value are not available for triggers.

In addition, the “Accessed element” operation parameter is available for triggers in the “Create”

operations if the time/type of execution is set to After the change or End of transaction .

Operation group Operation Operation parameter

Display of objects Display in graph editor Accessed element

Edit Validate attribute value Accessed element, property,

superordinate element,

(parameter to be checked:

attribute value)

User-defined operation

Create Create attribute (Super) type, superordinate

element

Create extension (Super) type, superordinate

element, core object

Create object (Super) type

Create folder Folder

Create relation (Super) type, superordinate

element, relation target,

inverse relation type

Technical Handbook 5.8 - 1.2. Access rights and triggers

86

Operation group Operation Operation parameter

Create relation half (Super) type, superordinate

element, relation target

Create type (Super) type

Add translation Accessed element, property,

superordinate element

Read Read all objects/properties of a

type

(Super) type

Read attribute Accessed element, property,

superordinate element

Read object Accessed element,

superordinate element

Read relation Accessed element,

superordinate element,

property, inverse relation,

relation target, inverse relation

target

Read type Accessed element,

superordinate element

Delete Delete attribute Accessed element,

superordinate element

Delete extension Accessed element, property,

superordinate element

Delete object Accessed element,

superordinate element

Delete folder Folder

Delete relation half Accessed element, inverse

relation, property,

superordinate element, relation

target, inverse relation target

Delete type Accessed element,

superordinate element

Remove translation Accessed element, property,

superordinate element

Modify Modify attribute value Accessed element, property,

superordinate element

Modify folder Folder

Technical Handbook 5.8 - 1.2. Access rights and triggers

87

Operation group Operation Operation parameter

Modify schema Accessed element,

superordinate element

Change type Accessed element,

superordinate element

Use tools Export is no longer evaluated

Import is no longer evaluated

Edit/execute script is no longer evaluated

Read object The operation Read object is used to display objects for the corresponding object type

on the Objects tab. The operation does not prevent the display of the object when it is called up

using a linked object. In this case, the operations for properties Read attribute and Read relation

then apply.

Read all objects/properties of a type This operation specifically controls the access rights check

when processing a structured query. A structured query checks all intermediate results by default. A

search for all employees with a wage greater than €10,000 would therefore not result in any hits

when the wage cannot be read, even if the corresponding employee objects could be read. This

response is often preferred, however is seldom performant. In the case of an extensively configured

rights system in particular, processing of which requires a lot of processor capacity, we recommend

using a control that does not require intermediate results of a structured query to be checked

because a check of the final results is sufficient. In most Knowledge Graphs, permission can be

issued for all property types (“top-level type for properties”).

To examine which intermediate results are checked, this information can be made to appear in a

structured query. This is done using “Settings→Personal→Structured query→Show access rights

checks”.

Validate attribute value The operation Validate attribute value is used when the attribute value to

be set must satisfy certain conditions. The definition of the condition for the attribute value is made

Technical Handbook 5.8 - 1.2. Access rights and triggers

88

in a structured query.

Case example of a configuration: The entered age of a webuser must be greater than zero.

Configuration by means of the structured query in the rights system: the attribute "Age [years]"

contains the condition "value > 0".

Configuration in the rights system: If the query condition is satisfied, then the value can be stored -

this is done by configuring a positive stopmarker "Access granted" , for all other cases the

storage is denied by using the stopmarker "Access denied" - which in this case is renamed to

"Value must be positive" for displaying the validation message.

NOTE
The name of the stopmarker (here: "Value must be positive") is going to be

displayed by the validation mechanism in the web frontend.

Display in the web frontend: when entering a wrong value, the validator returns a yellow warning

message with the name of the stopmarker directly underneath the related property edit input field:

Two possible definitions are available there for validation of the attribute value:

• Condition for the attribute value to be set : The new value of the attribute can be validated by a

comparison with a specified value in the structured query.

Technical Handbook 5.8 - 1.2. Access rights and triggers

89

 Example: The

attribute value may only be less or equal to 4.0.

• Compare with the attribute value to be set : This compares the current value with the new

value.

Example: The new value of the attribute age may only be greater in this case. Smaller values are

not permitted.

• Compare the value to be set with the result of a script: This initially determines a comparative

value by means of a script.

The script is called using a parameter object that contains the following properties:

Property Value

attributeValue Value to be set

property Property to be changed (attribute)

topic Element of the property

user User who sets the value

Different comparative operators are available for the validation, which can be used to check the

attribute value to be set with another value. If the new value does not match the defined condition,

the filter check produces a negative result when the initial setting Search condition must be satisfied

has been selected.

Modify schema The modify schema operation concerns changes to the definition area of relations

and changes to the type hierarchy (is a subtype of and is a super-type of relations).

1.2.5.1. Example: The use of operation groups in the right system

This example shows how groups of operations (read, generate, modify, delete) can be used sensibly

when defining rights. All operations are to be prohibited for the Company type and its objects. This

includes the following actions:

• Deletion of the object type Company

• Deletion of specific company (objects of Company)

• Deletion of attributes that occur on a company

• Deletion of relations that occur on a company (relation target and source)

• Deletion of extensions that extend objects of Company

• Deletion of attribute and relation types that have objects or subtypes of Company as their

definition area

For example, if all delete operations for an object and the corresponding type are to be prohibited,

Technical Handbook 5.8 - 1.2. Access rights and triggers

90

you have to ensure you cover all delete operations by means of the corresponding parameters

when selecting the operation parameters in the query filter of the right:

The only condition of the query filter used is the object type Company, for which the setting

Instances and Subtypes is selected. The operation parameter “Accessed element” covers the object

type “Company” and all objects that belong to this type. The parameter Core object covers the

extension objects that belong to copanies. Attributes and relations are covered by the operation

parameter “Parent element.”

In the rights tree, the operational filter for the delete operation comes first. This is followed by the

query filter depicted below and finally the decider “Access refused.”

Query filters used in the example: “Core object,” “Superordinate element” and “Accessed element”

have been selected as operation parameters. The settings used are “One parameter must apply”

and “Search condition must be met.”

Extension of the right with attribute and relation types

Technical Handbook 5.8 - 1.2. Access rights and triggers

91

A thus defined right covers all but one of the above described requirements on the right. Only the

deletion of attribute and relation types that have been defined for objects and subtypes of songs

are not taken into account in this definition of rights.

The definition of rights is extended with the following filter:

The query filter includes all property types (attribute and relation types) that have been defined for

objects or subtypes of company. In the query filter definition, the parameter “Accessed element” and

the setting “Search condition must be met” are used.

1.2.6. Testbench

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs are

available in the main window. The test system area is found in the Saved test cases tab. The test

system for triggers is called in the Triggers folder by means of the System area.

Saved test cases can be tested again here. The test interface in which the test cases can be defined

can be called using the Open testbench button.

Technical Handbook 5.8 - 1.2. Access rights and triggers

92

In addition to the functionalities that are described in the following chapters, Testing an access

situation and Defining test cases, there is the option of testing access rights directly on an object or

type. Select the access rights function using the context menu (right click). The following menu

items can be selected there:

• Object: All operations (modify, delete, read and display in graph editor) are tested on the

object and their result is output.

• All: All operations (modify, delete, read and display in graph editor) are tested on the object

and all their properties (attributes and relations) are tested.

• Rights system test environment: The test environment for checking rights opens.

1.2.6.1. Test the access right situation

Two areas are relevant for testing the rights system and the trigger functionality:

• The actual test environment: The test environment offers the option to test the access rights or

when a trigger is executed for a certain test case.

• The Saved test cases tab: This lists the test cases and makes them available for subsequent

checking.

Instructions for opening the test environment

1. Select the folder Rights or Triggers in the Technical area in the Knowledge Builder.

2. If you are working in the rights system, select the Saved test cases tab in the main window.

Technical Handbook 5.8 - 1.2. Access rights and triggers

93

3. Click Open test environment (bottom right) so that the test environment opens in a new

window.

The test environment is comprised of several areas: The user and the element to which the

property that is to be checked is attached is defined in the upper area. The elements can be an

object, a type or a property (when this is transferred as an element).

The properties area lists all properties of the selected element. Non-italic properties are specific

properties that are already on the object or the property. Italic properties, in contrast, are

properties that can be created based on the schema, but have not yet been created. If creation of a

new property is to be tested, the property in italics must be selected.

The operation that is to be tested can be selected in the Operation window. Depending on the

parameters selected, checking rights either is possible or not.

NOTE

If a property of a property, this being a meta-property, is to be tested, then the

property must be marked in the property window and the As element button must

be selected. In the case of relations, for example, the specific relation between two

objects or properties is selected as an object. All properties of the specific relation

are now available in the properties window. (This can also be done with

attributes.) The Sem. element button can be used to reverse this step.

The result of the test is displayed in the bottom window. The Check button must be selected for

this. The results window displays all tested cases.

• Element : the object, the type or the property on which the property is defined.

Technical Handbook 5.8 - 1.2. Access rights and triggers

94

• Property : the specific property that is to be tested (is blank when italic properties are tested)

• Operation : that operation that is to be tested

• Access allowed : the result of the test in the test case

• Decision path : the corresponding folder which leads to the test result

• Time : the time required for the rights check

NOTE
When testing relations, the relation, the inverse relation and the both relations

halves are generally tested separately.

1.2.6.2. Define test cases

In order to monitor the functionality of the rights system, it is possible to save test cases. This is

particularly important if changes are made to the rights system and you want to check afterwards

whether the new result still matches the expected result. All saved test cases are displayed on the

Saved test cases tab. There it is possible to check all test cases at the same time.

Instructions for defining a test case

1. In the test environment, select the element and the property you wish to check.

2. Select the operation to be tested.

3. Press the Check button. Now the access rights are tested for the delivered parameters.

4. In the results output, choose the test case you want to save. (You can only ever save one

operation as a test case.)

5. Press the Test case button. The selected test case is saved and is available for future checks.

Test multiple test cases simultaneously

Technical Handbook 5.8 - 1.2. Access rights and triggers

95

Screenshot with saved test cases, the second test case is displayed in red.

All test cases whose test result matches the expected test result are displayed in green. If a test case

is displayed in red, the result of the check differs from the expected test result. The expected test

result is determined by the fact that the check of the test case was performed for the first time

during the definition of the test case. The result of this first check is displayed as the expected result

during later checks of the test case. In the test system, the expected result is either Access

permitted or Access refused ; for triggers, the expected result is either Execute script or “nothing

happens” in the form of a hyphen.

Saved test cases can be deleted with Remove . If you want to edit a test case, you can use the Open

test environment button to do so. In that case, all the parameters of the test case are transferred to

the test environment.

Technical Handbook 5.8 - 1.2. Access rights and triggers

96

1.3. View Configuration

The view configuration makes it possible to configure various views of the data in i-views. The

configured views are deployed in applications. It is possible, for example, to display sections of the

Knowledge Graph or create specific compilations of data (e.g. in forms, tables, results lists etc.).

This allows us to answer the following questions, for example, and create the required views with

view configurations:

• How should the properties of specific objects be displayed?

• In what order should the properties be displayed?

• When we create a new object, which attributes and relations should be displayed in such a way

that they cannot be overlooked and thus not filled out?

• What should the list of objects for a type look like?

• Should it even be a simple list, or should the objects be displayed in tables?

• Which elements should be displayed in the individual columns?

• Should relation targets be displayed directly? Or only specific attributes?

• Should we define different tabs that summarize properties and attributes that go together? …

Example: Specific persons have the properties Name, Age, Gender, Address, Phone number, Email,

Cell number, Fax, knows , is friends with and is a colleague of . Now we can use the view

configuration to create more structure for the data view by defining a tab with the heading

“General information”, which contains the name, age and gender; a tab with the heading “Contact

data”, which contains the address, phone number, email, cell number and fax; and a tab with the

heading “Contacts”, which contains the knows , is friends with and is a colleague of properties.

Technical Handbook 5.8 - 1.3. View Configuration

97

Example of a view configuration. Upper part of screenshot: Unconfigured section of an object in the

graph view with all its properties. Lower part of screenshot: Configured view of the same object,

where the properties that go together have been grouped, unimportant relations have been left out,

and similarity relationships are displayed directly.

One special case of view configuration is the configuration of the data view in the Knowledge

Builder, because the Knowledge Builder is also an application which allows various data views. This

is helpful if we want to use the Knowledge Builder as a preview in order to try out specific

configurations. The view configuration in the Knowledge Builder can be configured so that

important properties that need to be added can be requested in a clearly visible way, for example

the detail pages for objects. This is particularly helpful if data are to be collected systematically.

1.3.1. Concept

The concept of i-views is that semantic elements can be used for configuration. The views in the

Knowledge Builder are generated with the help of a preset view configuration.

1.3.1.1. View Configuration

The purpose of the view configuration is to format the data of the Knowledge Graph for

applications in such a way that it can be displayed either in Knowledge Builder or as an application

in the web front-end via a bridge.

In the Knowledge Graph, special “view configurations” can thus be created for use in Knowledge

Builder and for applications such as the ViewConfiguration Mapper.

Technical Handbook 5.8 - 1.3. View Configuration

98

The view configuration in Knowledge Builder contains the following categories:

• Applications

• Graph configuration

• Configuration of the KB folder structure

• Panel

• Relation target search

• Start view (KB)

• Search field (KB)

For more information, see the “Context/using view configurations” chapter.

1.3.1.2. View Configuration Mapper

The view configuration mapper is used to map the preconfigured views of the view configuration to

the web front-end of the browser.

The structure of the view configuration mapper is generally structured in hierarchical fashion and

contains the panels for building the layout (= content arrangement) of the web front-end. To display

the contents, a panel needs a sub-configuration, which is referred to as a “view” (= prepared

content).

In concrete terms, the view configuration mapper contains one main window panel and any

number of dialog panels. The main window panel reflects the entire display area of the website in

the web front-end and contains the following panels, for example:

• Window title panel

Technical Handbook 5.8 - 1.3. View Configuration

99

• Panel with defined view

• Panel with flexible view

• Panel with linear layout

• Panel with changing layout

Please note that the view configuration mapper is a single-page application; this means it is not the

visibility of panels over several pages that is controlled, but the visibility of the elements featured in

the permanent panels.

1.3.1.3. Create and update the view configuration

Create

In Knowledge Builder, there are two places where you can create a new view configuration:

1. Semantic element-oriented configuration

The first place makes sense if a view configuration is to be generated for a certain object type: On

the “Details” tab, you can edit the view configuration for details views and lists.

The displayed hierarchy has the sub-item “View configuration” with four additional subitems.

• Object → Details: This is where you can configure the details view for objects.

• Object → Object list: This is where you can configure the object list that shows the objects of

the selected type in Knowledge Builder.

• Type → Details: This is where you can configure the details view for types.

• Type → Object list: This is where you can configure the object list of subtypes of the selected

type that can be seen in Knowledge Builder.

Technical Handbook 5.8 - 1.3. View Configuration

100

You can create view configurations for this type or objects of this type on the objects type on the

“Details” tab.

Click on “New" to create a new view configuration. For object lists you automatically create a

new view configuration of the table type. For details, a dialog opens in which you can select the

desired view configuration element (on this subject, see the “View configuration elements”

chapter).

By clicking on the Edit button or double-clicking on the selected view configuration, open the editor

with which you can configure the view.

NOTE
On the “Context” tab of the respective configuration, the entry “use in” specifies in

which application the configuration is to be displayed:

Application context “apply in" Result

Knowledge Builder The details view or the list for a type or object in Knowledge

Builder is displayed.

View configuration mapper The details view is used for the web front-end.

If there is no entry for the application context and the view does not receive an application content

through inheritance from a higher-level element (view or panel), the view is not assigned and

therefore deactivated.

Technical Handbook 5.8 - 1.3. View Configuration

101

Special case: Hierarchy + object list

A possible use case for the details view of the Knowledge Builder is to display a domain-specific

hierarchy with object details. In this case, “Knowledge Builder” must be entered for the application

context in the “Knowledge Builder” hierarchy view, and to configure the details, the configuration

name must be entered in the hierarchy view. Assigning a different application context in this

constellation can lead to an endless cycle in the view configuration.

2. View-oriented configuration

The second position presents itself if an application is to be generated from scratch the many view

configurations are to be created at once. To this end, Technical > View configuration > Object types

contains all view configuration elements that are in use in the Knowledge Graph or for which a new

view configuration can be created.

To configure a web front-end, use the panel configuration Technical > View configuration > View

configuration mapper . For more information, see chapter 3 “View configuration mapper.”

Update

To ensure that changes to the view configuration are copied to the application, you have to update

the view configuration in Knowledge Builder by clicking on the “View configuration update”

button. This button is always located in the respective View configuration menu bar.

1.3.1.4. Context / Use of view configurations

The context in which a view configuration element is used is shown in the properties editor under

the “Context” menu tab.

Context

Technical Handbook 5.8 - 1.3. View Configuration

102

The context area is used to define the semantic elements for which the view configuration applies,

and to define where, i.e. in which applications or in which other view configurations, it is displayed:

• “Apply to”: The semantic element for which the view is being used must be specified here. If

the view configuration is defined by the object type, the object type is entered automatically.

Additional object types can be specified as necessary

Example: If the view is a node category of the Net-Navigator, then the object type for which the

objects are shown can be specified under “Apply to.”

• “Apply to subtypes”: This is selected to show the type itself, and its subtypes, using the

application.

• “Apply in”: Specifies the application context, i.e. which application (mostly: ViewConfiguration

Mapper or Knowledge Builder) or configuration the view is applied in.

If no application has been entered for using the view configuration, then the view configuration will

not be shown, apart from the following exceptions. View configurations are defined as a tree

structure in which the principle of inheritance applies. This is why the application does not have to

be specified separately for sub-configurations. They are shown as part of the top-level

configuration. A property configuration is shown, for example, when this is part of a layout for

which its use was specified. A view configuration is also shown when it is part of a panel which, in

turn, is defined in an application.

The following applications are available from the start:

• Graph editor: The configurations have an impact on the display in the graph editor. The graph

editor is used for visualizing the semantic elements and their relationships.

• Knowledge Builder: The view configurations are used in the actual Knowledge Builder. Along

with the detailed configurations, the object list configurations are also available here.

• Knowledge portal: The knowledge portal is a component of i-views which can be used as a

front-end. It shows the objects of the Knowledge Graph on details pages and in context boxes

on the basis of their semantic contexts.

• Net-Navigator: This is used for visualizing semantic elements. In contrast to the graph editor,

which is part of the Knowledge Builder, it can be used in the Knowledge Builder and

ViewConfiguration Mapper applications.

• Topic chooser: It allows relation targets to be selected in a window.

• ViewConfiguration Mapper: The ViewConfiguration Mapper is an intelligent front-end which, in

contrast to the knowledge portal, uses the view configurations. It can be used to create

straightforward and fast views of the data.

Moreover, it also allows any individual applications to be defined, which can be linked to the view

configuration at this point.

References

Technical Handbook 5.8 - 1.3. View Configuration

103

“References” refers to the reuse and continued use of a view configuration within another view

configuration:

• “Is included in panel”: Indicates which higher-level panels there are in the view configuration

hierarchy

• “Has sub-panel”: Indicates which panels there are in subordinate hierarchy levels

• “Order”: Determines the order of the panel when the higher-level panel has a linear layout

(horizontal or vertical)

• “Sub-configuration”: Refers to a subordinate configuration that contains the view (= specific

display of the content)

• “Activate actions from panel”: Indicates that an action in this panel is influenced by the action

in another panel (for example: Display of the search result in one panel is influenced by the

search input in another panel)

• “Show result from action”: Determines that the action by another panel causes a result to be

displayed in a defined form in this panel (for example: Net-Navigator shows the elements for

the object that was clicked in another panel’s search result field)

• Other relations (“Table of”, “Context of”, “Configuration for meta properties of”, “Action of”,

etc.) show the contexts in which a view configuration is used. A view configuration can be used

in any number of view configurations.

1.3.1.5. The validity of view configurations

The chapter Using the view configurations already noted that the application in which and the

objects and types for which the view is displayed are decisive for view configurations. Nonetheless

it is possible that the view configuration is not displayed in the selected application. This question

is: When is a view configuration valid? And for which object or type is the view configuration valid?

Inheritance of view configurations

In relation to inheritance, view configurations respond like properties. Subtypes or objects of

subtypes inherit view configurations.

Application of the most specific view configuration

The subtypes use the super-types according to the inheritance principle as long as they don’t have

their own view configurations. The most specific view configuration is always used: This is the

configuration that is defined directly on the type. If that is not the case, it is checked whether there

is a view configuration on the super-type. If that is not the case, the next level up in the type

hierarchy is checked to determine if a view configuration has been defined. The view configuration

that is closest to the object type is then used. If no view configuration is found on the super-types,

the default configuration is used for the administrators.

What happens when there are two equivalent view configurations?

If there are two equivalent view configurations, no view configuration is displayed. If the application

Technical Handbook 5.8 - 1.3. View Configuration

104

or object type was not defined for one of the view configurations, this is not considered to be an

active view configuration. In this case the other view configuration is used. If you want to display

different views for different users, you can define a rule in the detector system. In this case, the

view configuration is used in accordance with the defined rule as long as the rule only has one view

configuration dependent on the user.

1.3.2. Menus

Menu configurations contain buttons, so-called actions , which allow the user to execute a range of

functions.

The menus mainly serve two functionalities in the handling of actions. On the one hand, they can

be used to structure actions, and on the other, they can be used to specify where the menus are

deployed. The Knowledge Builder and ViewConfigMapper contain many locations where the

contents of menus are displayed, for example buttons at the head of an editor, or the context menu

for an individual property. Currently it is not yet possible to apply menus to all places where menus

are theoretically possible.

The next section describes the direct setting options for a menu, as well as the existing menu types

and how to use them.

Name Value

Label The menu type and the interface handling the display determine whether

the label is displayed.

Replaces standard

menu

This parameter currently only affects the Knowledge Builder. Some

editors, e.g. for a table, display standard menus. These can be switched

off with the help of this parameter.

Menu type The menu type describes the use of the menu in the individual

components. The menu types are described further down.

Menu types:

Menu bar

Technical Handbook 5.8 - 1.3. View Configuration

105

Name Value

 Add standard

actions

This icon is only displayed as an entry of the context menu if standard

actions can be added, currently for menus of tables and search

configurations.The standard actions are applicable for the Knowledge

Builder view configuration only and comprise the actions provided as in

object list menus:

New

Show (Edit)

Display graphically

Search

Delete

Recently accessed objects

Refresh view

Show in tree

Print

Note

• If the parameter Replaces standard menu is not set, the actions that are not included in the

menus are appended sequentially.

• If the order of the standard actions is supposed to be changed, the parameter Replaces

standard menu must be set. Following that, standard actions can be added using the Add

standard actions action. The standard actions can now be sorted in any way you wish and

mixed with your own actions.

Technical Handbook 5.8 - 1.3. View Configuration

106

Context menu

Icon

Knowledge Builder Currently it is possible to expand or define context menus for a table row

and an object editor.

Object configuration: You can use the Menu tab to create menus in any

top configuration of an element. You can also switch off the standard

menu here by setting the Replaces standard menu parameter.

Table configuration: The context menu contains two sections for a table

row. The first relates to the selected element, the second relates to the

table. There are two different configuration locations for the two

sections. For the first case, the menu for an element must be linked to

any configuration, ideally a new one, which in turn is attached via Apply

in to the table that is to display the context menu. In the second case, the

menu can be attached directly to the table.

ViewConfigMapper This is currently not used in the ViewConfigMapper.

JSON
"label" : “Menu (context)”,
"actions" : [{...}],
"type" : "contextMenu"

List

Icon

Technical Handbook 5.8 - 1.3. View Configuration

107

Knowledge Builder This is only used in the start screen configuration. The configured actions

are displayed in a list. If labels are assigned for the menus, these are also

displayed and therefore offer a structuring option.

ViewConfigMapper This is currently not used in the ViewConfigMapper.

JSON
"label" : “Menu (List)",
"actions" : [{...}],
"type" : "listMenu"

Toolbar

Icon

Knowledge Builder The actions contained in the menus are added in sequence. Subdivision

by menus and labelling of menus are currently not considered.

ViewConfigMapper The actions contained in the menus are added in sequence. Subdivision

by menus and labelling of menus are currently not considered.

JSON
"label" : “Menu (toolbar)”,
"actions" : [{...}],
"type" : "toolbar"

1.3.3. Actions

The actions in i-views are divided into preconfigured action types. These action types are

categorized as follows:

Technical Handbook 5.8 - 1.3. View Configuration

108

• Universal actions (can be used in knowledge and ViewConfiguration Mapper)

• Actions specific to Knowledge Builder

• Actions specific to ViewConfiguration Mapper

• Internal actions (for administrative use only)

Depending on the action type and application, additional configurations are required, for example

creating additional panels for displaying the results of an action.

1.3.3.1. General

Functionalities can be specified in the view configuration using actions.

All the configured actions are displayed in the Knowledge Builder as additional buttons. The script

contained in the action is executed when the respective button is clicked.

The actions configured are generally displayed as buttons in the Knowledge Builder or in the web

frontend (by means of the ViewConfiguration Mapper). Actions can be summarized in a menu, or

be defined directly for a view configuration.

Standad actions on an instances list

The label is displayed as a tooltip in the Knowledge Builder. The selected symbol (any image file) is

scaled to the size of the button.

NOTE

If no symbol is specified, no button is displayed in the Knowledge Builder. For the

web frontend, a label or an icon is needed at least.

Actions of any type can be attached at a wide range of positions. In most cases,

they are also displayed. There is no guarantee that this action can be executed in

the content in which it is currently being used. The applicaton area for the actions

(Knowledge Builder or web frontend) is described in detail in the following

chapters.

Setting options

Name Value

Configuration

Technical Handbook 5.8 - 1.3. View Configuration

109

Name Value

Configuration name The configuration name serves for identification and reuse of the

configuration element.

Label A label can be defined for the button for the action here.

Script for label A script can be used to specify the button label. This option is

only available when no label is specified.

Bookmark path Bookmark path can be selected or created here. The displayed

name is used as path pattern in the same time. The path pattern

is used for path pattern construction of the bookmarking

resource. For detailed information, see chapter about

bookmarking ("Bookmarks and Resource").

Action type The type of action. The different types are explained further

down. A script overwrites the action defined by the action type.

Dependent on the action type, only certain types of script might

be available.

NOTE

When switching the action type, scripts which

are not applicable anymore will be removed; is

the script is unregistered, it will be deleted. A

dialog informs about the consequences

beforehand.

Script (custom) The script that is to be executed for this action. The script is

allowed to modify elements of the knowledge graph and defines

the action result.This script is available if one of the following

action types has been selected:

• Choose relation target

• Script

• Selection

Script (deprecated) The script that is to be executed for this action. Deprecated →

use "Script (Custom)"

Script (before action) This script is available only if the action type "Save" has been

selected.

Script (ActionResponse) (VCM) A script specified here executes a so-called ActionResponse after

the action. This script must not be used for standard VCM-views.

Not available for all action types.

Script (after action) This script is available only if the action type "Save" has been

selected.

Script (recall)

perform by A view role can be selected or defined here.

Technical Handbook 5.8 - 1.3. View Configuration

110

Name Value

Question before execution For web frontend only. A text can be specified here which is to

be shown to the user in a dialog box before the action is

executed. The dialog provides the option of canceling or

continuing the action (Ok/Cancel/Close).

Script for question before

execution

A script can be used here to determine the text for the

confirmation dialog for the action. Caution:

• If a blank string is returned, the dialog does not appear.

• If an error occurs within the script, the dialog won’t appear

as well.

Transaction This option is only needed for editing purposes in the web

frontend: By means of the transaction begin , a temporary

state/element can be memorized until another action ends the

transaction using the transaction commit . Example: Creating

temporary elements in a dialog which then can be written

permanently into the Knowledg Graph by means of the acton

type " Save " and the transaction type " commit " or rejecting

the creation by means of the action type " Abort ", without a

transaction type.

Display

Script (enabled) A script can be used here to determine whether the button for

the action is to be activated, and should therefore be able to be

executed.

Script (visible) A script can be used here to determine whether the button for

the action is to be displayed (return value "true" for visibility,

"false" for invisibility).

Icon Icon in forms of a bitmapped graphic which can be selected here

that is to be displayed on the button for the action. For the web

frontend, vector graphics can be used as well. An action needs at

least an icon or a label to be visible in the web frontend.

Tooltip The content of the tooltip (= mouse-over text) for the action can

be defined here, instead of using the text of the label.

Script for tooltip A script can be used here to determine the content of the tooltip

(= mouse-over text) for the action, instead of using the text of

the label.

Technical Handbook 5.8 - 1.3. View Configuration

111

Name Value

After execution (action)

Notification Text shown in a notification that appears after the action.

Script for notification A script can be used here to determine the content of the

notification.

Notification type (VCM) As a metaproperty of the notification or the script for

notification, the notification type can be set to for different

message colors in the web frontend:

• "Success" (green message)

• "Information" (blue message)

• "Warning" (yellow message)

• "Error" (colorless message)

After execution (panels)

Show result in panel (VCM) A panel in which the result of the action is to be displayed.

Activation mode (VCM) See chapter "View Configuration Mapper" (3.2.1.2)

Script for activation (VCM) In general, an action can be (re-)used to show content in diverse

panels. The script for activation defines, if the respective panel

will be activated for showing the content after execution of the

action or not - by returning a Boolean value. If no script is used,

the panel will be activated in every case. Example: The save

action of an edit dialog is configured to initiate the creation of a

new object. Depending on the type of the recently created

object, the new object will be displayed either in sub panel A or

in sub panel B of a flexible layout panel.

Script for target model (VCM) A script can be used which context / semantic element is to be

passed on to the following view after execution of the action.

Close panel (VCM) Applicable to dialog panels only. After execution of the action,

the panel is automatically closed.

KB

Action type The action type that is only applicable when using the action

within the Knowledg Builder and not for the web frontend.

Use original position

Styles

Styles can be used in different ways to influence the appearance of the button or the behavior of

the button. See respective chapter.

Context

Technical Handbook 5.8 - 1.3. View Configuration

112

Name Value

Action of Describes in which menu the action is currently used. An action

can be (re-)used in different menus.

Sort order Describes the position of the action within the superordinate

menu.

Notice Tells e. g. whether the action is used in more than one

configuration. In this case, a blue sign with an exclamation mark

appears nearby the context tab:

1.3.3.2. Universally applicable actions

Universally applicable actions can be used in both the Knowledge Builder and in the web frontend

using the ViewConfiguration Mapper. This includes the action types “Display graphically”, “Delete”,

“Search” and “Tag”. For further information about the tag action type, see the respective chapter

about tagging.

1.3.3.2.1. Action type "Display graphically"

The “Display graphically” action is used in a view configuration to graphically depict object types,

relations and objects in the Net-Navigator. Here the configuration is as follows:

Technical Handbook 5.8 - 1.3. View Configuration

113

For this purpose, a panel must be specified under “Show result in panel” that contains a graph

object as its sub-configuration. The graph object in turn must contain a graph configuration for the

definition of the elements to be displayed:

1.3.3.2.2. Action type "Delete"

This action type deletes the respective element.

For view configuration in the web frontend, the delete action deletes the respective accessed

element. For example, a delete action in a menu in the second column element of a table results

into a button shown at each row, leading to the row element being deleted when clicked onto.

Technical Handbook 5.8 - 1.3. View Configuration

114

In Knowledge Builder, the "Delete" action type is preconfigured for object lists:

Like any other configuration in Knowledge Builder, the default configuration can be replaced with a

customized configuration, containing the specified "Delete" action type.

1.3.3.2.3. Action type "Search"

This action triggers a search. This function has been integrated into the menu bar of object lists in

the KB (shortcut Ctrl + S):

When used for the configuration of the web front-end, the action is assigned to an action by means

of the drop-down menu under the entry “Action type:”

Technical Handbook 5.8 - 1.3. View Configuration

115

Tip:

• If a search function with string input (keyword search) is required for the web frontend, then

the search field element or the query element in the view configuration mapper can be used.

An input line and search button are preconfigured for search field view and query view as well.

For the search field view, the search result can be displayed by means of a search result view

which is influenced by the search field view.

• Furthermore, a "Query" view can be used which combines search input field and search result

view into one element. As long as the search input field is not required to be situated apart

from the search result, using this view is recommended.

1.3.3.3. Actions for the Knowledge Builder

These action types can only be used for configurations in the Knowledge Builder.

NOTE

The KB-specific action types are only available in the “KB” tab of an action from KB

version 5.2.2 or higher. Since these action types are all used per default for object

lists and the Knowledge Builder start page nevertheless, they mainly are for

configuring menus with a reduced amount of actions or for completion of

customized actions by additionally using the standard action types.

1.3.3.3.1. Action type "Save query results"

If searches are executed in the Knowledge Builder by means of a structured query, you can save the

results by clicking the button in the menu bar:

Technical Handbook 5.8 - 1.3. View Configuration

116

This action saves the query result in a folder you can choose:

NOTE

The saved search is an object list based on the configuration of a structured query

relating to currently existing semantic elements. If changes are made to the

relevant elements after the search result has been saved, this will have an effect

on the saved results as well: When the relevant element is deleted, it no longer

exists in the saved search result.

1.3.3.3.2. Action type "Refresh view"

In the KB, an action with the action type "Refresh view" recalculates the visible content of table

cells. This option provides a preconfigured action that is available via the “Update” button in the

object list menu bar (shortcut: F5).

Technical Handbook 5.8 - 1.3. View Configuration

117

1.3.3.3.3. Action type "Print"

This action is used in the menu bar of list views. The preset configuration can be used to print out

object lists or output them in an Excel table, without having to create an export mapping.

The “Print” action opens the Print dialog in Knowledge Builder.

The Print action is also available in the results lists of structured queries. When configuring

individual views in Knowledge Builder, the action must be added to the respective view or

configuration element:

Technical Handbook 5.8 - 1.3. View Configuration

118

The prerequisite for being able to use the action type “Print” is that the Printing component exists,

which can be installed retrospectively via the Admin tool if necessary.

The configuration of the printing component is available within the "TECHNICAL" part of the

Knowledge Graph. There, printing templates can be defined using document templates. For more

information, see the respective chapter "Reports and printing".

1.3.3.3.4. Action type "User guide"

The action type "User guide" provides a preconfigured action that opens the i-views web manual in

the browser.

In contrast to the “Web-link” action type, this is a link to a preconfigured address, like the

“Homepage” action type.

Technical Handbook 5.8 - 1.3. View Configuration

119

Setting options

Name Value

URL Preconfigured weblink to the i-views manual.

1.3.3.3.5. Action type "Homepage"

This action type can be used for the start view of the KB. The home page is opened in the browser.

Setting options

Name Value

URL Link to a website

1.3.3.3.6. Action type "Show in tree"

The Show in tree action can be used to display the location of an element from the Knowledge

Graph. Executing this action has the effect that the location of an element (e.g. an entry in a list

view) appears at the corresponding point in the structure tree of the organizer (left column of the

KB) and opens in the details view of the element.

Technical Handbook 5.8 - 1.3. View Configuration

120

1.3.3.3.7. Action type "E-Mail support"

This action type can be used for the start view of the KB. The actions contained open a dialog in

which you can send an email to the configured address.

Setting options

Name Value

URL Email link

1.3.3.3.8. Action type "Web link"

The “Web link” action type can be used for the start view of the KB. It differs from the “Homepage”,

“E-Mail support” or “User guide” action type in that way that you can assign any web address as the

hyperlink.

NOTE
In later KB versions (KB 5.2.2) the “Web link” action type is only available on the

“KB” tab - see following picture.

Technical Handbook 5.8 - 1.3. View Configuration

121

Setting options

Name Value

URL Address of the web link.

NOTE
If the URL attribute is not displayed, it can be added by editing the action in an

unconfigured editor view.

1.3.3.3.9. Action type "Recently accessed objects"

Shows the objects (semantic elements) that were last used in the respective table. Objects might be

filtered depending on the definition of the table.

Technical Handbook 5.8 - 1.3. View Configuration

122

In Knowledge Builder, this action is preconfigured for list views and can be called up using the key

combination Ctrl+R.

1.3.3.3.10. Action type "New"

The new action creates new types or new objects in the Knowledge Graph. The new action is, for

example, used in the menu bar of object lists in the Knowledge Builder.

NOTE
For the web frontend, a script must be used instead of the action type "New". For

more information, see the chapter “JavaScript-API”.

1.3.3.4. Actions for the viewconfiguration mapper

The actions for the ViewConfiguration Mapper can only be used for the web front-end and are split

into different action types.

1.3.3.4.1. Action type "Cancel"

The action type "Cancel" is used in the web frontend to cancel a started transaction.

Example: A menu action with the option "transaction: begin" is configured to create a temporary

object for displaying it in a dialog. A subsequent action with the option "transaction: commit"

(mostly in combination with the action type "Save") completes the transaction and persists the

object, whereas an action of the action type "Cancel" cancels the transaction and rejects the

temporarily created object.

1.3.3.4.2. Action type "Show"

This action initiates a re-calculation of a suitable view for the semantic object that is the target of

the action. You typically use this action if you want to change the view. The result of the action is

the new view.

Technical Handbook 5.8 - 1.3. View Configuration

123

You can use “Show result in panel” to determine in which panel the view is to be displayed.

The “Activation mode” determines the update behavior of the view:

Activation mode Description

Default The target panel is activated (= made visible) after the action

execution, regardless of whether it was activated before the

action or not. If the target panel is connected to other panels

with an "influences" relation, those panels will be activated

aswell and provided with new content. The action result will be

the new model of the target panel and its influenced panels. This

mode is useful e.g. for showing a dialog panel.If there is no

configured activation mode, this mode will be used as default.

Technical Handbook 5.8 - 1.3. View Configuration

124

Activation mode Description

Refresh view only The target panel is only refreshed, if it was already visible before

the action execution. Furthermore, no additional panels will be

activated through "influences" relations. The action result has no

influence on the panel’s content: the same model will be shown,

but the view may change due to side effects of the action (e.g.

because a query now yields more results or a shown object

received new properties).

Refresh model and view The target panel is only refreshed, if it was already visible before

the action execution. Furthermore, no additional panels will be

activated through "influences" relations. The action result

becomes the new model of the target panel and replaces the

previous model.

1.3.3.4.3. Action type "Selection"

This action corresponds to the “Display” action, with the only difference being that the action is

executed on the parameter “selectionElement,” i.e. on a selected element.

NOTE This effect also applies to any script that might be available.

The “Selection” action is used only (but not necessarily) in order to call up a display from another

panel when clicking on a table entry or list entry in a search result. This is often used to display

detailed information on a semantic element.

Example

Technical Handbook 5.8 - 1.3. View Configuration

125

Keep in mind that the respective “Selection” action specifies the panel that this action is supposed

to affect. This is specified under “Show result in panel.”

1.3.3.4.4. Action type "NN-Expand"

NN-Expand is an action type that makes it possible to expand a graph node in the Net-Navigator.

This means that you can see all the nodes that are connected to this node via a relation and that are

permitted by the graph configuration. The affected relations between the nodes are also displayed.

Nodes that are already displayed in the Net-Navigator only display the relevant relations in addition.

Display with a plus sign as shown in the image below is the default setting. If you click on the plus

button and it involves too many relations, a dialog window appears, and that dialog window has

also been configured already. In this dialog you can choose which nodes should be displayed.

In the graph configuration this action is attached to all node categories that are supposed to be

equipped with it. A menu that can contain all NN actions is created on the “Node” tab. In the action

itself, it is only necessary to select the “NN-Expand” action type, all other specifications are

optional. Further action types are available from the neighboring “…” button.

Technical Handbook 5.8 - 1.3. View Configuration

126

1.3.3.4.5. Action type "NN-Hide"

With the configuration of this action type, a menu button is provided in the graph nodes that hides

the selected graph nodes and its displayed relations one time (see crossed-out eye in the image).

The node can, for example, be displayed again when another connected node is expanded.

The NN-Hide action is configured like the NN-Expand action, but “NN-Hide” is chosen as the action

type instead of “NN-Expand”. In order to configure more than one action type on a node, multiple

Technical Handbook 5.8 - 1.3. View Configuration

127

actions must be created for a menu.

1.3.3.4.6. Action type "NN-Pin"

The NN-Pin action is used to configure a menu button that allows a node to be pinned down in the

Net-Navigator. When the graph is automatically restructured, for example when expanding another

node, the node that was pinned down remains in its position. Despite this, the node can be

repositioned manually and the pin is released when the graph is reloaded. Clicking on the pin again

also releases it again. The “pinned” status is displayed by a change in the graphic (the pin points

downwards instead of lying at an angle).

Technical Handbook 5.8 - 1.3. View Configuration

128

The configuration of the action type is performed as described in the “NN-Expand action”.

1.3.3.4.7. Action type "Save"

The Save action stores the form data from the web front-end in the Knowledge Graph. The web

front-end automatically recognizes the action type and sends it to the configured view. If no view

has been defined as the recipient of the action, the web front-end tries to find a suitable view in a

neighboring panel.

Technical Handbook 5.8 - 1.3. View Configuration

129

To do this, the action type “Save” is assigned to the action in a menu:

The Save action can be used, for example, to replace the individual Save buttons in several edit

fields in a dialog with a customized Save button.

NOTE

If you want to to use the save-action to do more than just to save (e.g. add another

object to the object you just edited), you have to use "Script (after action)" instead

of "Script". The reason is that otherwise the save action would be overwritten by

the script action.

1.3.3.4.8. Action type "Print"

Like in the Knowledge Builder, the Print action is used for generating documents based on the

shown model. The difference is that no configuration dialog is shown to the user. The necessary

settings therefore need to be configured at the action configuration. Prerequisite for using the Print

action is the availibility of the printing component, which can be installed using the admin tool.

Depending on which kind of view is used to execute the print action, the behavior is slightly

different:

• Table print: If the action is performed by a table or search view, a table print based on the

columns and content of the respective table is executed. If the print action is not connected to

a print template, a new .xlsx document is generated, otherwise the table content is embedded

in the provided template file. In both cases the filtering and sorting of the table is respected,

but all elements are printed regardless the configured pagination of the table.

Technical Handbook 5.8 - 1.3. View Configuration

130

• Element print: If the action is performed by any other view, the element which is the model of

the respective view is used as the basis for the generated document. In this case the

configuration of a print template is mandatory. This mode is also used for print actions that are

configured in table rows. In that case they refer to the respective row’s element.

For a print action, the desired file name and target format can be configured. A configured target

format requires a suitable converter configuration from the template’s source format to the target

format. For more information regarding the configuration of print templates and converters, refer

to the chapter on "Reports and printing".

1.3.3.5. Internal actions

The use of internal actions requires expert knowledge. If in doubt, please contact i-views support:

support@i-views.com.

The actions listed here are only included for reasons of completeness. This includes actions such as:

• Sort action

• Jump action

• Create target action

• Script action: If there is a script on an action, it causes it to be executed automatically, and

therefore overwrites the integrated function of the respective action type.

1.3.3.6. Scripts of actions

1.3.3.6.1. Script (custom)

This script is executed when the action is triggered. The script may modify elements of the

knowledge graph and compute the result of the action which is usually the model to be visualized in

the defined target panel(s).

The script may also read and modify session variables or view state.

function customAction(action, actionResult) {
}

Arguments

action $k.Action - The object representing this action.

actionResult $k.ActionResult - The result of the action.

Parameters of the action can be accessed by the corresponding functions of the action object (see

JavaScript documentation).

The view ($k.View or sub-classes) executing the action can be accessed in the script as "this" object.

Technical Handbook 5.8 - 1.3. View Configuration

131

mailto:support@i-views.com?subject=i-views%20Tutorial

1.3.3.6.2. Script (actionResponse)

The purpose of this script is to provide a custom response to customized fronted-implementations.

For standard ViewConfigMapper this script must not be used.

This script is executed after the action has been executed. Its main task is to prepare the result of

the action for the ViewConfigMapper (or other front-ends). The script must return an object of the

type $k.ActionResponse.

function actionResponse(element, context, resultModel) {
 var actionResponse = new $k.ActionResponse();

 actionResponse.setData(resultModel);
 actionResponse.setFollowup("new");
 actionResponse.setNotification(“done","warn");

 return actionResponse;
}

Arguments

Argument Value

element The semantic element in the context of which the action is

executed

context (deprecated) More predefined variables that describe the context of the

action in more detail

resultModel The result model of the action result.

ActionResponse

The ActionResponse can be supplemented with values for Followup / Data and Notification . These

values can be evaluated by other applications such as the ViewConfigMapper.

In the Knowledge Builder, the following values for Followup are possible in tables:

refresh Renders the current table again without recomputing the list

update Recalculates the table

show-element Selects the element in data in the table. Alternatively, the “data”

element can handle an object by means of {"element":

actionResult, "viewMode": "edit} in order to open the result in a

new Detail editor.

Followup is not evaluated in detail editors.

Technical Handbook 5.8 - 1.3. View Configuration

132

http://www.k-infinity.de/api/4.0/symbols/%24k.ActionResponse.html

1.3.3.6.3. Script (actionVisible)

function actionVisible(element, context) {
 return true;
}

The return value is used to decide whether the button is displayed or not.

In the case of actions on the elements, the following function is called up in tables, which transfer

an array of elements and expect an array of Boolean values. This can be used to compute the

visibility for the elements more efficiently in one go.

function actionsEnabled(elements, contexts) {
 return elements.map(function (element, index) {
 return actionVisible(element, contexts[index]);
 });
}

1.3.3.6.4. Script (actionEnabled)

function actionEnabled(element, context) {
 return true;
}

The return value is used to decide whether the button is active.

In the case of actions on the elements, the following function is called in tables, which transfer an

array of elements and expect an array of Boolean values:

function actionsVisible(elements, contexts) {
 return elements.map(function (element, index) {
 return actionVisible(element, contexts[index]);
 });
}

1.3.3.6.5. Script with UI specific actions

The script that implements the action can access UI-specific functions in the Knowledge Builder

using context.ui .

UI functions should not be executes within transactions when possible, as the display is not

updated within the transaction.

Technical Handbook 5.8 - 1.3. View Configuration

133

context.ui.alert(message, windowTitle)

Shows a message.

context.ui.requestString(message, windowTitle)

The user can enter a string.

context.ui.confirm(message, windowTitle)

Opens a cancel dialog.

context.ui.choose(objects, message, windowTitle, stringFunction)

Have an object selected from a set.

context.ui.openEditor(element)

Open the default editor for the object.

context.ui.notificationDialog(notificationFunction, parameters,
windowTitle)

A wait dialog or notification dialog is opened. Depending on how it is configured, it can be canceled.

Possible parameters:

Parameter Description Default value

autoExpand The dialog display area is opened initially. true

canCancel The dialog can be canceled. true

stayOpen The dialog remains open after the end of the

function.

true

Example:

ui.notificationDialog(
 function() {

Technical Handbook 5.8 - 1.3. View Configuration

134

 ui.raiseNotification("start");
 for (var i = 0; i < 10; i ++)
 ui.raiseNotification("" + i + "*" + i + "=" + (i*i));
 ui.raiseNotification("end");
 return undefined;
 },
 { "canCancel" : false },
 "A wait dialog"
)

Messages can be output in the display area using the following raiseNotification function.

$k.UI.raiseNotification(message)

This message is only captured by the notificationDialog function, and the message is only output in

the display area there.

1.3.3.7. Action sequences

Often we might want to summarize the changes that the user makes to the Knowledge Graph and

that are split into several sequential actions.

Example: In one action, a new product is created, and in the next action the properties of the

product are described. Aborting the second action would create a product without a description in

the Knowledge Graph.

What is required is an “All or nothing” behavior to ensure that either all actions that belong

together are executed or that none of them are. You also want to ensure that other users can only

see the change to the Knowledge Graph once it has been completed. You can achieve such behavior

by encapsulating the actions in a “Transaction”.

In order to summarize a sequence of actions in a transaction, you mark the first action with

“Transaction - begin” and the final action with “Transaction - commit”.

Caution: The transaction is started only if the first action actually modifies the Knowledge Graph.

When creating new objects in a sequence of actions you also have to ensure that the order of newly

created objects is deterministic, so whenever an action script is repeated the creation order is the

same as before. If the set of created objects varies dependent on the actual situation, make sure to

sort the originating set in a deterministic way before creating the objects (e.g. by idString()).

The transaction commit can also be brought about dynamically via the “setTransactionCommit()”

script function.

If the transaction is to be canceled, you can achieve this by means of an action of the “Cancel” type.

Canceling means that all previous changes to the Knowledge Graph conducted within the

transaction are undone. The “setFailed()” script function can be used to dynamically initiate a

Technical Handbook 5.8 - 1.3. View Configuration

135

cancellation.

As a transaction is always coupled to the duration of a session, a transaction is canceled

automatically when the session ends in which the transaction was started. If, for example, you open

a dialog at the start of the transaction and the dialog is closed before the transaction was

completed, the transaction is canceled automatically. This does not apply to dialogs that are opened

while a transaction is already running, because this creates a new session on the session stack.

Dialog sequences (one dialog is closed and another dialog is opened immediately) do not interrupt

the transaction either.

1.3.4. View configuration elements

A view configuration describes how objects or types are to be shown. The different element types

that are available in the view configuration are described in the following.

The individual view configuration elements can, in part, be plugged together in any way. The

configurations can also be used multiple times as a sub-configuration.

List of the different detail configuration types

Configuration type Top-level configuration Can include the following sub-configuration

Alternative x any

Property

Properties x property

Layout x any

Hierarchy x any

Script-generated

content

x

Static text

Search Table

Setting options that all detail configuration types have in common

Name Value

Configuration name This is not used in the user interface. The user who creates a

configuration has the option of assigning a name that is

comprehensible for the user in order to be able to find this

configuration more easily later on, and to be able to use it again

in other configurations.

Technical Handbook 5.8 - 1.3. View Configuration

136

Name Value

Script for window title Only for use in the Knowledge Builder. If an object is, for

example, opened by double-clicking in the object list, a window

with the properties of this object opens. The title of this window

can be determined using a script.

NOTE
The setting options for the individual configuration types are described in the

following sections. The obligatory parameters are printed in bold.

1.3.4.1. Alternative

An alternative is used to configure many different alternative views on an object. You can use tabs

to switch between the views in the application.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. an additional alternative .

Script for label The Script for label is used for dynamic computing of the label.

This script is only available, if no entry exists for "Label"

Default alternative The sub-view that is supposed to be selected initially can be

specified here.

Script for default alternative .

Restore last selected

alternative

If enabled, the lastly selected tab keeps selected, even if a

change of view occured.

Script for visibility This script is used to compute dynamically, if the view needs to

be visible or not.

Display in an application

If the views are exported into JSON, the individual sub-views are attached to the alternatives KEY in

Technical Handbook 5.8 - 1.3. View Configuration

137

an ARRAY.

Example of an alternative in an application: You can use the tabs to switch between the views “Tab

1” and “Tab 2”.

Display in Knowledge Builder

In Knowledge Builder, the various configured views of an object that are linked to the alternative

are made available to users by means of tabs

Example of an alternative in Knowledge Builder: You can use the tabs to move between the view

“Details” and the view “Knowledge and Skills”

Configuration of tabs

If a view configuration of the “Alternative” type has been created, you can use the button “Create

new objects of object configurations” to add a new tab.

It usually makes sense to use the view configuration type “Layout” as the tab as any number of view

configurations can be placed therein. The label of the view configuration is also the label of the tab.

Technical Handbook 5.8 - 1.3. View Configuration

138

1.3.4.2. Layout

A layout can be used to summarize different sub-configurations in one view. The subelements are

then shown in order.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. Alternative .

Orientation Defines whether subviews are stacked horizontally or vertically.

The default behavior is horizontal orientation.

Script for visibility A script that determines whether the layout is displayed or not.

Display in an application

Display in Knowledge Builder

A frame is drawn around a layout in the Knowledge Builder. This frame then shows the views of the

sub-configurations.

Technical Handbook 5.8 - 1.3. View Configuration

139

A layout detail view adjacent to the tree view with the following sub-configurations: Image view

“Image with label”, text view "Details" and string property "Text", contained in a vertically oriented

layout on the left side. On the right side, a second layout with vertical orientation of properties is

shown.

1.3.4.3. Hierarchy

The configuration type “Hierarchy” displays elements of a Knowledge Graph as a hierarchy in a tree

structure, in which individual branches can be expanded and collapsed.

Either relations or relation targets can be used for work. The hierarchy is structured from the start

element of the view configuration, for which all subordinate relations or objects and their

subordinates must first be determined. After this, the higher-level relations or objects are

determined for each element. This element result set is then shown in the hierarchy.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. Alternative .

Script for label It is also possible to define a label using a script.

Icon Sets the icon for all nodes of the hierarchy.

Script for icon Returns an element icon as blob to be displayed for nodes of the

hierarchy.

Show parent banner Only relevant for the Knowledge Builder: Banner is displayed.

Do not show detail view Per default, a standardized detail view is displayed besides the

hierarchy view which shows the details of the selecetd element.

This option suppresses the detail view from being displayed.

Technical Handbook 5.8 - 1.3. View Configuration

140

Name Value

Restore last expanded nodes If enabled, the last expanded nodes stay expanded for one and

the same context element during the whole web-frontend

session.

Click action Reference to an action that is called when a hierarchy element is

clicked.

Script for visibility Determines whether the whole hierarchy view is visible or not.

Generate subelements without

name query

When new subelements are generated in the hierarchy, what

their name should be is queried by default. A checkmark here

generates nameless objects without a name query.

Traversal

Structured query (down) Structured query for determining the subordinate element.

Structured query (up) Structured query for determining the superordinate element.

Script (down) Script for specifying a relation or a relation target to determine

the element node of the lower hierarchy level.See example

below.

Script (up) Script for specifying a relation or a relation target to determine

the element node of the upper hierarchy level.See example

below.

Relation (down) Relation half which points downwards.

Relation (up) Relation half which points upwards.

Output up to depth .

Sort

Sort downward Controls if sorting is in ascending or descending order. If this

parameter is not set, sorting occurs in ascending order.

Primary sort criterion Selection option for the criterion used for sorting the properties:

• Position: The order defined in the configuration is used

(default).

• Value: The content of the attribute or display name of the

relation target is used.

• Script for sorting: The script saved in the attribute Script for

sorting is used for determining the sort criterion.

Secondary sort criterion Sort criterion for properties which have the same value for the

primary sort criterion. The setting options are analogous to those

for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for the

primary or secondary sort criterion.

Technical Handbook 5.8 - 1.3. View Configuration

141

Name Value

Disallow manual sorting By default, the user can reattach elements in the Knowledge

Builder to the schema by means of Drag&Drop. If this option is

activated, this is no longer possible.

KB

Creating elements without

question by name

If enabled, the menu directly above the hierarchy allows creating

subelements without asking the user for a name of the new

element.

Actions and styles

Actions and styles can be attach for both the entire hierarchy and for the individual nodes. From

version 5.2 or higher, style classes can be automatically assigned using a script.

Display in an application

The JSON representation of a configuration of type hierarchy is only available from version 4.1 or

higher.

Display in Knowledge Builder

A hierarchy appears in the area on the left in the detailed display of an element. The element is

displayed with a view configuration without hierarchy in the area on the right. This view

configuration must be defined separately and the configuration name of the hierarchy must be

specified under Reference >> Apply in . Alternatively, the sub-configuration can also be specified

directly in the hierarchy under Sub-configuration .

Technical Handbook 5.8 - 1.3. View Configuration

142

Notes

• Elements are not always represented by their name in hierarchies. It is not possible to display

anything other than the name, or information supplementing the name, directly in the

hierarchy.

• The values of all properties that can be filled out for forming the hierarchy are relations.

• The individual attributes such as relation - descending can be assigned multiple times.

• The relation or relations are determined and collected for each attribute type. If different

attribute types are specified, the subsets are used to form an intersect.

Example - application case

Hierarchies are typically used to represent supertopic/subtopic relations or part-of relations.

1. Relation that forms a hierarchy

The most direct variant. The relations that form the hierarchy are entered.

2. Structured query that forms the hierarchy

The relations can also be determined by means of a structured query.

Technical Handbook 5.8 - 1.3. View Configuration

143

3. Script that forms a hierarchy

A script can also be used to collect the relations that potentially form a hierarchy. The current

element is passed to it as a parameter, and it must return a set of relations. Instead of working

on relations, working on elements is also possible.

Script example for relation with internal name 'is SubcomponentOf':

Option a): Using relations

function relationsOf(element)
{
 return element.relations('isSubcomponentOf');
}
function targetsOf (element)
{
 return undefined;
}

Option b): Using relation targets

function relationsOf(element)
{
 return undefined;
}
function targetsOf (element)
{
 return element.relationTargets('isSubcomponentOf');
}

NOTE

Please be aware that only the usage of relations or relation targets in one and the

same script makes sense; otherwise each hierarchy node will appear twice. The

other part of the script keeps unchanged and returns "undefined".

Technical Handbook 5.8 - 1.3. View Configuration

144

1.3.4.4. Tree

Just like a “hierarchy,” a “tree” is based on the configuration of a hierarchical tree structure. In

contrast to a hierarchy, a tree can also include static nodes. Hence, it is possible to create a tree

without a Knowledge Graph source element. Another difference is that the sub-nodes of a “tree”

can be configured differently whereas all nodes of a “hierarchy” respond in the same way for a

given semantic element.

A tree configuration generally distinguishes two types of nodes:

• Static hierarchy node: Nodes of this type always exist if there is a connection to the root of the

tree. The “context element” relation can be used to optionally integrate the node into a

semantic element.

NOTE The top node of a tree is always static and always invisible.

• Hierarchy node patterns: This type can map several nodes for each level. A node is formed for

each relation target that can be reached from an element of the higher-level node. You can set

the property “transitive” to map several levels. You can the property “apply to” to restrict to

which element types the node pattern is applicable. Otherwise the node pattern can be applied

to all elements that fall into the target validity area of the configured relations. As an

alternative to determination via a relation type, sub-nodes can be determined using a

structured query. The structured query begins with the element of the parent node. The

subordinate nodes are determined by the part of the query that is marked with the predefined

identifier “subnode”. If you want to use the “Transitive” option, the corresponding relation in

the query must be marked with the predefined identifier “subnodeRelation”.

The sorting of tree nodes can be configured in the same way as that of the “hierarchy.” However,

this configuration does not globally apply to the tree but each node configuration applies to the

Technical Handbook 5.8 - 1.3. View Configuration

145

respective sub-nodes.

Finally, the image and label displayed can be configured for each node type, either directly or via

script.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. Alternative .

Script for label Script that returns a string for the label instead of using the label

attribute.

Do not show detail view Per default, a standardized detail view is displayed besides the

hierarchy view which shows the details of the selecetd element.

This option suppresses the detail view from being displayed.

NOTE
The standardized detail view can be replaced by

configuring a customized view.

Disallow manual sorting By default, the user can reattach elements in the Knowledge

Builder to the schema by means of Drag&Drop. If this option is

activated, this is no longer possible.

Restore last expanded nodes If enabled, the last expanded nodes stay expanded for one and

the same context element during the whole web-frontend

session.

Script for visibility Script that returns a Boolean value for whether the view is to be

displayed or not.

Sort configuration

Sort downward Controls if sorting of subnodes is in ascending or descending

order. If this parameter is not set, sorting occurs in ascending

order.

Primary sort criterion Selection option for the criterion used for sorting the subnodes:

• Position: The order defined by the Sort order meta property

of involved relations is used

• Script for sorting: The script saved in the attribute Script for

sorting is used for determining the sort criterion.

• Value: The display name of the relation target is used.

Technical Handbook 5.8 - 1.3. View Configuration

146

Name Value

Secondary sort criterion Sort criterion for subnodes which have the same value for the

primary sort criterion. The setting options are analogous to those

for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for the

primary or secondary sort criterion. Attention : if there are

several different sub-node configurations, the script is potentially

called with instances of different types and should be formulated

in a correspondingly general way.

KB

Script for window status Returns a status label for the window footer when the detail

view within the Knowledge Builder is opened in a new window.

Script for window title Returns a label for the window title when the detail view within

the Knowledge Builder is opened in a new window.

1.3.4.5. Properties

The Properties configuration is a list of individual configurations. The sub-configurations can be

exclusively of the Property type, each of which is linked to an attribute or a relation of a Knowledge

Graph object or type.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

this configuration.

Label Display name of the collection of properties. If no label is

specified, the string ‘Properties’ is used in Knowledge Builder.

Script for label Alternatively, the display name can also be determined via a

script.

Initially expanded If this configuration in included e.g. as a meta-configuration, this

parameter can be used if this is supposed to be expanded

already when opening Knowledge Builder.

NOTE
The web frontend does not display the affected

meta-property if the checkmark is not set here.

Script for visibility Control of the visibility of the properties by a script.

Setting options for sorting

Technical Handbook 5.8 - 1.3. View Configuration

147

Name Value

Sort downward Controls if sorting is in ascending or descending order. If this

parameter is not set, sorting occurs in ascending order.

Primary sort criterion Selection option for the criterion used for sorting the properties:

• Position: The order defined in the configuration is used

(default).

• Script for sorting: The script saved in the attribute Script for

sorting is used for determining the sort criterion.

• Value: The content of the attribute or display name of the

relation target is used.

Secondary sort criterion Sort criterion for properties which have the same value for the

primary sort criterion. The setting options are analogous to those

for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for the

primary or secondary sort criterion.

Display in applications

The views of the configuration of individual property elements are stored in an ARRAY during

output in JSON format and appended with the KEY properties .

Display in Knowledge Builder

The label set in the configuration is displayed prominently. This is followed by views of the

configured properties.

Note

Meta properties are appended using the same process.

Technical Handbook 5.8 - 1.3. View Configuration

148

1.3.4.6. Property

The Property view configuration can be used to define individual attributes or relations to be

displayed in a list of properties. It is also possible to use an abstract property that groups a set of

properties.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

this configuration.

Label Display name of the property. If no label is specified, the name of

the property type is output.

Script for label The label can be determined by means of a script specified here.

Property Link to the property type that is to be displayed.

Query for virtual properties Alternative to ‘Property’: Instead of defining the porperty, a

query can be used which returns the needed kind of property.

This comes in handy when the property is not directly assigned

to the object.

Script for virtual properties Alternative to ‘Property’: Script for calculating the values to be

displayed.If you set the “ Automatic updates ” meta flag, the KB

is automatically updated when a value on which a calculation

was based is changed. Caution: if you set this flag, this can have

a significant effect on performance, depending on the script.

Display type Available in two cases:

1. The property is a relation: Selection option for the display of

the label of a relation target. This setting is only available if

the Relation target view setting has the value Choice or

Relation structure .

2. The property is a file attribute: Selection option for the

display of the value in a file attribute.

Selection options:

• Icon (topicIcon): Icon of the relation target / file as an icon

• Icon and string

• String (name attribute: Name of the relation target / name

of the file

Technical Handbook 5.8 - 1.3. View Configuration

149

Name Value

Show filter Only relevant in the view for editing objects: This option can be

used to create a prompt that decides whether this configuration

is displayed. The prompt is filled with the object of this property.

The property is displayed for editing only if the prompt receives a

result.

Show new properties Only relevant in the view for editing objects.There are following

options:

• never: If this option is set, the respective property is only

shown if already assigned. If the property value of a shown

property is erased without replacement by another value,

the property edit line is faded out. In order to show new

properties, this is done by clicking on the button "Add

attribute or relation".

• if not available yet: If this option is set, the property is

shown only if the property has not been created yet. This

makes it quick and easy to complete and less easy to forget.

• always: If this option is set, another property is shown in

addition to the property of the same type, so this can be

filled quickly and conveniently. It must be permitted for the

property to occur multiple times.

NOTE

If no option is chosen, the behaviour equals the

"never" option. The formerly available setting

"Show additional properties" from previous i-

views versions (5.3 and earlier) is incorporated

into the option "always".

Configuration for embedded

meta properties

Specification of the configuration to be used to display meta

properties. The meta properties are embedded, i.e. the property

is displayed after the value. The name of the property type is not

displayed.

Technical Handbook 5.8 - 1.3. View Configuration

150

Name Value

Configuration for meta

properties

Specification of the configuration to be used to display meta

properties. The meta properties are displayed under the value of

the property. For display in the web front-end, the properties

with the meta properties must be set to “initially expanded.”

Click action .

Script for visibility The conditions under which the property is displayed can be

defined via JavaScript.

Relation target (only available for relations)

Relation target view If a relation is chosen as the property, this parameter can be

used to define the view of the relation targets:

• Choice: All relation targets are listed and displayed with a

preceding checkbox. In case of existing relations, the

checkbox is equipped with a tick.

• Drop down: This setting is only useful if the relation may

appear only once. A drop-down list is displayed showing all

relation targets available for selection.

• Relation structure: All relation targets are listed in the left

area, rather like a hierarchy. The right area then shows the

details view for the selected relation target. This view is only

effective if the configuration is directly subordinate to a top-

level configuration.

• Table: Table view of the relations. The table view can not be

applied in the Knowledge Builder. For the table view, the

Table setting must be filled in.

• Table (relation targets): Table view of the relation targets.

This table can be applied in the Knowledge Builder.

Table Only available if the Relation target view has the value Table or

Table (relation targets) , in which case it is obligatory. The table

configuration specified here determines which properties of the

relation targets are to be output in table form. For the relation

target to be displayed, at least its name must be configured in

the table. For configuration of a table, see the Table chapter.

Relation target filter Query for filtering the relation targets to be shown.

Relation target type filter Query for filtering the relation targets by their type.

Technical Handbook 5.8 - 1.3. View Configuration

151

Name Value

Script for relation target label Script which returns a dedicated string for the relation target

label. If not used, the primary name of the relation target is

shown as label.Example: A person belongs to a department with

the name ‘Dpt. IV’. Using a suitable script, it is possible to change

the output for the person from ‘Dpt. IV’ to ‘Darmstadt city

administration, Dpt. IV’.

Show relation target Only available for relations. By default only the name of the

relation target is displayed. When you click the name, the

relation target opens in another editor. But if you choose the

Show relation target option, the relation targets are shown

directly, which means not just their names, but also all their

properties.

Display

Tooltip Tooltip which appears when hovering the mouse pointer over

the relation target.

Placeholder text A placholder text which is shown in light grey when the relevant

string attribute has no attribute value yet.

Script for placeholder text Script which returns a string for the placeholder text instead of a

statically configured placholder text.

Script for tooltip Script which returns a string for the tooltip instead of a statically

configured tooltip.

Sort

Script for sorting The script is used to determine a value for sorting. See the

example below.

Sort downward Controls whether the properties are sorted by name in

ascending or descending order. If this parameter is not set,

sorting occurs in ascending order.

NOTE
Options either can be set by defining their value or, if available, by an equivalent

script. Option value and script cannot be used at the same time.

Configuration of a property

A property can only be configured as part of a list of properties. It is acceptable for the list to

contain only one property.

Technical Handbook 5.8 - 1.3. View Configuration

152

In this example, the properties view configuration already contains the “Name” property. A second

property is created by selecting an attribute or a relation for the entry “Property” (marked in

orange).

Assorted property display for an object

If an object has several properties of the same type, they will be displayed in alphabetical order by

default. If nevertheless the display order of the properties needs to be different (e. g. in order to

emphasize preferences for synonyms or for forenames), a dedicated metaattribute can be attached

to each property.

The sortKey attribute can be displayed for editing purposes by configuring a meta properties view:

NOTE
In case of the Synonym attribute, the value 2 is entered for sortKey , so this value

is temporarily shown at the end of the list.

For this purpose, an attribute with the internal name ' sortKey' needs to be defined which can be

applied to each individual property:

Technical Handbook 5.8 - 1.3. View Configuration

153

The sortKey attribute is then referenced by a script for sorting which is attached to the property

view configuration:

Technical Handbook 5.8 - 1.3. View Configuration

154

Example of a script for sorting :

function sortKey(element)
{
 if (element instanceof $k.Property)
 {
 var attribute = element.attribute('sortKey')
 if (attribute)
 {
 return attribute.value();
 };
 };
 return undefined;
}

1.3.4.7. Edit

This configuration type is used to make attributes and relations of a Properties configuration

Technical Handbook 5.8 - 1.3. View Configuration

155

editable. For this purpose, it is assigned to the relevant Properties element at a higher level. Next to

a button for saving changes, a Delete button is displayed next to every property where this is

possible.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. Alternative .

Script for label .

Edit mode switchable If this option is selected, the properties are first displayed only as

a normal list. However, a switch is offered as an addition, which

can be used to switch between the normal view and the edit

view.

Only custom buttons If this option is set, the Save button is not displayed.

Script for visibility .

1.3.4.8. Table

Tables can be used as a sub-configuration for displaying results of queries of the configuration type

“Query,” or as a separate configuration for displaying the object lists in the Knowledge Builder.

A table lists specific objects, properties or subtypes of a specific type. Whether all objects,

properties or subtypes, or only a selection, is displayed, can be managed using the input in the

heads of the columns. The values entered are used to execute a structured query according to

suitable objects, properties or subtypes and display the result as a table. Moreover, in the case of

object lists, a new object, a new property value or a new subtype can be generated with the

properties that were filled in after entering values in the heads of the columns.

A subcomponent of the table configuration is the column configuration . This, in turn, contains a

column element or a menu cell . This layout is used to separate properties relevant to the column

(such as order and name of the column in the table) and to assign which contents should be

displayed in the column. Column elements , in turn, allow the assignment of properties, script

modules and structured query modules.

Since version 5.1, not only column configurations , but also additional tables can be added to a

table configuration. This provides the option of summarizing frequently used columns in a table

configuration and add them to another table in full. The intermediate tables are removed when

determining the overall table. There is only one level of columns.

Technical Handbook 5.8 - 1.3. View Configuration

156

The hierarchical display of all sub-configuration elements in the table configuration exhibits a menu

line that is assigned with actions as follows:

Create and link a new subelement.

Search through all potential subelements that

already exist and link (= add) the slected

subelement.

Delete link again. When this occurs, the

subelement is retained as an object and can be

used again in other configurations.

Delete complete subelement selected. If used in

other configurations, a warning will appear

before deleting which highlights all existing links.

Move selected subelement up in the list.

Move selected subelement down in the list.

NOTE
The availability of an action depends on the currently selected table element in the

hierarchy on the left side.

Example of a simple table configuration

For a list of objects, certain properties should appear in a table. The name attribute used to

represent the objects in the first column should not be forgotten.

Technical Handbook 5.8 - 1.3. View Configuration

157

Setting options (table)

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label Defines a static heading for the table.

Click action Determines an action which is performed when clicking into a

table row.

Script for label Script which returns a string as substitute for the label.

Without initial sorting No sorting occurs. Default process: the first column is used for

sorting.

Sort order For instance lists in the Knowledge Builder, each table

configuration is represented in a separate tab. By specifying an

integer, the user can control at which position the tab is

displayed, provided that several tables are configured for the

same instance type or for the same folder structure element. The

tables are sorted using two criteria, which are checked in the

following order:

1. Attribute Sort order specified: If yes, then this is used as the

sort criterion. If no, then the configurations for types are

shown first, followed by those for objects.

2. Sorting by display name

Without column filtering (VCM) Suppresses the indication of column filters in the web frontend.

In the Knowledge Builder, column filters are always displayed.

Page size (VCM) This specifies how many rows (= search result hits) should be

display on one page. Default value: 20

Technical Handbook 5.8 - 1.3. View Configuration

158

Name Value

Label for empty table (VCM) A label configuration which is displayed instead of the original

label when the table is empty.

Script for visibility (KB) Script which returns a Boolean for whether the table is visible or

not. For instance lists in the Knowledge Builder, the whole tab

will not be displayed if visibility is set to false. In the web

frontend, this script has no effect.

Restore last column

filtering/sorting (VCM)

Restores the recently selected filtering or sort order for the

duration of the web frontend session.

Structuring relation If this table configuration is embedded in another table

configuration, all columns in this table refer to the relation

targets of the configured structuring relation. If for example the

outer table lists persons and the inner table has "owns" as

structuring relation, all columns of the inner table refer to the

things that a person owns. The configured properties of the

relation targets (e.g. all category names of all owned things) are

accumulated in the column. If a column element of the inner

table determines its values by script or query, the script or query

is executed once for every relation target and the results are also

accumulated in the column.

Sort

Column Column configuration for which the sorting takes effect.

Sort priority An integer value determines the order by which table column

values the assortment of the table rows will be influenced first.

Example: If an ID is more important for sorting instances than

the primary name, the column for ID gets the sort priority 1 and

the column for primary name gets sort priority 2. A higher sort

priority overrides the sort direction ("Sort downward") of

another column.

Sort downward Determines if the values are sorted upward (alphanumerical

order) or downwards.

Table

Tab "Menus" For the Knowledge Builder, the menu actions at the top of the

table can be configured here. For more information, see chapter

"Actions for the Knowledge Builder".

Tab "Styles" (VCM) For the web frontend, different styles can be applied on the

whole table at once.

Rows

Tab "Styles" When using a table for the Knowledge Builder, styles can be used

for rows of the table for the purpose of character formatting.

Technical Handbook 5.8 - 1.3. View Configuration

159

Name Value

KB

Automatic search • Automatic search

• No automatic search: No automatic search is performed.

• Automatic search up to threshold (system settings)

Creating elements without

question by name

When this option is enabled, new elements can be created by

clicking on the button "New", without a dialog asking for a name

before creating the element. As an indication for the missing

name, a period "." is shown as name instead.

Script for window title (KB) A script can be used which returns a string for the window title

whenthe table is opened in a separat window.

Script for windowstatus (KB) A script can be used which returns a string for the bottom line of

the Knowledge Builder application or the window (if the table is

opened in a separate window).

Without inheritance If the table is used for instance lists in the Knowledge Builder,

only the instances of the currently chosen type are displayed,

without instances of subtypes.

Context

apply to Restricts the context to the instances of a given element type.

apply to subtypes Restricts the context to the subtypes of a given element type

(instead of instances).

apply in Application context for within the view is applied. For the table

to be displayed within the Knowledge-Builder at all, the

application "Knowledge-Builder" must be selected here.

Usage Within the section "Usage", the "Context of" relation reveals for

which view the current element is used as application context. It

is the counter part of the relation "apply in" of the other

respective element.

Table of Indicates the superordinate view configuration element within

which the table is used.

Actions and styles

Actions and styles can be defined for the entire table, as well as for rows.

Use

The Context tab specifies where the table is used.

The object type specified under Apply to is the type to which the table should be applied. Tables

can be used again in other view configurations. If the table module is a different view configuration,

Technical Handbook 5.8 - 1.3. View Configuration

160

this is displayed under [inverse] Apply in .

The property Apply in refers to an application. Several links are possible.

Examples:

• If the table to the right in the main window in the Knowledge Builder is to be used by the folder

structure during navigation, then the table configuration must be linked to the corresponding

folder structure element.

• If potential relation targets are displayed as tables in the Knowledge Builder, then the table

must be linked with the Knowledge Builder application.

Tables / Object lists in the Knowledge Builder

To configure the way objects or types are displayed in a table in the Knowledge Builder, the Details

tab contains the section View configuration → Instance/Type → Object list next to the respective

type. Creating and maintaining the table configuration is explained using the objects of Subtype YZ

as an example.

No table configuration has yet been linked with this type. The greyed entry shows a standard

configuration which is inherited from the upmost type "Knowledge Graph" of the type hierarchy by

default. By clicking on the New button, a new, blank configuration is generated here. The

configuration can then be selected and be edited as needed. As soon as the application context has

been specified (e. g. "apply in: Knowledge Builder"), the configuration is applicable after updating

the view configuration.

Technical Handbook 5.8 - 1.3. View Configuration

161

1.3.4.8.1. Column configuration

As mentioned before, column configurations contain properties used to define the display and

behavior of the column in the table. The column is only displayed once properties are configured in

the column elements contained in the column configuration.

Setting options

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label Displayed in the caption of the column. Please note that the

label is used for display in the table, but the column

configuration also contains the configuration name attribute.

This name is used only to manage and find the configuration

internally and is not displayed or output.

Script for label As an alternative to the static label text, a script can be used

which returns a string for the label.

Bookmark identifier The bookmark identifier is used to represent a query parameter

in forms of an expression within the web frontend URL. It can be

used for query views and table column filters and synchronizes

parameter value and URL in both directions.

Column width (%) A percentage value is expected here for the column width (so for

60% you have to enter “60”).

Standard operator The operator used initially in the search for a search text.

Search string Preset search text for the column filter.

Do not show If this value is set, the complete column is hidden. This is used,

for example, to sort a search result using hit qualities without

displaying them.

Mandatory for query If this value is set, the column must be filled out for the search to

be permitted.

Not sortable Prevents the table from being sorted when clicking onto the

column header.

Script for input field

preprocessing

For preprocessing any search text input in the column filter

before passed on as parameter for the column element query, a

script can be used.

Mapping element .

Operators

Technical Handbook 5.8 - 1.3. View Configuration

162

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Symbol Symbol that will be shown in the dropdown selection of the

column filter.

Key Operator designator that defines which kind of operator is used

(e.g. "word" or "containsPhrase"). See the operators explained in

the chapter about runtime generated queries.

Label Tooltip that will be shown in addition to the symbol in case of

mouse-over.

Modifier Name of the indexer string filter.

Menus

For the column, a menu can be configured for the web frontend which is displayed besides the

label text at the label (header) of the column.

Styles

For columns, there are following style settings which can be applied within the view configuration

mapper:

hideFilters Suppresses the column filters from being displayed in the web

frontend.

hideLabel Suppresses the column label from being displayed in the web

frontend.

Context

Sub configuration of Specifies for which table configuration(s) the column

configuration is used.

Sort order Specifies at which order the column is arranged within the table,

compared to another column. If there is more than one column

with the same sort order, the columns are ordered alphabeticaly

by column label.

Sorted column of Indicates that the column is used for sorting the table content.

Sort priority Specifies the sort priority of the column used for sorting,

compared to other columns used for sorting.

Example

Technical Handbook 5.8 - 1.3. View Configuration

163

Column configuration for the Name column

1.3.4.8.2. Column operator

The column operator configuration determines which comparison operator can be used in the table

view when entering a term into the table filter. In most cases, operators like "equal", "contains

phrase" or "contains string" might be needed.

For example, the difference between "contains phrase" and "contains string" is as follows:

• " contains phrase ": When entering several words (= phrase) into the filter, only content with

the same word order will be found

• " contains string ": When entering several words into the column filter, content matching an

arbitrary combination of the entered words will be found

Technical Handbook 5.8 - 1.3. View Configuration

164

This allows to use different filtering behaviors when filtering large tables to narrow down the search

results to specific content.

For all filter operators, a dropdown provides a selection of all operators defined for the respective

column:

If the table is used within the Knowledge Builder, a context menu is provided additionally for

selecting or removing effective operators:

Technical Handbook 5.8 - 1.3. View Configuration

165

Creating new column operators

New column operators can be created as follows:

Precondition: the respective column element needs to have defined its property to be shown.

NOTE

Since the application of operators depends on the value type of the property to be

filtered for and on the indices, the preset operators are only available if the

property of the column element has been defined. If string operators are needed,

a correctly configured index including index filter is required.

❶ After having specified the property of the column element, select the column itself again.

❷ Click onto the search button: a selection of operator templates will be shown, each applicable

on the value type of the property. Operator templates shown with the appendix "Create new"

indicate that they are not used until now (no instance has been created from the template).

❸ Select the needed kind of operator.

❹ The "Operator" tab shows the newly created and assigned operator. Each operator listed here

will be available for the column filter. Operators can be reused for other table columns.

Technical Handbook 5.8 - 1.3. View Configuration

166

❺ For the default operator, switch to the "Configuration" tab and select one of the operators:

NOTE

Within the Knowledge Builder, the standard operator will not be shown in the

respective column filter, but it is active when no other operator has been selected

in the context menu.

Operators also can be defined by yourself. For the operator, following properties can be specified:

Technical Handbook 5.8 - 1.3. View Configuration

167

Property Description Value type

Configuration name The configuration name is used for identification

and reuse of the configuration element.

String

Icon The icon which will be shown in the filter and its

dropdown selection.

NOTE

Without further plugins, vector

images like *.svg cannot be

used for configuration

elements within the

Knowledge Builder.

Blob

key The operator key for the operator. See table

below.

String

Label Text for the tooltip which will be shown at the

symbol in case of mouse-over.

String

modifier Name of the index filter. String

Operator keys

Operator name Description Short term

containsPhrase Contains phrase

covers contains

distance Distance

equal Equal ==

equalBy Corresponds to

equalCardinality Equal cardinality

equalGeo Equal (geo)

equalMaxCardinality Cardinality smaller than or equal to

equalMinCardinality Cardinality greater than or equal to

equalPresentTime now (present)

equalsTopicOneWay filter with

fulltext Contains string

greater Greater than >

greaterOrEqual Greater/equal >=

greaterOverlaps Overlaps from above

greaterPresentTime after now (future)

Technical Handbook 5.8 - 1.3. View Configuration

168

Operator name Description Short term

isCoveredBy is contained in

less Less than <

lessOrEqual Less/equal ⇐

lessOverlaps Overlaps from below

lessPresentTime before now (past)

notEqual Not equal !=

overlaps overlaps

range Between

regexEqual Regular expression

regexFulltext Contains string (regular expression)

unmodifiedEqual Exactly identical

words Contains string

Modifiers

For using operators like "Contains phrase", the respective operator key like "containsPhrase"

requires a modifier which depends on an index filter.

Index filters are used within an index. The index configuration is done in the global settings of the

Knowledge Builder: Settings > Index configuration.

Within the configuration of the index, the name of the assigned index filter can be specified and

copied for using as modifier:

Technical Handbook 5.8 - 1.3. View Configuration

169

New index filters are defined within the main settings of the Knowledge Builder: Settings > Index

configuration > Index Filter

Technical Handbook 5.8 - 1.3. View Configuration

170

1.3.4.8.3. Column element

A column element is used to assign the content that a table column is supposed to show, and how

that should take place. You can either specify properties, such as attributes and relations, that are

defined by the semantic objects, or you can use structured query modules or script modules.

Setting options

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse of

the configuration.

Do not show Use this Boolean attribute to control whether the values of the

selected property should be displayed. By default all properties

are displayed.

Do not create This attribute controls whether this property is supposed to be

created when a new object is created if the relevant input field in

the column contains a value. By default new properties are

created.

Do not search Here you can specify that the configured property is not

transferred to the search. This means that this property is not

used to search for the entered search values.

NOTE

If all column elements in a column are set to

"Do not search", this has the same effect as "Do

not show"!

Emphasis Here you can provide formatting specifications for the display of

values; currently, the only available option is underline .

Relation target view Currently only the Drop down alternative is available. If you

select it, the possible values that can be entered for this column

for filtering in this table are compiled from the possible relation

targets as per the schema into a drop-down list, so that a

possible value can be specified quickly. This is recommended for

manageable amounts of potential relation targets.

NOTE
This parameter is only available if a Relation

type property was selected.

Content Properties in this group determine the content of the table cell.

Most of the following options are mutually exclusive, indicated

by a *.

Property* Link to the property type that is to be displayed.

Structured query element* A structured query can be used to determine the property.

Technical Handbook 5.8 - 1.3. View Configuration

171

Name Value

Script* A script can be used which returns the cell values to be displayed

(a property, hit, element or primitive value).

Mapping element* .

Show name* Show the name of the row element, independently of which

attribute type is defined as name.

Quality* For the web frontend, this option displays a bar showing the hit

quality incl. percentage value.

Show size Instead of the properties that are determined by any of the

above methods, show only the number of properties.

Use structuring relation Modifies all of the above determination methods such that they

refer to the structuring relation that is defined for this embedded

table instead of the relation target (for structuring relations see

the section on general table configuration).

It is possible to define multiple column elements for a column configuration. This makes sense, for

example, if multiple attributes are to be considered in the search, for example the Name and

Synonym attributes, but only one of them is to be displayed.

Example

The Name attribute is configured in the first column element of the Name column configuration.

The Topic belongs to relation is configured in the column element of the second column.

Technical Handbook 5.8 - 1.3. View Configuration

172

The transitiveRelationalChainUpwards structured query module is configured in the column

element of the third column.

Related structured query:

Technical Handbook 5.8 - 1.3. View Configuration

173

To make it possible to adopt values from the input field of the column, the structured query must

have configured parameters. Multiple parameters can be applied, all of which are assigned the

same value when the structured query is evaluated.

NOTE

This is different from other cases in which the structured query is used. Normally

the results are determined by the initial object (in this case “Topic”). In this case,

the results are determined by the objects or properties to which the parameter is

attached (in this case the name attribute).

Unless further changes are made, the value displayed in the column is the value of the attribute

used for filtering. If the displayed value does not result from the attribute used for filtering, there

are two options:

• The “ renderTarget “ identifier can be attached to relation targets. Objects marked in this way

are displayed in the table as the column value. “renderTarget” also has the effect that, during

output via the JavaScript API, the properties relating to display are included in the output as a

link.

• The identifier “ renderProperty “ can be attached to attributes. Properties marked in this way

are displayed in the table column as the column value.

If the search module is not used for filtering, the element to be displayed must be determined by

means of a manually defined parameter or by means of predefined parameters like

renderTarget/renderProperty!

The structured queries that can be included in the module of the column element can be selected

from a list of structured queries that have already been registered, but it is also possible to create

new structured queries for exactly this module, which includes the allocation of a registration key.

The Do not create property does not affect columns that have been assigned a structured query

module.

A script module is mapped to the fourth column

Technical Handbook 5.8 - 1.3. View Configuration

174

The aim is to display the persons responsible for the objects to which the topic listed in the table is

linked by means of Topic belongs to . As with the structured query, it is possible to select the

assigned script from a list of registered scripts or to create (and register) a new one in the dialog.

The script editor opens when you click the script module name.

/*
 * Returns matching elements for column search value "objectListArgument"
* Note: "elements" may be undefined if no partial query result is
available.
 * Return undefined if the script cannot provide any partial result
itself.
 */
function filter(elements, queryParameters, objectListArgument) {
 return elements;
}

// Returns cell values rendered as topics for the given element
// For cell values rendered as Hits, use renderHits() instead
function renderElements(element, queryParameters) {
 var result = new Array();
 var firstTargets = element.relationTargets(“isTopicOf”) ;
 if (firstTargets.length == 0) { return result ;
 }
 else {
 for (var i = 0; i < firstTargets.length; i++) {
 var secondTargets = firstTargets[i].relationTargets(
“hasResponsiblePerson”);

Technical Handbook 5.8 - 1.3. View Configuration

175

 for (var j = 0; j < secondTargets.length; j++) {
 result.push(secondTargets[j].name());};
 };
 };
 return result.join(', ');
}

In this case the language of the script module is JavaScript. Two parts have to be maintained here:

the upper part is used to filter all elements in the table on the basis of the objectListArgument value

entered in the column, while the second part specifies how the value to be output for an element is

calculated. This first part has not been described as yet. A code pattern is added to both parts

during creation, and it can be built upon during creation.

If KScript was selected as the language in the script module for controlling the output of a column,

the selected (registered) script must provide a return value for the column for every object that

forms a row.

As KScript is in principle designed for only one output, the following convention has been reached

for filtering:

If the selected script contains a function named objectListScriptResults and a declared parameter,

this function is called with the argument of the corresponding search input in order to return the

set of matching objects. The function is called as the initial object on the root term or the former hit

list – depending on the best way to resolve the search. To make this version truly efficient, it is

recommended to evaluate the search inputs accordingly and use the result to call a registered

structured query in order to forward its result to the object list.

1.3.4.9. Query

The user can use the view configuration element “Query” to configure query options for the

Knowledge Graph. The query can either be a predefined query with parameters, or be a search field

input screen for the user.

The “Query” can be selected as a sub-configuration of an alternative or a layout . Any type of query

is obligatory here, the results of which are displayed. Searches for user inputs can also be

configured; instead of the configuration element “Query” (object configuration), the configuration

element “Search field element” is used for the view configuration. Examples of the panel

configuration for the web front-end can be found in chapter 3 “ViewConfiguration Mapper”.

When a search is to be configured for the web frontend containing facets, then the functional chain

should be observed in the case of panel influencing: Query or Search field element -→ Facet -→

Search result.

Setting options

Technical Handbook 5.8 - 1.3. View Configuration

176

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. Alternative .

Script for label The label can, alternatively, be determined using a script.

Bookmark identifier The bookmark identifier is used to represent a query parameter

in forms of an expression within the web frontend URL. It can be

used for query views and table column filters and synchronizes

parameter value and URL in both directions.

Table A table configuration is specified here which is used to display

the search results.

Script for table configuration The table can also be determined using a script.

Query A search can be selected here that is executed as soon as the

configuration element is displayed. The semantic object, for

which the view configuration is displayed, can be used as an

accessed element in the query.

Script for visibility A script can be used to control whether the configuration

element should be displayed.

Setting options for a query

The following parameters are maintained as meta properties for a query .

Name Value

Parameter name Specifies a parameter name that is to be used in the query.

Setting options for a parameter name

The following parameters are maintained as meta properties for a parameter name :

Name Value

Script for value determination The script with the function parameterValue is used for

determining the search value for the specified parameter name.

Script for parsed value

Technical Handbook 5.8 - 1.3. View Configuration

177

Name Value

Value determination Specifies the value determination path.

• Script: The value is determined from the script and must not

be overwritten by the user.

• Script, overwritable by user input: The script determines

the value. The user may overwrite it.

• User input : No script evaluation. User input only.

Value disposition .

Type xsd-type

Label During output to JSON, this value ends up in label.

Bookmark identifier .

Tooltip .

Query for proposed values .

Script for proposed values .

Sort Order .

Display in an application

Query results are output in a table by default.

In this example, query results are output in the web frontend as a table view “mediaList” render

mode style. The “mediaList” render mode converts the typical table view into a sizable list with an

Technical Handbook 5.8 - 1.3. View Configuration

178

icon and link to the objects. Additional properties of the object can be specified by means of further

column elements (in this case, the email address as an attribute and the profession as a relation

target of persons).

Instead of using the individual configuration element "Query" for the Web-Frontend, searches can

be split into the separate configurations "Query" and "Search result view".

Display in Knowledge Builder

The results of any query are always shown in an object list in the Knowledge Builder.

Example:

The “Details” and “Knowledge and Skills” tabs are defined in the view configuration. “Profession” is

a configuration element of the type “Search”. An existing query can be selected or a new one be

created directly, under “Query”.

Definition of the search

Technical Handbook 5.8 - 1.3. View Configuration

179

The result of the query is displayed in the “Knowledge and Skills” tab in the Knowledge Builder for

objects of the type “Person”.

1.3.4.10. Graph

The contents of the Knowledge Graph are plotted in a graph with their objects and connections (

see chapter Knowledge Builder > Basics > Graph editor).

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative .

Script for label A script that returns the label.

Graph configuration A graph configuration object is defined here.

Height/width This defines the width and height of the configuration element,

either as a percentage or exact to the pixel.

Hide legend This defines whether the legend for the node types is to be

displayed.

Initial topics query Query which determines the semantic elements which are

displayed initially when the graph is displayed.

Initial topics script Script which determines the semantic elements which are

displayed initially when the graph is displayed.

Script for visibility The visibility of the configuration element can be defined in a

script referenced here.

Technical Handbook 5.8 - 1.3. View Configuration

180

1.3.4.10.1. Graph configuration

The graph configuration only allows specific types and relations to be displayed in the graph. This

prevents unwanted types and relations from appearing in the graph. The graph configuration can

also be queried using JavaScript functions. It is, for example, used in the Net-Navigator.

Node category elements are subordinate to a graph configuration.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. an additional alternative .

Maximum node distance Integer value which determines the maximum displayable

amount of nodes across their links; thus determining the longest

possible graph path distance.

Maximum node age Integer value for maximum amount of steps after which the first

nodes are faded out when links are expanded.

1.3.4.10.2. Node category

Node categories are subordinated to graph configurations.

They are assigned subordinate link elements.

Setting options

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label Label which is used for the legend of the nodes in the web

frontend. This option has no effect within the Knowledge Builder.

Script for label Script that returns an element name or a string for the label

instead of using the label attribute.

Adapt to specific type When this option is enabled, only the subtypes will be displayed

as legend instead of the overall supertype.

Hide abstract types This option prevents abstract types from being displayed in the

legend.

Technical Handbook 5.8 - 1.3. View Configuration

181

Name Value

Show in legend This option is for the net navigator in the web frontend only:

• If needed: The legend for the node at top of the graph is only

shown when the node is existent within the graph.

• Always: The legend is shown disregarding the nodes being

shown in the graph.

• Never: The legend is never shown, even if the respective

node is shown in the graph.

Icon Icon which is displayed for the node category in the graph

exclusively. When no icon is specified, the (inehrited) icon of the

respectve semantic element of the Knowledge Graph is shown.

When no icon is specified at all, types are shown in forms of

colored rings and objects are shown in forms of colored and

filled circles.

Script for icon Script which returns the icon for a node category instead using

the icon attribute. Return value is a blob attribute or a value of

the type $k.Blob.

Expand extensions initially When this option is enabled, extensions are expanded inititally

when the core object is displayed in the graph.

Color Color assigned to the nodes of this category. This affects the

coloring of the node circles and of the legend.

Script for color Script which returns the color assigned to the nodes of this

category instead of using the color attribute. Return value is a

hexadexcimal color value.

Category

Menus .

Nodes

Menus When displaying the graph in the web frontend (net navigator),

actions can be added for nodes as follows:

• Node satellite menu buttons for expanding, hiding and

pinning the node.

• Action being executed when clicking onto the node itself.

For further information, see the respective chapter View

Configuration Mapper > Viewconfig elements > Graph

configuration .

Context

Technical Handbook 5.8 - 1.3. View Configuration

182

Name Value

Apply to Determines for which instances or types the node category is

applied. One node category can be assigned to several different

instances or several different types.

1.3.4.10.3. Link

Links are subordinate to a node category. They represent the edges of the graph, thus the relations

of the Knowledge Graph.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label The label attribute is not effective for links. Use the script for

label instead.

Script for label Returns an element name or a string for labeling the link.

Color Determines the color of the link.

Query for link Query which determines the target element of the link, based on

the origin which is the superordinate node element.

Relation for link Relation which is used for the link. The definition range of the

used relation type needs to comprise the type od the related

node element.

Script for link A script referenced here can be used to define the link. Return

value is a relation at the semantic element of the node.

Initially expanded If this option is enabled, the link will be expanded automatically

as soon as the node element is initially displayed.

Preferentially expanded If a node element has several links which are set to expand

initially, this option can be enabled for prioritizing one of the

links.

1.3.4.11. Text

This configuration element outputs a simple text. This is either configured fixed or determined via a

script.

Setting options

Technical Handbook 5.8 - 1.3. View Configuration

183

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative .

Script for label A script that returns the label instead of using the label attribute.

Text Text that is to be output.

Script for text A script that returns the text to be displayed.

Script for visibility A script that returns a Boolean value for whether the view is to

be displayed or not.

1.3.4.12. Image

Static graphics can be integrated with the aid of this configuration element.

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative .

Script for label Alternatively, this can be used to determine the label using a

script.

Image The image file that is to be output.

Script for image Alternatively, the graphics can be returned using a script. Not

applicable within the Knowledge Builder.

Height/width Scales the image file to the dimensions specified.

Script for visibility A script is used to determine whether the graphics are to be

displayed.

1.3.4.13. Script generated view/HTML

Script-generated view

A view created using a script saved in the Knowledge Graph. This is written in JavaScript and can use

a custom template (a Ractive.js “partial”). This allows complex views to be created, which extend

beyond the functionalities of the standard view configuration.

Setting options

Technical Handbook 5.8 - 1.3. View Configuration

184

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. Alternative .

Script for label Script for determining the label.

Script Script for generating the view.

viewType Name of the partial.

Script for visibility Script for determining the visibility. Return value is a Boolean

value.

Script-generated HTML

This view configuration shows an HTML fragment that is generated using a script stored in the

Knowledge Graph. In it, the JavaScript API of i-views is used to access semantic elements and their

properties and an XML writer object generates an HTML structure and fills it with data.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another

configuration, e.g. Alternative .

Script for label Script for determining the label.

Script Script for generating HTML output.

Script for visibility Script for determining the visibility.

Example of a script that generates simple HTML output:

function render(element, document) {
 var writer = document.xmlWriter();
 writer.startElement("div");
 writer.startElement("h2");
 writer.cdata(element.name());
 writer.endElement();
 writer.endElement();
}

Output:

Technical Handbook 5.8 - 1.3. View Configuration

185

<div>
 <h2>Hermann</h2>
</div>

1.3.4.14. Label

The label configuration allows, for example, the labeling of a website or the labeling of a dialog

panel. The label configurations are managed in the category “Subordinate configuration” in the

Knowledge Builder. For example, labels are used in the window title panel; this requires creation of

a new object underneath “Label configuration:”

The entries can then be made under “Label” and “Image”:

NOTE

The view configuration element (“Label”) is titled “Label - Object” by default in the

Knowledge Builder. If a string is entered under “Label”, then this appears as the

element name of the view configuration element. When a configuration name

(“Label”) is assigned, this appears as the element name.

If the label view is applied to the main window panel of the ViewConfiguration Mapper, the label

content will be displayed in forms of the <title> element in the <head> section:

Technical Handbook 5.8 - 1.3. View Configuration

186

A comparison shows the different states of the website without a label (title = website path) or with

a label (title = label):

1.3.5. Knowledge Builder configuration

The view configurations described here exclusively relate to Knowledge Builder. Additional view

configurations that affect Knowledge Builder are also described at other points in chapter 7 but can

then also relate to the output in JSON.

1.3.5.1. Folder structure

The left part of the main window in Knowledge Builder is used for navigating through the

Knowledge Graph. To do so, a hierarchical folder structure is displayed there. This can be split into

several main areas that are then displayed as bars. If you click on such a bar, the folder structure

underneath it is expanded. This then enables you to access the contents (elements, queries,

import/export mappings etc.). The contents are listed on the right side where they can be edited.

1.3.5.1.1. Default folder structure

The configuration of the standard folder structure provides folders, making it possible to navigate

the Knowledge Graph and store contents there. Three main areas are available to administrators.

The upper main area is “FOLDER” and provides folders for creating further folders and for managing

content. These are the working folder, the private folder, the “Most recently used objects” folder

and the “Query result” folder.

The second main area “ KNOWLEDGE GRAPH” makes it possible to navigate to the elements via the

Technical Handbook 5.8 - 1.3. View Configuration

187

hierarchy of the types. The elements to be reached here are types, objects, attributes and relations.

The area contains three folders:

• Object types for the hierarchy of object types and their concrete objects

• Relation types for the hierarchy of the relations

• Attribute types for the hierarchy of the attributes

The third main area is “TECHNICAL” ; it enables administrators to make changes, settings and

configurations of all kinds in the Knowledge Graph. These include, among others, registered objects,

the rights system and triggers.

The configuration of this standard folder structure can be viewed, modified and adapted to the

users’ needs in the Technical area >> View configuration.

NOTE

Administrators always see the standard folder structure. If you configure a view

configuration for folders, these are displayed only to non-administrators. If an

administrator wishes to see the configured view of the folder structure, this can be

set in the personal settings for the Knowledge Builder: Under “Settings” >

“Personal” > “View configuration”, select the “Configured” option.

1.3.5.1.2. Configuration of the folder structure

The folder structure is configured in the technical area under View configuration >> Object types >>

Knowledge Builder configuration >> Folder structure . The admin is granted quick access to the

configurations by selecting the View configuration node in the technical branch, and then selecting

the Organizer object in the Folder structure tab in the pane to the right .

Folder structure elements are linked to each other as a hierarchy in the configuration. The root

node of this hierarchy is an object of the folder structure type. It initially contains a folder structure

called Organizer . All sub-nodes and their sub-nodes are of the folder structure element s type. The

Technical Handbook 5.8 - 1.3. View Configuration

188

hierarchy in the configuration shows the hierarchy shown in the main window directly. The direct

sub-nodes of the root node are shown as bars in the main window, resulting in a visual distinction

between the various folder hierarchies.

Label is a parameter that all configuration types have in common. A node that is described by a

configuration is labeled with this value. The content displayed in the right part of the main window

when a node is selected depends on the parameters of the folder structure element. To do so, a

type must be assigned to the parameter Folder type , for which a range of types is available. These

folder types and their additional parameters are listed in the following table.

Folder type

(obligatory)

Parameter Description

Attribute types Type The attribute type specified, and all it subtypes,

are displayed in a hierarchy-based tree.

Private folder - Display of the folder that only the actual user

may view, and which is different to each user.

Relation types Type The attribute type specified, and all it subtypes,

are displayed in a hierarchy-based tree.

Organizing folder Organizing folder Any organizing folder can be added here.

Query result folder - Each user has a query result folder of their own

in which the user’s most recent query results

are saved.

Type-based folder

structure

“Without inheritance”

view, type

The specified type and its subtypes are listed in

a table. If the parameter “Without inheritance”

view is set, then only the specified type is

displayed.

NOTE

In order to manage which table

configurations are used on the

right-hand side, the apply in

relation found there must be

linked to this folder structure

element .

Virtual folder - A folder that is used for structuring the folders.

Last objects used - Each user has a folder of their own in which the

last objects used are saved for quicker access.

Only the configuration type Virtual folder can contain additional sub-configurations, and it is the

only one for which sub-configurations make sense.

NOTE
In the case of the folder type “Attribute types,” “Relation types” and “Type-based

folder structure,” the parameter “Type” is used for specifying the attribute type,

Technical Handbook 5.8 - 1.3. View Configuration

189

relation type or object type, and its subtypes, should be displayed in the folder.

1.3.5.2. Relation target search

The configuration of relation targets makes it possible to influence the strategy used to search for

possible relation targets.

If a Knowledge Graph does not include a search for relation targets, entering “Egon” always results

in a search for objects named “Egon” (i.e. the respective defined name attribute is used). This

response can be modified by specifying a previously defined query. Ordinary queries rather than

structured queries are usually used for this purpose.

For example, to search for persons, you could define a query that searches both the first name and

the last name. If you then search for a target of a relation whose target domain is person, the first

names and last names of persons are searched for the entry “Egon.” A modified search for relation

targets also makes sense if you want to search for objects and object synonyms at the same time, so

that e.g. the “Architecture” object is also found if a user enters “the art of construction.”

Relation target search configured to search for persons

As with all configurations, the context must be specified in which the relation target search is to be

used. To do this, the relation to which the relation target search is to be applied must be entered for

“apply to relation.”

Technical Handbook 5.8 - 1.3. View Configuration

190

The properties “apply to target” and “apply in” can be used as well in any combination as required.

1.3.5.3. Home view

You can use the configuration Start view (KB) (available as a tab in the view configuration area) to

define which background image and which actions are supposed to be displayed on the start screen

in Knowledge Builder on the right side. The display can be highlighted by means of de-selection

(clicking on the selecting in the left navigation tree).

Setting options

Name Value

Background An image

Color value for font of an action Depending on the image selected, a different color must be

selected for labeling the actions in order to make the text

readable.

In addition to this, actions can be defined. Refer to the Action chapter. An action type can also be

specified. The following entries are available in this case:

Action type Action

Manual (specialized web link) Web manual is opened in the browser

Home page (specialized web

link)

The home page is opened in the browser.

Support email (specialized web

link)

A window opens for a new email to the email address of the

Support department.

Web link Freely definable web link

<no action type> Execute configured action (using a script)

Technical Handbook 5.8 - 1.3. View Configuration

191

A web link must be configured completely; otherwise it will not be displayed.

However, this is not necessary for the three action types (specialized web links) displayed above.

They use default values if a property is missing. It is possible to override the default values.

Possible configuration for a web link

Name Value

Label Display name after the icon

Symbol Icon that is displayed in front of the label

URL URL that is to be opened

1.3.5.4. Search field

The quick search field can be found in the upper left corner of the main window. This field provides

quick access to queries. These are provided by the administrator or can also be added by the user.

All queries that are used here may only expect a search string or no search input.

No search input makes sense for queries like this, the result of which changes from time to time.

Executing a search like this in the quick search field then shows the current result without the need

to look up the corresponding query in a folder, for example, every time. For example, there could

also be a search query that displays all songs that the active user has already listened to.

1.3.5.4.1. Search field configuration for administrators

The “Search field” configuration defines which queries are made available by the administrator in

the quick search field of the Knowledge Builder.

Newly created Knowledge Graphs feature a search field configuration that is the same for all users.

The administrator can expand this search field configuration to make other queries accessible to all

users. Moreover, each user can add further queries to their quick search field, which are then only

visible to this particular user.

A search field configuration is comprised of “Quick search elements” that must contain a reference

to a query and can optionally be given a label. The order of the quick search elements is determined

by the order of the menu entries at the quick search field.

1.3.5.4.2. Search field configuration for users

The user can add queries by dragging an existing query to the quick search field.

Adding can also take place via the Settings . The Search field item is available on the Personal tab.

On the right, in the User-defined section, the Add and Remove operations are available as well as

an option for changing the order.

Technical Handbook 5.8 - 1.3. View Configuration

192

1.3.6. Style

The view configuration is responsible for the structural formatting of elements of the Knowledge

Graph for the display. If purely visual properties or information without context is also be specified,

a “Style” element is used.

There are a number of Style elements that are already defined in i-views. The following section

explains what these elements are and how these style elements are created in Knowledge Builder

so that they can then be linked to individual elements of the view configuration of an application or

Knowledge Builder.

In the view configuration, you first have to select the element with which one or more style

elements are to be linked. Almost every view configuration type has a “Styles” tab. There, you can

either define a new style element or link an existing style element . If a new style element

is defined, this must first be given a configuration name. You can then configure it on the right side

of the editor.

A style element can be filled with any number of style properties. The style properties are always

distributed across several tabs, which are described in the sections below.

NOTE

Not all properties of a style make sense for all configurations. The tables of the

following sections therefore contain a column called “Configuration type” which

shows which view configuration type is supported by the respective property. The

effect is described in the last column.

1.3.6.1. Style properties in applications and in the Knowledge Builder

This chapter describes the “Configuration” tab of a style element, which contains the style

properties used in both the Knowledge Builder and the view configuration mapper.

Technical Handbook 5.8 - 1.3. View Configuration

193

Style property Configuration type Effect

Configuration name All The configuration name is used for identification

and reuse of the configuration.

Script for activation All The style can be activated in dependence on the

active element by means of a script.

Tree view - Due to the deprecation of groups, this option is

no longer available.

Vertical alignment - Due to the deprecation of groups, this option is

no longer available. Use layouts with vertical

orientation instead.

1.3.6.2. Style properties in applications

The “ViewConfiguration Mapper” tab is only displayed when the component “ViewConfiguration

Mapper” has been installed. The style properties available for this component are included in the

chapter Style of the ViewConfiguration Mapper (chapter 3).

1.3.6.3. Style properties in the Knowledge Builder

This chapter describes the “KB” tab of a style element, which contains the style properties used

only in the Knowledge Builder.

Technical Handbook 5.8 - 1.3. View Configuration

194

Style property Configuration type Effect

Configuration name All The configuration name is used for identification

and reuse of the configuration.

Show banner Object configuration Display banner, incuding object name and type

name as well as a buttons for the context menu

for editing. When created a new configuration,

the default value is false .

Height Property Height in lines for string attributes (not: "Text"

view).

Show scrollbar Object configuration If enabled, a scrollbar is shown if the respective

view is too large for being displayed in full size

within the given display area. This option is

useful for grouping view elements containing

more than one configuration, such as

"Properties" or "Layouts".

Property

Editor width (pixel) Property Width in pixels of a property

Show meta properties

in context menu

(Meta-) property

(properties)

Meta properties are shown in the context menu

of the property. You can thus show either

individual meta properties or all meta

properties in a meta properties configuration.

NOTE
the Add meta properties menu

option remains unchanged.

Technical Handbook 5.8 - 1.3. View Configuration

195

Style property Configuration type Effect

Table

Show preview Table Controls whether an editor is shown

underneath the table.

1.3.7. Detector system for determining the view configuration

View configurations can be linked to conditions using the detector system. The detector system

determines when which configuration should be displayed. The way the detector system functions

and the interplay with view configurations are explained in the following using an example.

Several displays can be created for objects of an object type using the settings in the view

configuration. They can be linked to conditions using the detector system – for example, to a

specific user. For the example described here, two views were configured for the objects of any type

using the view configuration.

Users who are administrators of the professions list which they wish to access should see the

“Detail view for admins”. All users who are not administrators of the professions list which they

wish to access should see the “Detail view”. The conditions that determine how the views are used

are defined in the detector system.

Creation of a view configuration determination

The detector system is located in the folder hierarchy on the left in the “TECHNICAL” section, and

has been designated as “View configuration detection” under “View configuration”.

Technical Handbook 5.8 - 1.3. View Configuration

196

By creating a new query filter (see the “Query filter” chapter) in the first step, the starting

point must be defined. This means that you have to define to what other things the following

settings are supposed to apply. In this example, our starting point is therefore a view configuration

(in this case: “Detail view for admins”), for which a condition is created at the same time. “View

configuration” must be selected from the list and be entered as the operation parameter. The query

filter then looks as follows:

A new query filter must now be created under the query filter that is searching for the view

configuration “Detail view for admins” and which describes the condition for this view

configuration: the view configuration “Detail view for admins” should only be visible to users who

have the profession that they are currently viewing. The second query filter therefore checks

whether the active user is a person of the same profession. By clicking on , the set of search

Technical Handbook 5.8 - 1.3. View Configuration

197

results is then permitted to view the configuration “Detail view for admins”. The following diagram

shows the query filter for users who are persons of the same profession that they are currently

viewing and the folder hierarchy that was created so far on the left-hand side.

The view configuration “Detail view” is automatically used for those users who are not person of

the same profession that they are currently viewing.

Weighting of the configurations in the detector system

The configurations in the detector system “View configuration detection” are weighted from top to

bottom in the application. This means that access settings made closer to the top have a higher

weighting that those further down. In order to bypass this default setting, the authorizations or

denials can be given priorities.

Priority 1 is the highest priority. If the condition instructions overlap, then the authorization or

denial conditions with the highest priority is implemented. If no specifications have been made for

priorities, or if all priority numbers have the same value, then the previous conditions are

implemented in the detector tree.

Technical Handbook 5.8 - 1.3. View Configuration

198

1.4. JavaScript API

1.4.1. Introduction

The JavaScript API is a server-side API for accessing a semantic Knowledge Graph. The API is used in

triggers, REST services, view configuration etc.

By means of the API, the Knowledge Graph can be accessed with read operations (processing

queries, querying properties etc.) and modifying operations (creating objects, changing attributes

etc.).

The Knowledge Builder provides an integrated editor for editing, executing and debugging

JavaScript code. The editor is available when accessing the respective code snippet. Registered

JavaScript code can be accessed via TECHNICAL > Registered objects > Scripts. New JavaScript can

be created where needed (REST interface configuration, view configuration) or in the

working/private folder of the Knowledge Builder.

NOTE

When commenting out references to queries or other elements of the Knowledge

Graph, the reference of the previously referenced element to the JavaScript will

not be listed anymore when invoking the "References" list for the element.

1.4.1.1. API reference

The API reference is available here:

https://documentation.i-views.com/5.8/javascript-api/index.html

1.4.1.2. The namespace $k

Most objects are defined in the namespace $k. The namespace object itself has a few useful

functions, e.g.

$k.rootType()

which returns the root type of the Knowledge Graph, or

$k.user()

which returns the current user.

1.4.1.3. Registry

Another important object is the Registry object $k.Registry. It allows to access objects by their

registered key (folder elements) / internal name (types).

Technical Handbook 5.8 - 1.4. JavaScript API

199

https://documentation.i-views.com/5.8/javascript-api/index.html

Examples:

$k.Registry.type("Article")

returns the type with the internal name "Article".

$k.Registry.query("rest.articles")

returns the query with the registered key "rest.articles".

The Registry object is a singleton, similar to JavaScript’s Math object.

1.4.1.4. Working with semantic elements

Semantic elements are usually retrieved from the registry or by a query.

// Get the person type by its internal name
const personType = $k.Registry.type("Person");

// Perform the query named "articles",
// with the query parameter "tag" set to "Sailing"
const sailingArticles = $k.Registry.query("articles").findElements({tag:
"Sailing"});

The properties of an element can be accessed by specifying the internal name of the property type.

// Get the value of the attribute "familyName"
const familyName = person.attributeValue("familyName");
// Get the target of the relation "bornIn"
const birthplace = person.relationTarget("bornIn");

A shortcut to access the value of the name attribute is the function name()

const name = birthplace.name();

If an attribute is translated, the desired language can be specified, either as 2-letter or 3-letter ISO

639 language code or as locale with language and territory. The current language of the

environment is used if no language is specified.

const englishTitle = book.attributeValue("title", "eng");

Technical Handbook 5.8 - 1.4. JavaScript API

200

const swedishTitle = book.attributeValue("title", "sv_SE");
const currentTitle = book.attributeValue("title");

1.4.1.5. Transactions

Transactions are required to create, modify or delete elements. If transactions are controlled by the

script, a block can be wrapped in a transaction:

$k.transaction(() =>
 $k.Registry.type("Article").createInstance()
);

It is possible to configure if the script controls transactions or if the entire script should be run in a

transaction. The only exception are trigger scripts, which are always run as part of a writing

transaction.

A transaction may be rejected due to concurrency conflicts. An optional function can be passed to

$k.transaction() that is evaluated in such cases:

$k.transaction(
 () => $k.Registry.type("Article").createInstance(),
 () => throw "The transaction was rejected"
);

Transactions, like the ones described above, may not be nested. There are, however, cases in which

nesting is unavoidable; for example, because a script function is called both by functions that are

already encapsulated in a transaction and functions for which this does not apply. A so-called

“optimistic transaction” can be used in this case. This construction uses the external transaction if

there is one, or it starts a new transaction.

$k.optimisticTransaction(() =>
 $k.Registry.type("Article").createInstance()
);

Constructions like this should be avoided, because a transaction represents a practical operational

unit which is executed in whole or not at all. Either what is embedded makes sense and is complete

in itself, or is not.

NOTE

A troubleshooting function in the event of failure of the optimistic transaction is

not available. If an external transaction exists, its troubleshooting function is

executed in the event of failure.

Technical Handbook 5.8 - 1.4. JavaScript API

201

1.4.1.6. Modify elements

1.4.1.6.1. Create elements

// Create a new instance
const person = $k.Registry.type("Person").createInstance();

// Create a new type
const blogType = $k.Registry.type("CommunicationChannel").createSubtype();
blogType.setName("Blog");

1.4.1.6.2. Add and change attributes

Attribute values can be set with setAttributeValue(), which implies that a single attribute is either

already present or created. Existing attribute values are overwritten. An exception is thrown when

more than one attribute of a type is present.

person.setAttributeValue("familyName", "Sinatra");
person.setAttributeValue("firstName", "Frank");
// Overwrite the value "Frank" with "Francis"
person.setAttributeValue("firstName", "Francis");

createAttribute() allows to create more than one attribute of a type.

// Create two attributes
person.createAttribute("nickName", "Ol' Blue Eyes");
person.createAttribute("nickName", "The Voice");

The attribute values are represented by different object types depending on the type of attribute,

some of which are native to JavaScript while others belong to the $k namespace:

Type of attribute Object type

Choice $k.Choice

Boolean boolean

File $k.Blob

Date $k.Date

Date and time $k.DateTime

Color value string (hex value)

Flexible time $k.FlexDateTime

Technical Handbook 5.8 - 1.4. JavaScript API

202

Type of attribute Object type

Float number

Integer number

Geo position $k.GeoPosition

Group (no value)

Internet shortcut string

Interval $k.Interval

String string

Time $k.Time

1.4.1.6.3. Add relations

A relation between two elements can be created with createRelation():

const places = $k.Registry.query("places").findElements({name: "Hoboken
"});
if (places.length == 1)
 person.createRelation("bornIn", places[0]);

1.4.1.6.4. Delete elements

Any element can be deleted with the remove() function:

person.remove();

This also deletes all properties of the element.

1.4.2. Examples

1.4.2.1. Queries

Using the API, one can execute registered queries. Queries are represented by objects of the class

$k.Query while for structured queries there is the subclass $k.StructuredQuery.

Search for elements: Perform the query "articles" with parameter tag = "Soccer"

const articles = $k.Registry.query("articles").findElements({ tag: "
Soccer" });
for (let a of articles) {
 $k.out.print(articles[a].name() + "\n")

Technical Handbook 5.8 - 1.4. JavaScript API

203

}

Return hits: Perform the query "mainSearch" with the search string "Baseball"

const hits = $k.Registry.query("mainSearch").findHits("Baseball");
for (let hit of hits) {
 $k.out.print(`${hit.element().name()} (${Math.round(hit.quality() *
100)}%)\n`)
}

A hit wraps an element and adds a quality value (between 0 and 1) and additional metadata.

Convert query results to JSON:

const elements = $k.Registry.query("articles").findElements({ tag:
"Snooker" })
const json = elements.map(element => ({
 name: element.name(),
 id: element.idString(),
 type: element.type().name()
}))
$k.out.print(JSON.stringify(json, undefined, "\t"))

1.4.2.2. Runtime generated queries

The JavaScript API also makes it possible to generate queries dynamically. Here are several

examples from a Knowledge Graph on films:

1.4.2.2.1. Search for films by year + name

const query = new $k.StructuredQuery("imdb_film")
query.addAttributeValue("imdb_film_year", "year")
query.addAttributeValue("name", "name")
query.findElements({ year: "1958", name: "Vert*" })

The domain is transferred to the constructor. In case of internal names, the search automatically

looks for objects of this type. The setDomains() function offers more options.

1.4.2.2.2. Year + number of directors >= 3

const query = new $k.StructuredQuery("imdb_film")
query.addAttributeValue("imdb_film_year", "year")

Technical Handbook 5.8 - 1.4. JavaScript API

204

query.addCardinality("imdb_film_regisseur", 3, ">=")
query.findElements({year: "1958"})

1.4.2.2.3. Year + name of director

const query = new $k.StructuredQuery("imdb_film")
query.addAttributeValue("imdb_film_year", "year", ">=")
const directorQuery = query.addRelationTarget("imdb_film_regisseur"
).targetQuery()
directorQuery.addAttributeValue("name", "director")
query.findElements({ year: "1950", director: "Hitchcock, Alfred" })

1.4.2.2.4. Alternatives (OR conditions)

const query = new $k.StructuredQuery("imdb_film")
query.addAttributeValue("imdb_film_year", "year")
const alternatives = query.addAlternativeGroup()
alternatives.addAlternative().addAttributeValue("name", "name")
alternatives.addAlternative().addAttributeValue("imdb_film_alternativeTite
l", "name")
query.findElements({ year: "1958", name: "Vert*" })

1.4.2.2.5. Operators

Operator name Short form Description

containsPhrase Contains phrase

covers Contains

distance Distance

equal == Equal

equalBy Corresponds to

equalCardinality Equal cardinality

equalGeo Equal (geo)

equalMaxCardinality Cardinality smaller than or equal to

equalMinCardinality Cardinality greater than or equal to

equalPresentTime Now (present)

equalselementOneWay Filter with

fulltext Contains string

Technical Handbook 5.8 - 1.4. JavaScript API

205

Operator name Short form Description

greater > Greater than

greaterOrEqual >= Greater/equal

greaterOverlaps Overlaps from above

greaterPresentTime After now (future)

isCoveredBy Is contained in

less < Less than

lessOrEqual ⇐ Less/equal

lessOverlaps Overlaps from below

lessPresentTime Before now (past)

notEqual != Not equal

overlaps Overlaps

range Between

regexEqual Regular expression

regexFulltext Contains string (regular expression)

unmodifiedEqual Exactly identical

words Contains string

1.4.2.3. Creating and changing elements

1.4.2.3.1. Creating a person

// Get the person type by its internal name
const personType = $k.Registry.type("Person");
// Create a new instance
const person = personType.createInstance();
// Set attribute values
person.setAttributeValue("familyName", "Norris");
person.setAttributeValue("firstName", "Chuck");

1.4.2.3.2. Setting the full name of a person

const familyName = person.attributeValue("familyName");
const firstName = person.attributeValue("firstName");
if (familyName && firstName) {
 const fullName = familyName + ", " + firstName;
 person.setAttributeValue("fullName", fullName);

Technical Handbook 5.8 - 1.4. JavaScript API

206

}

1.4.2.3.3. Setting the value of an attribute

// Boolean attribute
element.setAttributeValue("hasKeycard", true);

// Choice attribute
// - internal name
element.setAttributeValue("status", "confirmed");
// - choice object
const choiceRange = $k.Registry.attributeType("status").valueRange();
const choice = choiceRange.choiceInternalNamed("confirmed");
element.setAttributeValue("status", choice);

// Color attribute
element.setAttributeValue("hairColor", "723F10");

// Date / Time / DateAndTime attribute
element.setAttributeValue("dateOfBirth", new Date(1984, 5, 4));
element.setAttributeValue("lastModification", new Date());
element.setAttributeValue("teatime", new Date(0, 0, 0, 15, 30, 0));

// FlexTime attribute
// - $k.FlexTime (allows imprecise values)
element.setAttributeValue("start", new $k.FlexTime(1984, 6));
// - Date (missing values are set to default values)
element.setAttributeValue("start", new Date(1984, 5, 3));

// Number (integer / float) attribute
element.setAttributeValue("weight", 73);

// Interval
element.setAttributeValue("interval", new $k.Interval(2, 4));

// String attribute
// - untranslated
element.setAttributeValue("familyName", "Norris");
// - translated (language is an ISO 639-1 or 639-2b code)
element.setAttributeValue("welcomeMessage", "Welcome", "en");
element.setAttributeValue("welcomeMessage", "Bienvenue", "fre");

Technical Handbook 5.8 - 1.4. JavaScript API

207

1.4.2.3.4. Creating a new attribute

person.createAttribute("nickName", "Ground Chuck");

1.4.2.3.5. Creating a new relation

const places = $k.Registry.query("places").findElements({name: "Oklahoma
"});
if (places.length == 1)
 person.createRelation("bornIn", places[0]);

1.4.2.3.6. Deleting an element, including its properties

person.remove()

1.4.2.3.7. Converting a string to an attribute value

The ValueRange of an attribute type knows the valid values of the attribute and can parse a string. It

throws an exception if the string is not valid.

const statusRange = $k.Registry.type("status").valueRange();
const statusConfirmed = statusRange.parse("Confirmed", "eng");

1.4.2.3.8. Setting change metadata

element.setAttributeValue("lastChangeDate", new $k.Date());
const userInstance = $k.user().instance();
// Ensure that a single relation to the user instance exists
if (element.relationTarget("lastChangedBy") !== userInstance) {
 const relations = element.relations("lastChangedBy");
 for (let relation of relations)
 relation.remove();
 element.createRelation("lastChangedBy", userInstance);
}

1.4.2.4. Date and time

Wenn man ein JavaScript-Date als Attributwert setzt, wird der Wert in der lokalen Zeitzone

gespeichert. Die Attribute selbst speichern keine Zeitzone, nur Datum/Uhrzeit.

Technical Handbook 5.8 - 1.4. JavaScript API

208

const task = $k.Registry.type('Task').createInstance()
task.setAttributeValue('dateOfCreation', new Date())

Wenn man dieses Script zum Zeitpunkt 20.6.2023 12:58 MEZ ausführt, wird "20.6.2023 12:58" als

Attributwert gesetzt.

Um einen Attributwert unabhängig von der lokalen Zeitzone zu speichern, kann man die

$k.DateTime-API verwenden. Dieses hat eine mit Date verwandte API, kann aber zusätzlich mit

toUTC() die Zeitzone des Werts wandeln:

const task = $k.Registry.type('Task').createInstance()
task.setAttributeValue('dateOfCreation', new $k.DateTime().toUTC())

Dieses Script setzt zum selben Zeitpunkt "20.6.2023 10:58" als Attributwert.

Da das Attribut keine Zeitzone speichert, ist die Darstellung bei Clients unabhängig von der lokalen

Zeitzone.

Für eine Darstellung in der lokalen Zeitzone kann $k.DateTime mit toUTCDate() den in UTC

gespeicherten Attributwert in eine Date in der lokalen Zeitzone umwandeln.

task.attributeValue('dateOfCreation').toUTCDate()

NOTE

• toUTC() ist nicht beim ECMAScript-Date definiert, nur bei $k.DateTime und

$k.Time

• toUTCDate() ist leider leicht mit toUTC() zu verwechseln.

• toUTCDate() liefert ein ECMAScript-Date, toUTC() ein $k.DateTime / $k.Time-

Objekt

Wenn man zu einem Datum/Uhrzeit-Wert nur das Datum oder nur die Uhrzeit ausgeben möchte,

kann man dazu $k.Date und $k.Time verwenden:

// Anlegezeitpunkt in lokaler Uhrzeit darstellen
new $k.Time(task.attributeValue('dateOfCreation').toUTCDate())

NOTE
Im Gegensatz zur ECMAScript-API ist $k.Date nur das Datum ohne Uhrzeit.

$k.DateTime hat Datum + Uhrzeit.

Technical Handbook 5.8 - 1.4. JavaScript API

209

1.4.2.5. Sessions

To provide a semantic element or a specific value for a later accessed view, session variables can be

used.

The assignment of the session variable is done by:

$k.Session.current().setVariable('nameOfVariable', elementOrValue)

Reading out the session variable works like this:

$k.Session.current().getVariable('nameOfVariable')

1.4.2.6. REST

A REST script must define a respond() function that receives the HTTP request, the parsed request

parameters and an empty HTTP response. The script then fills header fields and the contents of the

response.

function respond(request, parameters, response) {
 response.setText("REST example");
}

1.4.2.6.1. Restlet that returns a blob

function respond(request, parameters, response) {
 const name = parameters["name"];
 if (name) {
 const images = $k.Registry.query("rest.image").findElements({"name":
name});
 if (images.length == 1) {
 // Set the contents and content type (if known) from the image blob.
 response.setContents(images[0].value());
 // Show the image instead of asking to download the file
 response.setContentDisposition("inline");
 } else {
 response.setCode($k.HttpResponse.BAD_REQUEST);
 response.setText(images.length + " images found");
 }
 } else {
 response.setCode($k.HttpResponse.BAD_REQUEST);
 response.setText("Name not specified");

Technical Handbook 5.8 - 1.4. JavaScript API

210

 }
}

1.4.2.6.2. Restlet that creates an instance with an uploaded blob

function respond(request, parameters, response) {
 const formData = request.formData();
 const name = formData.name;
 const picture = formData.picture;
 if (name && picture) {
 const city = $k.Registry.type("City").createInstance();
 city.setAttributeValue("image", picture);
 city.setName(name);
 response.setText("Created city " + name);
 } else {
 response.setCode($k.HttpResponse.BAD_REQUEST);
 response.setText("Parameters missing");
 }
}

1.4.2.7. XML

1.4.2.7.1. Transforms query results into XML elements

function respond(request, parameters, response) {
 const name = parameters["name"];
 if (name) {
 // Find points of interest
 const elements = $k.Registry.query("rest.poi").findElements({name:
name});
 // Write XML
 const document = new $k.TextDocument();
 const writer = document.xmlWriter();
 writer.startElement("result");
 for (let element of elements) {
 writer.startElement("poi");
 writer.attribute("name", element.name());
 writer.endElement();
 }
 writer.endElement();
 response.setContents(document);
 response.setContentType("application/xml");
 } else {
 response.setCode($k.HttpResponse.BAD_REQUEST);

Technical Handbook 5.8 - 1.4. JavaScript API

211

 response.setContents("Name not specified");
 }
}

XML output

<result>
 <poi name="Plaza Mayor"/>
 <poi name="Plaza de la Villa"/>
 <poi name="Puerta de Europa"/>
</result>

1.4.2.7.2. Using qualified names

const document = new $k.TextDocument();
const writer = $k.out.xmlWriter();
writer.setPrefix("k", "http://www.i-views.de/kinfinity");
writer.startElement("root", "k");
writer.attribute("hidden", "true", "k");
writer.startElement("child","k").endElement();
writer.endElement();

XML output

<k:root xmlns:k="http://www.i-views.de/kinfinity" k:hidden="true">
 <k:child/>
</k:root>

1.4.2.7.3. Defining a default namespace

const document = new $k.TextDocument();
const writer = $k.out.xmlWriter();
writer.startElement("root");
writer.defaultNamespace("http://www.i-views.de/kinfinity");
writer.startElement("child").endElement();
writer.endElement();

XML output

<root xmlns="http://www.i-views.de/kinfinity">

Technical Handbook 5.8 - 1.4. JavaScript API

212

 <child/>
</root>

1.4.2.8. HTTP client

A script can also be used to send HTTP requests.

1.4.2.8.1. Loading a picture via HTTP and store it as a blob

const http = new $k.HttpConnection();
const imageUrl = "http://upload.wikimedia.org/wikipedia/commons/e/e7/2007-
07-06_GreatBriain_Portree.jpg";
const imageResponse = http.request(new $k.HttpRequest(imageUrl));
if (imageResponse && imageResponse.code() == $K.HttpResponse.OK) {
 const portree = $k.Registry.type("City").createInstance();
 portree.setAttributeValue("image", imageResponse);
 portree.setName("Portree");
}

1.4.2.8.2. Updating the weather report of all cities

const instances = $k.Registry.type("City").instances();
const http = new $k.HttpConnection();
for (let instance of instances) {
 const city = instance;
 const weatherUrl = "http://api.openweathermap.org/data/2.5/weather";
 const weatherRequest = new $k.HttpRequest(weatherUrl);
 weatherRequest.setQueryData({q: city.name()});
 try {
 const weatherResponse = http.request(weatherRequest);
 if (weatherResponse.code() == $k.HttpResponse.OK) {
 const json = JSON.parse(weatherResponse.text());
 const weather = json.weather[0].description;
 city.setAttributeValue("weather", weather);
 }
 } catch (e) {
 }
}

1.4.2.8.3. Basic authentication

In the following example, a username and password is extracted from an encrypted string. These

strings can be created using the admin tool, navigating to System configuration > Access

Technical Handbook 5.8 - 1.4. JavaScript API

213

authorisation and using the "Encrypt name/password" button. They are only valid for the

Knowledge Graph for which they were created.

const http = new $k.HttpConnection()
const account =
'GH1Z4FXWrCdEoiDSlCVMZJQ6QaBZ4rfAcJdDliUHn8ep00ZKmUR+f8nvAFEObB1pjrQId0Bn9
rjmaSZJtz4X6RSAGONfHRxlWG62V3itUPeHzqs7DE90/jG+cv/rVKNrxcdFGRja6cjnHOTK4LG
jZiuUV313GsC1EDr8GEctfeo='
http.authenticateFromEncrypedAccount(account)
const request = new $k.HttpRequest('http://example.org/restricted')
const response = http.request(request)

1.4.2.8.4. Sending JSON object as query data via POST request

const http = new $k.HttpConnection();
const objectToPost = [{foo: 'bar'}, 'baz'];
const destinationURL = 'http://upload-via-post.domain.com';
const postRequest = new $k.HttpRequest(destinationURL, 'POST');
postRequest.setText(JSON.stringify(objectToPost))
postRequest.setHeaderField('Content-Type', 'application/json');
const response = http.request(postRequest);

1.4.2.8.5. Sending a blob via PUT request

const blob = $k.Registry.elementAtValue('isbn', '978-0544003415'
).attributeValue('coverPicture')
const http = new $k.HttpConnection()
const request = new $k.HttpRequest('http://mybookservice/cover/978-
0544003415', 'PUT')
request.setContents(blob)
const response = http.request(request)

The content type is taken automatically from the blob.

1.4.2.8.6. Sending two blobs via POST request as multipart/form-data

const book = $k.Registry.elementAtValue('isbn', '978-0544003415')
const pdfBlob = book.attributeValue('pdf')
const previewBlob = book.attributeValue('preview')
const http = new $k.HttpConnection()
const request = new $k.HttpRequest('http://mybookservice/ebooks/978-
0544003415', 'POST')

Technical Handbook 5.8 - 1.4. JavaScript API

214

request.setContentType('multipart/form-data')
const pdfPart = new $k.NetEntity()
pdfPart.setContentDisposition('form-data; name="ebook"')
pdfPart.setContents(pdfBlob)
request.attach(pdfPart)
const previewPart = new $k.NetEntity()
previewPart.setContentDisposition('form-data; name="preview"')
previewPart.setContents(previewBlob)
request.attach(previewPart)
const response = http.request(request)

The filename of the form data is taken from the blob. If another filename is needed, it can be set

using setFilename(string).

1.4.2.8.7. Sending an URL encoded form via POST request

const data = { name: 'Gandalf', occupation: 'Wizard' }
const http = new $k.HttpConnection()
const request = new $k.HttpRequest('http://mybookservice/user', 'POST')
request.setFormData(data)
const response = http.request(request)

The data is send with Content-Type application/x-www-form-urlencoded.

1.4.2.8.8. Restricting outgoing domains

To prevent scripts from sending requests to arbitrary hosts, a whitelist can be defined in the

configuration file of the application.

[script]
allowedOutgoingDomains=*.i-views.de,*.intelligent-
views.com,ivinternal:8080

The comma separated strings are compared to the domain part of the URL. "*" can be used as

wildcard character. Optionally, a port can also be specified. If domain or port do not match,

executing the request throws an URIError. If no specific port is defined, every port is accepted.

1.4.2.9. Sending mails

Mails can be sent with the MailMessage object. To do so, an SMTP server must be configured in the

Knowledge Graph (Settings → System → SMTP).

const mail = new $k.MailMessage();

Technical Handbook 5.8 - 1.4. JavaScript API

215

mail.setSubject("Hello from " + $k.volume());
mail.setText("This is a test mail");
mail.setSender("kinfinity@example.org");
mail.setReceiver("developers@example.org");
mail.setUserName("kinf");
mail.send();

The user account “kinf” is used for authentication. The password is saved in the SMTP settings. ===

Sending a mail via $k.SmtpConnection

In the following example, a username and password is extracted from an encrypted string. These

strings can be created using the admin tool, navigating to System configuration > Access

authorisation and using the "Encrypt name/password" button. They are only valid for the

Knowledge Graph for which they were created.

const mail = new $k.MailMessage()
mail.setSubject('Hello from ' + $k.volume())
mail.setText('This is a test mail')
mail.setSender('kinfinity@example.org')
mail.setReceiver('developers@example.org')
const smtp = new $k.SmtpConnection()
smtp.setHost('mailgateway.local', 22)
smtp.authenticateFromEncrypedAccount('Qi3Eky7itkf2NckwgcKemiZvNGGoXcbo43O2
/nZ5RvoRvv7AukUM0LIVUw1WJ+uMDgzxw7JA5gtYyLgNg7fHaC4wJCQIgnIfXVPSW6u391NmUq
nZkcuc0nl4u2nPymAmcqzoUDJRSHrMVy1qEsbxXtfhsJzh7e4EDKIAeJ75BxE=')
smtp.send(mail)

1.4.2.9.1. Sending a mail with attachment

const mail = new $k.MailMessage()
mail.setSubject('Daily report')
mail.setText('Here is the daily report')
const attachment = new $k.NetEntity()
attachment.setContentType('text/html')
attachment.setText('<html><body><h1>Daily report</h1>No problems
found</body</html>')
attachment.setContents(report)
mail.attach(attachment)
mail.setSender('kinfinity@example.org')
mail.setReceiver('developers@example.org')
mail.setUserName('kinf')
mail.send()

Technical Handbook 5.8 - 1.4. JavaScript API

216

1.4.2.10. Data source mappings

Per API kann man registrierte Abbildungen von Datenquellen ausführen. Die Abbildungen werden

durch Objekte der Klasse $k. Mapping repräsentiert. Abbildungen zur Laufzeit zu generieren ist

derzeit nicht möglich.

Einen Export mit einer registrierten Abbildung mit dem Registierungsschlüssel

"products"durchführen:

const mapping = $k.Registry.mapping("products")
mapping.runExport()

Bei dateibasierten Datenquellen verwendet die API standardmäßig die konfigurierten Ein-

/Ausgabedateien. Alternativ kann von/in eine $k.NetEntity im-/exportiert werden:

const mapping = $k.Registry.mapping("products")
const productsEntity = new $k.NetEntity()
mapping.setParameter("netEntity", productsEntity)
mapping.runExport()

Dadurch können die Inhalte per HTTP oder E-Mail transportiert werden. Derzeit werden die Inhalte

der NetEntity im Hauptspeicher abgelegt, für große Datenmengen ist diese Methode deshalb nicht

geeignet.

1.4.2.11. ZIP files

Zip files can be read and written. Both the zip file and the contained files are represented by

$k.NetEntity objects, but it is also possible to add $k.Blob objects as zip content.

1.4.2.11.1. Return a zip file as response to a REST request

function respond(request, parameters, response) {
 const zip = new $k.Zip('avatars.zip')
 $k.Registry.type('account').allInstances().forEach(account =>
 zip.addEntry(account.attributeValue('avatar'))
)
 response.setContents(zip)
}

1.4.2.11.2. Read out contents of a zip file in a POST request body

The constructor is called with a $k.NetEntity object.

Technical Handbook 5.8 - 1.4. JavaScript API

217

function respond(request, parameters, response) {
 if (request.contentType() !== 'application/zip') {
 response.setCodeBadRequest().setText('Zip expected')
 return
 }
 const zip = new $k.Zip(request)
 zip.filenames().forEach(filename => {
 const entityInZip = zip.entry(filename)
 const account = $k.Registry.type('upload').createInstance()
 account.setAttributeValue('file', entityInZip)
 })
}

1.4.2.12. Mustache templates

The following restlet function renders a document using the Mustache template library. It expects

the following schema of a template document:

• a string attribute (internal name "template.id") to identify a template

• a document blob (internal name "template.file") containing the template, e.g. an HTML

document

• a relation to a media type(internal name "template.contentType")

A query ("rest.articles") returns the elements that should be rendered. The Mustache library is

registered as "mustache.js".

function respond(request, parameters, response) {
 // Include Mustache library
 $k.module("mustache.js");

 // Get template
 const templateId = parameters["templateId"];
 const templateelement = $k.Registry.elementAtValue("template.id",
templateId);
 const templateText = templateelement.attributeValue("template.file"
).text("utf-8");

 // Find elements
 const elements = $k.Registry.query("rest.articles").findElements
(parameters);

 // Prepare template parameters
 const elementsData = elements.map(element => ({
 name: element.name(),

Technical Handbook 5.8 - 1.4. JavaScript API

218

http://mustache.github.io/

 id: element.idNumber(),
 type: element.type().name()
 }))
 const templateParameters = {
 elements: elementsData
 };

 // Render with Mustache
 const output = Mustache.render(templateText, templateParameters);

 // Return the rendered document
 response.setText(output);
 response.setContentType(templateelement.relationTarget(
"template.contentType").name());
}

1.4.2.13. Java native interface

Java can be accessed via JNI (Java Native Interface).

WARNING

JNI is an experimental feature and has several restrictions:

• JNI cannot be used in triggers

• It is not possible to define classes (e.g. for callbacks)

• Generics are not supported

• JNI allows accessing system resources (files etc.), so take care when using

JNI in REST services

• JNI has to be enabled and configured in the configuration file of each

application. The classpath cannot be changed during runtime.

1.4.2.13.1. Configuration

[JNI]
classPath=tika\tika-app-1.5.jar
libraryPath=C:\Program Files\Java\jre7\bin\server\jvm.dll

1.4.2.13.2. Basic example

A list of classes is imported using the function $jni.use(). For each class, a function object of the

same name is created and can be instantiated with new. All static properties are transferred to the

function object. The java class namespace can optionally be omitted.

Technical Handbook 5.8 - 1.4. JavaScript API

219

// Import the StringBuilder class, without namespace
$jni.use(["java.lang.StringBuilder"], false);
// Create a new instance
const builder = new StringBuilder();
// Javascript primitives and Strings are automatically converted
builder.append("Welcome to ");
builder.append($k.volume());
// toJS() converts Java objects to Javascript objects
$k.out.print(builder.toString().toJS());

1.4.2.13.3. Text/metadata extraction with Apache Tika

$jni.use([
 "java.io.ByteArrayInputStream",
 "java.io.BufferedInputStream",
 "java.io.StringWriter",
 "org.apache.tika.parser.AutoDetectParser",
 "org.apache.tika.metadata.Metadata",
 "org.apache.tika.parser.ParseContext",
 "org.apache.tika.sax.BodyContentHandler"
], false);
// Get a blob
const blob = $k.Registry.elementAtValue("uuid", "f36db9ef-35b1-48c1-9f23-
1e10288fddf6").attributeValue("ebook");
// Blobs have to be explicitely converted to Java byte arrays
const bufferedInputStream = new BufferedInputStream(new
ByteArrayInputStream($jni.toJava(blob)));
// Parse the blob
try {
 const parser = new AutoDetectParser();
 const writer = new StringWriter();
 const metaData = new Metadata();
 parser.parse(bufferedInputStream, new BodyContentHandler(writer),
metaData, new ParseContext());
 const string = writer.toString().toJS();
 // Print extracted metadata
 const metaNames = metaData.names().toJS().sort((a, b) => a.
localeCompare(b));
 for (let name of metaNames)
 $k.out.print(`${name} = ${metaData.get(name)}`).cr();
 // Print extracted text (first 100 chars)
 $k.out.cr().cr().print(`${string.substring(1, 100)} [...]\n\n(${string
.length} chars)`);
} catch (e) {

Technical Handbook 5.8 - 1.4. JavaScript API

220

 $k.out.print("Extraction failed: " + e.toString());
} finally {
 bufferedInputStream.close();
}

1.4.2.14. Parsing XML

The experimental DOMParser API offers a subset of the web API functionality for parsing XML

content.

1.4.2.14.1. Read XML as DOM

const xml = '<rootNode><node1>Some text</node1><node2>More
text</node2></rootNode>'
const dom = new $dom.DOMParser().parseFromString(xml)
$k.out.print(dom.firstChild.children[0].nodeName)

1.4.2.14.2. Address nodes using XPath

const xml = '<rootNode><node1>Some text</node1><node2>More
text</node2></rootNode>'
const dom = new $dom.DOMParser().parseFromString(xml)
$k.out.print(dom.evaluate('//node2').stringValue)

1.4.3. Modules

1.4.3.1. Define modules

A module is defined with the define() function. The argument is either a module object or a

function that returns an module object. A module should contain only a single definition.

Example: Define a module with a function jsonify())

$k.define({
 /*
 * Create a JSON object array for the elements
 */
 jsonify: function(elements) {
 return elements.map(element => {
 name: element.name(),
 id: element.idString(),
 type: element.type().name()
 });

Technical Handbook 5.8 - 1.4. JavaScript API

221

 }
});

define() allows to specify dependencies from other modules. The following script defines a module

that uses another module ("rest.common").

$k.define(["rest.common"], function(common) {
 return {
 stringify: function(elements) {
 return JSON.stringify(common.jsonify(elements), undefined, "
\t")
 }
 }
});

1.4.3.2. Use modules

A module can be used either with require() or module().

require() expects an array of module names and a callback function. The arguments of the callback

function are the module ojects. require() returns the return value of the callback function.

const elements = $k.Registry.query("rest.poi").findElements({name: "
Madrid"});
const json = $k.require(["rest.common"], function(common) {
 return common.jsonify(elements);
});
$k.out.print(JSON.stringify(json, undefined, "\t"));

module() expects the name of a module and returns the module object.

const json = $k.module("rest.common").jsonify(topics);
$k.out.print(JSON.stringify(json, undefined, "\t"));

module() can also be used to include scripts that doe not define a module at all. The script is

evaluated and all declared functions are instantiated. These functions can then be called.

1.4.3.3. AMD

To integrate JavaScript libraries that support the AMD standard, you first have to globally define

require() and define().

Technical Handbook 5.8 - 1.4. JavaScript API

222

https://github.com/amdjs/amdjs-api/wiki/AMD

this.define = $k.define;
this.define.amd = {};
this.require = $k.require;

If a library defines a module with a certain ID and you want to register this library under a different

name, you can map the module IDs to registry IDs.

$k.mapModule("underscore", "lib.underscore");

You can now register underscore.js as "lib.underscore" and use the "underscore" module defined

there.

1.4.4. Editor and debugger

The editor itself provides the four tab-separated sections:

1.4.4.1. Script

Functionalities: Importing, editing and exporting scripts

Technical Handbook 5.8 - 1.4. JavaScript API

223

Function Description

Import/Export Allows importing/exporting of *.js files from/to the file system of the PC.

Functions Lists all used and named function calls within the code. When selecting a

function out of the list, the editor jumps to the line where the function

call is located.

Save Saves the changes made to the code (shortcut: Ctrl + S).

Discard Discards all changes since the last time of saving.

1.4.4.2. Execute script

Functionalities: Executing script, displaying output, implementing test script for debugging.

The wrapper script shown in the following image is an example for testing a restlet in the

Knowledge Builder. The test script can be defined in the script editor on the "Execute script" tab as

"Additional test script".

Breakpoints can be set on the "Debug" tab.

Function Description

Execute script Execute the script in one cycle, without interruption.

Technical Handbook 5.8 - 1.4. JavaScript API

224

Function Description

Transaction Writing actions (e. g. creating or deleting objects) from within the script

require a transaction. When the script is executed within an action of the

web frontend, it will automatically be surrounded by a transaction. If the

script is executed or debugged without being initiated by the web

frontend, a transaction needs to encapsulate the script by using one of

the following options:

• Controlled by script: In this case, the script needs to contain code

which encapsules actions within a transaction. For creating a

transaction, see the i-views JavaScript API reference.

• Read only: Allows executing/debugging of the script as long as no

writing actions are being executed on the graph.

• Read and write: Allows reading and writing of graph structures,

without explicit transaction control in the script code.

Copy to clipboard Copies the output to the clipboard.

Save Stores the output to the filesystem.

NOTE
The configuration for custom variables and the additional test script has been

removed in version 5.7

1.4.4.3. Debug

Functionalities: Setting of breakpoints, stepping through code, evaluating expressions

Technical Handbook 5.8 - 1.4. JavaScript API

225

Function Description

Start/Resume (F4) This action starts executing the script, if no breakpoints are set or it starts

debugging the script (step-by-step) if at least one breakpoint has been

set before. Caution: When a breakpoint is set at a code line which only

includes a comment, the breakpoint will be ignored.

Single step (F5) Executes the next logical step.

Single step (entire

block) (F6)

Executes the current block completely.

Return from context

(F7)

Executes the referenced code and returns to the originally invoked code.

Suspend (F9) Suspends (pauses) executing the code. When debugging, the debugger

goes on to the next breakpoint nevertheless.

Terminate (F10) Terminates executing or debugging the script.

Evaluate expression Serves for evaluating the value of a variable after the debugger has

reached the next breaktpoint.

Edit If a variable is selected that points to an element of the knowledge graph,

this button opens the editor window on the element.

1.4.4.4. Combined

Functionalities: Combines Script execution and output into one view

Technical Handbook 5.8 - 1.4. JavaScript API

226

1.4.5. API extensions

1.4.5.1. Additional functions

The API can be extended by adding functions to the prototypes. The following example extends

schema prototype objects to print schema information.

// Print the schema of the instances and subtypes of a type
$k.Type.prototype.printSchema = function () {
 this.typesDomain().printSchema("Type schema of \"" + this.name() + "\"
");
 this.instancesDomain().printSchema("Instance schema of \"" + this.name()
+ "\"");
 this.subtypes().forEach(subtype => subtype.printSchema());
}

// Print information about a property type
$k.PropertyType.prototype.logPropertySchema = function () {
 $k.out.print("\t" + this.name() + "\n");
}

// Attribute types print their type
$k.AttributeType.prototype.logPropertySchema = function () {
 $k.out.print("\t" + this.name() + " (Attribute of type " + this
.valueRange().type() + ")\n");
}

// Relation types print their target domains
$k.RelationType.prototype.logPropertySchema = function () {
 $k.out.print("\t" + this.name());
 const inverse = this.inverseRelationType();
 if (inverse) {
 const inverseDomains = inverse.domains();
 if (inverseDomains.length > 0) {
 $k.out.print(" (Relation to ");
 let separate = false;
 inverseDomains.forEach(function (inverseDomain) {
 if (separate)
 $k.out.print(", ");
 else
 separate = true;
 $k.out.print("\"" + inverseDomain.type().name() + "\"");
 });
 $k.out.print(")");
 }
 }

Technical Handbook 5.8 - 1.4. JavaScript API

227

 $k.out.cr();
}

// Print all properties defined for a domain
$k.Domain.prototype.printSchema = function (label) {
 const definedProperties = this.definedProperties();
 if (definedProperties.length > 0) {
 $k.out.print(label + "\n");
 definedProperties.sort((p1, p2) => p1.name().localeCompare(p2.
name()));
 definedProperties.forEach(propertyType => propertyType
.logPropertySchema());
 }
}

// Print the entire schema
$k.rootType().printSchema();

1.4.5.2. Define your own prototypes

The prototype of a semantic element is usually one of the built-in prototypes (Instance, Relation

etc.). It is possible to assign custom prototypes to instances of specific types with the function

mapInstances(internalName, protoype).

Example: A basket prototype

// Define a Basket prototype with a function totalPrice()
function Basket() { }

Basket.prototype.totalPrice = function() {
 return this.relationTargets("contains").reduce(
 (sum, item) => sum + item.attributeValue("price"),
 0
);
}

// Set the prototype of instances of the basket type
$k.mapInstances("Basket", Basket);

// Print the total price of all baskets
const baskets = $k.Registry.type("Basket").instances();
for (let basket of baskets)
 $k.out.print(basket.totalPrice() + "\n");

Technical Handbook 5.8 - 1.4. JavaScript API

228

For using within other scripts, the module needs to be loaded first:

$k.module('myBasketSkript');
const basket = $k.Registry().elementWithID('ID_123');
$k.out.print(basket.totalPrice() + "\n");

Technical Handbook 5.8 - 1.4. JavaScript API

229

1.5. REST services

The REST interface can be used for read and write access to the Knowledge Graph. To do so,

resources and services need to be defined. Resources describe the interface behavior when

accessing a specific path. The behavior of a resource is controlled using scripts. In addition,

predefined resources may also be used. Services bundle resources of a common path together.

Access takes place via HTTP requests that are structured according to the pattern

https://<hostname>:<port>/[<service-path>||<service-id>]/<resource-path-
and-parameter>

1.5.1. Configuration

The REST component must be added in the Knowledge Graph. It defines the necessary schema,

which is found in the “Technical” area → “REST” in the Knowledge Builder.

The REST interface is usually provided by the bridge service. This responds to HTTP prompts using

the REST configuration in the Knowledge Graph. The interface is already included in the tryout

version of the Knowledge Builder, and no bridge service is required.

Changes to the configuration in the Knowledge Graph do not automatically affect interfaces that are

already running. This only happens when the menu item “Administrator → Update REST interface”

is executed in the main menu of the Knowledge Builder.

The bridge service requires a suitable configuration file (bridge.ini). The name of the server (host),

the Knowledge Graph (volume) and the REST service ID need to be specified there. The line with

“services” can be omitted entirely to automatically activate the resources of all existing service

objects.

[Default]
host=localhost
loglevel=10

[KHTTPRestBridge]
volume=demo
port=8086
services=core,extra

1.5.2. Services

Services combine several resources. Resources may be contained in several services.

The service editor in the Knowledge Builder shows the resources in its structure view. A new

Technical Handbook 5.8 - 1.5. REST services

230

https://en.wikipedia.org/wiki/Representational_State_Transfer

resource can be created using “Link new” and is added to the service. A resource that has already

been defined can be added to the service using “Link existing”.

1.5.3. Resources

Resources describe the response in the event of an HTTP request to the interface. There are the

following types of resources:

Resource Description

Script resource Resources that can be defined by scripts.

Built-in resource Predefined resource with a response that is defined by the system. These

resources are created by the component.

Static file resource Serves files from the file system.

A resource has the following configurable properties:

Property Description

Path pattern Defines the URL of the resource relative to the address of the service.

The path can be parameterized by adding parameters in curly brackets:

albums/{genre}

Several parameters can be specified. Each parameter must, however, be a

part completely separated by /:

albums/{genre}-{year}

is not valid,

albums/{genre}/{year}

is valid

Part of service Services that use this resources

Description Description for documentation purposes

Requires

authentication

Authentication is required for access to the resource

Technical Handbook 5.8 - 1.5. REST services

231

1.5.3.1. Methods

A resource is linked to one or more methods . This defines the response as well as the supported

input and output types (content types). The methods and types of the HTTP request are used to

select a suitably configured method.

In the structure view, methods are displayed as subelements of resources and can be

created/deleted there.

Property Description

HTTP method Supported HTTP methods (GET, POST, PUT, DELETE). Multiple

entries are possible.

Input media type Only POST/PUT: expected content type of the content of the

request.

Output media type Content type of the response. If the request specifies an

expected content type via Accept, the output media type must

match this.

Script Registered script for the definition of the response (only relevant

for script resources)

Transaction Transaction control (only relevant for script resources)

Transaction control is relevant for write accesses to the Knowledge Graph because these are only

possible within a transaction.

Transaction control Description

Automatic For GET read access only; for POST/PUT/DELETE the script is

executed in a transaction. This is the default setting.

Controlled by script No transaction; the script must control this itself.

Read Read access only; the script cannot start a transaction.

Write The script is executed in a transaction.

1.5.3.2. Script resource

A script is used to define the response to an HTTP query for a method of a script resource. For this

purpose, the respond function (request, parameters, response) that must be defined in the script is

called from the interface.

Argument Type Description

request $k.HttpRequest Request (URL, header etc.)

parameters object Parameter extracted from the request

response $k.HttpResponse Response

Technical Handbook 5.8 - 1.5. REST services

232

The function then fills out the header and content of the response. There is no return value.

If a type has been defined for a parameter (e.g. xsd:integer), then the converted value is

transferred. If not, a string is transferred. Parameters that can occur more than once by definition

are always transferred as an array.

If an output content type was defined for the response in the method, this is set automatically.

Alternatively, it is also possible to define the content type in the script.

The following script searches for albums and converts them into JSON objects. The parameters of

the resource are transferred to the query as search parameters.

function respond(request, parameters, response) {
 const albums = $k.Registry.query("albums").findElements(parameters);
 const albumData = albums.map(album => ({
 name: album.name(),
 id: album.idString()
 });
 response.setText(JSON.stringify(albumData, undefined, "\t"));
 response.setContentType("application/json");
}

This script could be used, for example, in the resource

albums/{genre}/{year}

and use the search parameters "genre" and "year" as the search conditions in the "albums" query.

1.5.3.3. Built-in resources

Built-in resources are predefined resources with a response specified by the system. Each

predefined response can be assigned using an assigned value of the string attribute Rest resource

ID.

Rest resource ID Method Description

BlobResource GET Returns the binary content of an

existing blob attribute. The blob

attribute is identified using the query

parameter blobLocator. Optionally,

the parameter allowRedirect can

be used to define that blobs may not

be obtained directly by the blob

service (fixed value: false).

Technical Handbook 5.8 - 1.5. REST services

233

Rest resource ID Method Description

BlobResource POST, PUT Changes the binary content of a blob

attribute. The blob attribute is

identified using the query parameter

blobLocator. Depending on the type

of the blobLocator, a new attribute

is created or an existing one changed.

EditorConfigResource GET, POST, PUT Output and import of an XML

representation of a semantic element.

ObjectListResource GET Returns a table of instances or

subtypes of the specified type. The set

of objects can optionally be filtered,

sorted or be defined directly.

ObjectListPrintTemplateResource GET Returns a table of instances or

subtypes in printed form. The print

template must be specified.

ObjectListPrintTemplate

ResourceWithFilename

GET Returns a table of instances or

subtypes in printed form. The print

template must be specified. The

parameter (filename) is not evaluated,

and is only used to improve its use in

the browser.

TopicIconResource GET Returns the icon or image of the

specified semantic element.

Version 4.1 or higher of i-views allows a JavaScript (rest.preprocessScript) to be attached to

the resource. The function it contains (preprocessParameters(parameters, request)) can

provide the parameters. Any blobLocator (or the associated blob attribute) still missing can, for

example, be determined from the parameters transferred, which would otherwise require an

additional script resource call.

1.5.3.3.1. BlobResource

This built-in resource allows contents of file attributes to be loaded and saved.

Download

The GET method can be used to download the binary content of an existing file attribute. The file

attribute is then identified by means of the query parameter blobLocator.

Upload

In the case of an upload, the parameter blobLocator either identifies an existing file attribute or a

potential file attribute (i.e. new one to be created). The syntax for a potential attribute has the

Technical Handbook 5.8 - 1.5. REST services

234

following form: PP~ID1_115537458~ID36518_344319903, whereby the first ID represents the

semantic element and the second ID the attribute prototype.

The binary data can optionally be transmitted as a multipart or single part. In the case of multipart,

several files can potentially be uploaded at the same time, which, of course, only makes sense when

each file is written to a newly created file attribute. In any case, the file name must be set for every

file transmitted.

The optional parameter binaryKey defines the form key used to transmit the binary data in

multipart.

If the optional Boolean parameter uploadOnly is set to true, then the binary data are uploaded

only, and are not written into the file attribute. This mode is used in interplay with the

ViewConfiguration Mapper. The JSON value is returned in this case (fileName, fileSize,

binaryContainerId), which can be written into the attributes using the mapper in a second step. The

content type of the returned JSON value is normally application/json, however can be set to

another value using the parameter overrideContentType should the browser (e.g. IE) encounter

problems doing so.

1.5.3.3.2. Topic icon

The following path can be used to load the image file to a given topic. If an individual does not have

an image file of their own, the image file of the type is used, which is, in turn, inheritable. The

optional parameter size can be used to select the image file with the size that is most suitable,

providing several image sizes are saved in the Knowledge Graph.

http://{server:port}/baseService/topicIcon/{topicID}?size=10

1.5.3.3.3. Object list

The following path can be used to request an object list in the JSON format:

http://{server:port}/baseService/{conceptLocator}/objectList

The object list type is referenced via the conceptLocator parameter, which is followed by the

format for topic references in the remaining URL (see link).

Alternatively, the conceptLocator can also reference the single prototype (individual or type) of

the type to be used.

The optional name parameter determines the object list to be used for the output.

Technical Handbook 5.8 - 1.5. REST services

235

Filter

The optional and multi-value query parameter filter can be used to filter the object list. A filter

can take two different forms:

1. <column name/column no.> ~ <operator> ~ <value>

2. <column name/column no.> ~ <value>

The available operators are: equal, notEqual, greater, less, greaterOrEqual, lessOrEqual,

equalCardinality, containsPhrase, covers, isCoveredBy, distance, fulltext, equalGeo,

equalPresentTime, greaterOverlaps, greaterPresentTime, lessOverlaps, lessPresentTime,

equalMaxCardinality, equalMinCardinality, overlaps, unmodifiedEqual.

Sorting

The optional and multi-value query parameter sort can be used to sort the object list. The order of

sorting parameters determines the sorting priority. Sorting can be specified in two forms:

1. <column name>

2. {-}<column no.>

If you prefix a minus sign in variant 2, sorting is performed in descending order, otherwise it is in

ascending order.

Setting the starting set of the list

The optional elements query parameter can be used to transmit a comma-separated list of topic

references to be used as list elements.

As the list of elements can be very long, the request can also be sent as POST and the parameters

can be transferred as form parameters.

Inheritance

Inheritance can be suppressed via the optional query parameter disableInheritance. The

parameter only makes sense if no elementsPath is set.

JSON output format (example)

{
 "rows": [
 {
 "topicID": "ID123_987654321",
 "row": [
 "MM",
 "Mustermann",

Technical Handbook 5.8 - 1.5. REST services

236

 "Max",
 "111",
 "m.mustermann@email.net",
 "10",
 "6",
 "2000-01-01",
 "project A, project B"
]
 },
 {
 "topicID": "ID987_123456789",
 "row": [
 "MF",
 "Musterfrau",
 "Maxine",
 "222",
 "m.musterfrau@email.net",
 "10",
 "8",
 "2000-01-01",
 "project X, project Y, project Z"
]
 }
],
 "columnDescriptions": [
 {
 "label": "Login",
 "type": "string",
 "columnId": "1"
 },
 {
 "label": "Last name",
 "type": "string",
 "columnId": "2"
 },
 {
 "label": "First name",
 "type": "string",
 "columnId": "3"
 },
 {
 "label": "Telephone extension",
 "type": "string",
 "columnId": "4"
 },
 {

Technical Handbook 5.8 - 1.5. REST services

237

 "label": "email",
 "type": "string",
 "columnId": "5"
 },
 {
 "label": "Availability",
 "type": "number",
 "columnId": "6"
 },
 {
 "label": "Expenditure",
 "type": "string",
 "columnId": "7"
 },
 {
 "label": "created on",
 "type": "dateTime",
 "columnId": "8"
 },
 {
 "label": "Project",
 "type": "string",
 "columnId": "9"
 }
]
}

1.5.3.3.4. Object list print template

The following path can be used to fill an object list in a ‘print template for list’ and download the

result:

http://{server:port}/baseService/{conceptLocator}/objectList/printTemplate
/

{templateLocator}/{filename}

The service functions exactly the same way as retrieving an object list, however, as an additional

parameter, features a reference to the individual of the type print template for list in the Knowledge

Graph.

templateLocator must have one of the formats described under General

Technical Handbook 5.8 - 1.5. REST services

238

The optional path parameter filename is not evaluated, and is used to improve browser

performance.

The header field Accept is used to control the output format into which conversion occurs. If there

is no header field, or the value is */*, no conversion occurs. Accept with multiple values is not

supported and will result in an error message.

The optional query parameter targetMimeType is used to overwrite the value of the Accept
header field. This is necessary when the user would like to call the request from a browser, and has

no influence on the header fields.

1.5.3.3.5. Print topic

The following path can be used to fill out a topic in a print list template and download the result:

http://{server:port}/baseService/{topicLocator}/printTemplate/

{templateLocator}/{filename}

templateLocator must have one of the formats described under General

The optional path parameter filename is not evaluated, and is used to improve browser

performance.

The header field Accept is used to control the output format into which conversion occurs. If there

is no header field, or the value is */*, no conversion occurs. Accept with multiple values is not

supported and will result in an error message.

The optional query parameter targetMimeType is used to overwrite the value of the Accept
header field. This is necessary when the user would like to call the request from a browser, and has

no influence on the header fields.

1.5.3.3.6. Document format conversion

You can use the following path to convert a document to another format (e.g. odt in pdf):

http://{server:port}/baseService/jodconverter/service

The service maps the JOD converter (see http://sourceforge.net/projects/jodconverter/) and is used

for downward compatibility for installations that used to be operated with the JOD converter.

For the service to work OpenOffice/LibreOffice (version 4.0 or above) must be installed and the

configuration file "bridge.ini" must have an entry that refers to the "soffice" file.

Technical Handbook 5.8 - 1.5. REST services

239

http://sourceforge.net/projects/jodconverter/

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

1.5.3.4. Static File Resource

Delivers files from the file system.

With this type of resource, you merely use Path pattern to specify the directory under which the

files are delivered. The directory is addressed relative to the content directory of the REST bridge.

Example:

Enter an icons directory with the file bullet.png . The path pattern of the resource is icons, the

corresponding service has the Service ID test. The file bullet.png is thus accessed via:

http://localhost:{bridge-port}/test/icons/bullet.png

1.5.3.5. Resource parameters

The parameters for the resource can be defined below methods. This is not absolutely essential,

does, however, have a number of advantages:

• The parameters can be checked and converted by using type specifications (e.g. in numbers or

objects)

• Documentation for customers

The following parameter properties can be configured:

Property Value

Style Type of parameter

• path (part of the path of the URL)

• query (query parameter of the URL)

• header (HTTP header)

Type Data type of the parameter. Parameters have been validated and

converted when passed to the script.

Repeating Parameters may occur multiple times. When this is activated, an array of

values is always passed to the script, even if there is only one parameter

value in the request.

Required Parameter must be provided.

Fixed value Default value when no parameter was provided.

Technical Handbook 5.8 - 1.5. REST services

240

1.5.3.6. Authentifizierung

Each resource can be assigned to an authentication object to restrict the access and to bind the

request to a user object.

Authentications are defined as objects of type "Authentication" in the "REST" area. Resources are

assigned to an authentication object with the relation "Authentication" of the resource.

The kind of authentication is defined by the attribute "Authentication type" of the authentication

object. Some configuration values are only available for specific authentication types.

Configuration Description

Authentication name Arbitratry name to distinguish configurations

Cache duration The user lookup is cached for this amount (in

seconds). See chapter "Login confguration".

Trusted login Credentials (e.g. the password) are not validated

when enabled

1.5.3.6.1. Authentifizierungsverfahren

No authentication

As the name says, no authentication is performed and thus no user is activated by default. If a REST

resource using this authentication defines a fallback user instance, then the request is bound to this

object.

Basic authentication

Authenticate a user with the Basic scheme defined by RFC 7617. Requires identiying a user object

with a matching password. See the chapter "Login configuration".

Bearer authentication

Uses JSON Web Tokens defined by RFC 7519 to authenticate requests.

Users are identified by the subject claim. The value of this claim is the element ID of the user

object, unless a "Token subject attribute" is specified in the authentication configuration that

specifies the value of an attribute of the user objects. The login configuration is not used here.

By default, the token can be passed as header, cookie or query paramerer. This can be restricted by

setting the attributes "Allow authorization header" / "Allow cookie" / "Allow query parameter" to

false.

The "Allow cookie" attribute can be set to define additional cookie parameters, which can be

specified as a meta attribute. The vaue is added to the "Set-Cookie" header in the response.

The "Cookie/Parameter name" attribute defines the name of the cookie / query parameter.

Technical Handbook 5.8 - 1.5. REST services

241

"Token expiry interval" and "Token renew interval" define the lifespan of new tokens.

Negotiate

Uses Windows Negotiate defined by RFC 4559 to authentication requests. This authentication type

is only supported on Windows platforms.

It is not recommended to use this authentication scheme. Negotiate authenticates connections, not

requests, which is not suitable for load balancing.

Scripted

This authentication type uses a script with four custom definable functions to handle user

authentication. This is useful to outsource authentication to third party central authentication

providers like OpenID Connect, or to implement custom authentication schemes.

Note: While the all script functions have sensible default implementations that prevent any

unauthorized access, it is easily possible to expose parts of the REST service due to careless

implementations.

Each function receives the request object, an object with the request’s query parameters and a

response object as input. The main authentication function that is evoked with each request is

called authenticate :

function authenticate(request, parameters, response) {
 const encryptedToken = request.cookies().access_token
 if (encryptedToken) {
 const token = $k.JWT.parse(encryptedToken)
 try {
 token.verify()
 return $k.Registry.elementWithID(token.payload().sub)
 } catch (e) {}
 }
 response.setCode(302)
 response.setHeaderField('Location',
'http://auth.example.com?return_url=' + request.url())
}

In this example, the authentication routine expects an encrypted JWT token called access_token

that is sent as cookie with the request. If the token is present and successfully verified, a user object

can be derived from the token’s payload. The request is then executed under this user. Otherwise, a

redirect (HTTP 302) to an external authentication provider is triggered. It is implicitly assumed that

the authentication provider will set the access_token cookie after successful authentication, such

that the next request to this endpoint will succeed.

Note that if the authenticate function does not return a user instance or null, the authentication is

Technical Handbook 5.8 - 1.5. REST services

242

considered failed and the actual request handler is not evoked. The function may return null to

indicate a successful authentication from which no user can be derived. The request handler is then

evoked without an active user.

The functions login , logout and renew can be implemented for more sophisticated authentication

schemes that support user logout etc. They are evoked when the respective built-in request

(accessToken/login, accessToken/logout, accessToken/renew) is called. These are also used to

handle the authentication flow of the View Configuration Mapper and therefore need to be

implemented to ensure smooth interaction.

1.5.3.6.2. Login-Konfiguration

The Basic authentication looks up user objects with a login search.

If no login query is configured, then the user object is determined by searching for the value of the

attribute "login" of the user objects. This attribute is defined when the user type is defined in the

access rights settings.

The login query can be defined by creating a query with the registry key "login". If the query is a

structural query, then the identity is passed to each defined query parameter.

The type of the user objects is defined by the access rights settings. The found objects must match

the specified type, otherwise the authentication fails.

If no or more than one user object is found for the identity, then the authentication fails.

The hash value of the provided password is checked against the hash value stored in the

corresponding attribute of the user object. The authentication fails if they do not match. The

password check is skipped if "trusted login" is activated in the authentication configuration.

The request is then bound to the user, e.g. access rights are checked for this user.

1.5.4. CORS

In the case of OPTIONS requests, the REST interface responds by default with

Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,Content-Type,
Accept

These headers can be configured in the configuration file (bridge.ini):

[KHTTPRestBridge]
accessControlAllowOrigin=http://*.i-views.de
accessControlAllowHeaders=Origin, X-Requested-With,Content-Type, Accept

Technical Handbook 5.8 - 1.5. REST services

243

1.5.5. OpenAPI documentation

i-views offers the possibility to generate OpenAPI-3.0 documentation for configured services. For

this purpose, service configurations and resource configurations can be enriched with

documentation data.

1.5.5.1. Configuration

1.5.5.1.1. Service

Property Description Mapping to OpenAPI

3.0

Service Description Free text description of the service; supports

GitHub Flavored Markdown info.descripti
on

Service Version Version specification which is interpreted as

Semantic Version. info.version

Service ID
info.title

OpenAPI components Script which generates reusable OpenAPI-3.0

components in forms of a JSON object. components

1.5.5.1.2. Resource

Property Description Mapping to OpenAPI

3.0

Resource Description Free text description of the resource, supports

GitHub Flavored Markdown paths.{path}.d
escription

1.5.5.1.3. Method

The mappings to the OpenAPI elements are specified relatively to paths.{path}.{method}

Property Description Mapping to OpenAPI

3.0

Method description Free text description of the resource; supports

GitHub Flavored Markdown .description

Technical Handbook 5.8 - 1.5. REST services

244

https://semver.org/

Property Description Mapping to OpenAPI

3.0

Request Body See section Request Body
.requestBody

Response See section Response
.responses.{co
de}

1.5.5.1.4. Parameter

The mappings to the OpenAPI elements are specified relatively to

paths.{path}.{method}.parameters.{index}

Property Description Mapping to OpenAPI

3.0

Parameter Description Free text description of the parameter; supports

GitHub Flavored Markdown .description

Parameter name
.name

Repeating In case of path parameters, this option MUST

NOT be enabled. .explode: true

.schema:
{"type":
"array"}

Required In case of path parameters, this option MUST be

enabled. .required

Style
.in

Type
.schema

1.5.5.1.5. Request Body

The mappings to the OpenAPI elements are specified relatively to

paths.{path}.{method}.requestBody

Technical Handbook 5.8 - 1.5. REST services

245

Property Description Mapping to OpenAPI

3.0

Request Body

Description

Free text description of the body; supports

GitHub Flavored Markdown .description

Required
.required

Media type Replaces the Input media type which could be

stored at the method regarding i-views 5.3. i-

views 5.4 supports description of several

possible request formats. See section Media

Type .

.content.{medi
aType}

1.5.5.1.6. Response

For a valid OpenAPI documentation, a response needs to be documented for each request. The

specified mappings relate to their response object, respectively.

Property Description Mapping to OpenAPI

3.0

Response Code HTTP status code of the response Key

Response Description Free text description of the response; supports

GitHub Flavored Markdown .description

Media type Replaces the Output media type which could be

stored at the method regarding i-views 5.3. i-

views 5.4 supports description of several

response formats. See section Media Type .

.content.{medi
aType}

1.5.5.1.7. Media Type

From OpenAPI 3.0 and on, the support for several input formats and output formats by a request

can be documented by specifying several media types.

Property Description Mapping to OpenAPI

3.0

Media Type Name The MIME string which defines the Media Type. Key

OpenAPI schema Script which generates a JSON schema object,

which in turn describes the format of the

structure with this Media Type.

.schema

Technical Handbook 5.8 - 1.5. REST services

246

1.5.5.1.8. JSON schema definitions

For creating JSON schema for further descriptions of input and output, scripts can be defined at

different locations. The scripting supports a subset of the JSON schema standard which can be seen

in the OpenAPI specification.

Example script for OpenAPI components :

function openAPIComponents() {
 return {
 "schemas": {
 "Example": {
 "properties": {
 "id": { "type": "integer" },
 "name": { "type": "string" }
 }
 }
 }
 }
}

Exmaple script for OpenAPI schema with reference to the definition above:

function swaggerJSONSchema() {
 return {
 "$ref": "#/components/schemas/Example"
 }
}

1.5.5.2. Generating the API documentation

1.5.5.2.1. Manual generation within the KB

For generating a .json file manually by means of the OpenAPI documentation within the Knowledge

Builder, a button Export as OpenAPI 3.0 is provided above the list of the services.

1.5.5.2.2. CLI

The same export also is provided by means of the command line interface:

bridge-64.exe -exportBuiltInRequestAPI {filename} {serviceID}

Technical Handbook 5.8 - 1.5. REST services

247

https://spec.openapis.org/oas/v3.0.3#schema-object

1.5.5.2.3. As REST API endpoint

In i-views 5.4, a built-in resource called APIResource is available, which provides the API

documentation. It can be added to the respective service by means of the button and it is available

at /api or at the configured path accordingly.

Technical Handbook 5.8 - 1.5. REST services

248

1.6. Reports and printing

You can use the printing component to use document templates (ODT/DOCX/XLSX/RTF files) with

KPath expressions on objects or object lists and then use them to generate an adapted output file,

which can be either printed or stored.

The adding of the printing component via the Admin tool creates configuration schemas for objects

(“print template”) and lists (“print template for lists”) in the Knowledge Graph. The existence of this

component is prerequisite for the print function being available in Knowledge Builder or via the

REST interface.

1.6.1. Create print templates

In Knowledge Builder, print templates are created in the “Technical → Printing component” area.

Each print template object contains a print template document (ODT, DOCX, RTF) and a relation that

specifies to which objects the print template is to be applied.

The following example shows an ODT print template for objects of the “Task” type.

The following chapters explain how print template documents are created.

1.6.1.1. Create RTF templates

The RTF template files can contain evaluable KPath expressions with the key words KPATH_EXPAND

and KPATH_ROWS as well as calls for registered KScripts with the key words KSCRIPT_EXPAND and

KSCRIPT_ROWS . The path expressions or the name of the script to be called are always placed

Technical Handbook 5.8 - 1.6. Reports and printing

249

between angle brackets and after the key word, separated by a space.

KPATH_EXPAND

The KPath expression after this key word should return a single semantic object or a simple value

(date, string etc.). In the evaluation the original expression is replaced by the result. The formatting

of the expression is retained, and breaks in the value are converted into line breaks.

• Example: ** The template is:

Sender:
<KPATH_EXPAND @$address$/rawValue()>

After the evaluation the output file says:

Sender:
intelligent views gmbhJulius-Reiber-Str. 1764293 Darmstadt

KSCRIPT_EXPAND

As an alternative to the path expression, KSCRIPT_EXPAND can be used to call a registered KScript.

The output of this script (script elements with <output>) is transferred to the document. Scripts are

registered in the Knowledge Builder in the folder TECHNICAL/Registered objects/Scripts

• Example: ** The template is:

<KSCRIPT_EXPAND aScriptWithOutput1to9>

After the evaluation the output file says:

123.456.789

KPATH_ROWS

This expression must be in a table. The KPath expression after this key word must return a list of

semantic objects. During evaluation the table row of the KPATH_ROWS expression is evaluated once

for each result of the KPath expression. This allows tables to be completed dynamically. By the way,

it does not matter which column contains the KPATH_ROWS expression.

KSCRIPT_ROWS

In case of KSCRIPT_ROWS the objects for the table rows are determined via a registered KScript.

The name of the registered script is specified directly after KSCRIPT_ROWS. The script must be of

Technical Handbook 5.8 - 1.6. Reports and printing

250

the KScript type and return the objects for output.

Example: The template is:

Column1 Column2

<KSCRIPT_ROWS allPersons><KPATH_EXPAND

@$lastname$>

<KPATH_EXPAND @$firstname$>

After the evaluation the output file says:

Column1 Column2

Meier Peter

Schulze Helmut

1.6.1.2. Create ODT documents (OpenOffice)

Printing using the ODT format (Open Document Text, open standard) has many advantages

compared to the RTF format:

• The embedded script instructions are not part of the text, and are instead filed in special script

elements. This ensures that the formatting is not destroyed by lengthy scripts.

• The ODT format supports a large set of format instructions (comparable with MS Word) that

RTF cannot process.

• As a format, RTF does not have a uniform standard (MS Word can, for example, “do more” than

the standard).

• Editing of the RTF templates is highly fragile. MS Word, above all, tends to ‘supplement’ the

templates with control elements (for example, the cursor position current during the most

recent editing), preventing the scripts from being reliably identified.

ODT templates can be created using OpenOffice or LibreOffice. They are created the same way as

RTF templates are created, with the only difference being that the path/script instructions are saved

in script elements, as the following diagram shows.

Technical Handbook 5.8 - 1.6. Reports and printing

251

The script field can no longer be integrated in LibreOffice 5. As an alternative to this, the “Input

field” can be used:

Insert > Field command > Other field commands (alternative keyboard shortcut Ctrl+F2)

The input field is found there on the “Functions” tab.

Technical Handbook 5.8 - 1.6. Reports and printing

252

“Note” is equivalent to the previous “Script type”; after clicking on insert, another window opens in

which the script can be entered.

Available script types

There are the following script types:

• KPath : analogous to KPATH_EXPAND

• KScript : analogous to KSCRIPT_EXPAND

• KPathRows : analogous to KPATH_ROWS

Technical Handbook 5.8 - 1.6. Reports and printing

253

• KPathImage : for embedding images

• ScriptFunction : Calls a function of a registered script. A string with the following format is

expected as text:

ScriptID->Functionname()

The function call is automatically expanded by two arguments: the semantic element and the

variables determined by the environment

An example of a script that was called:

function headerLabel(element, variables)
{
 return element.name().toLocaleUpperCase();
}

• ScriptRowsFunction : Analogous to ScriptFunction. Table rows are generated for the returned

objects, analogous to KPathRows.

• ScriptImageFunction: for adding bitmap images

• ScriptSVGImageFunction: for adding SVG drawings * DataPath: The “script for generating

JSON contents” must be set on the print template. The corresponding key can now be used to

access the values of the JSON object.

Example of generating the JSON object:

function templateData(element)
{
 return {
 name: element.name(),
 idNumber: element.idNumber(),
 someData: { idString: element.idString() }
 }
}

To access the value idString, for example,

someData.idString

must be set as text. * DataRowsPath: In table rows or sections (Libre Office only), DataRowsPath

can be used to transform an array of objects in the templateData JSON to a table or sequence of

sections in the printed document. Each object in the array is transformed into a new row with

Technical Handbook 5.8 - 1.6. Reports and printing

254

identical formatting as the row the DataRowsPath element is placed in. This allows having lists of

variable length in the printed document. DataPath and DataConditionPath elements in the same

table row or section as a DataRowsPath element are interpreted relative to the path of the

DataRowsPath element.

function templateData(element) {
 return {
 rowData: [
 { name: "Element 1", someValue: 123 },
 { name: "Element 2" }
]
 }
}

• DataConditionPath: Like DataRowsPath elements, DataConditionPath can be placed in table

rows or sections. Unlike DataRowsPath elements, DataConditionPath can reference anything in

the templateData JSON, not only arrays of objects. When the referenced property in the

templateData JSON is a JavaScript falsy value (false, undefined, null, 0 or an empty String) or an

empty Array, the table row or section the DataConditionPath element is placed in is removed

from the printed document.

File attributes or URLs can be used for embedding images. When URLs are used, an attempt is made

to load an image from the address specified.

Embedded images are always sourced in their original size (at 96d dpi). If another size should

appear in the printout, a frame with the required dimensions (absolute dimensions in cm must be

used!) must be built around the script element. The resulting embedded image is then fit into the

frame so that the frame dimension is not exceeded while retaining the image aspect ratios.

1.6.1.3. Create DOCX documents (Micrsoft Word)

DOCX templates can be created using Microsoft Word 2007 or higher.

They are created the same way as RTF templates are created, with the only difference being that

the path/script instructions are saved in text content control elements.

To insert the control elements, it is first necessary to activate the developer tools in Word. To do so,

go to the Office menu, open the Word options , go to the Popular commands category and activate

the option Show Developer tab in the ribbon . Now go to the Developer tools tab and activate

Design mode .

Technical Handbook 5.8 - 1.6. Reports and printing

255

To add KScript/KPath expressions, insert a Text-only content control element . The text of the

control element is replaced by the calculated text. Go to the properties of the control element (via

the context menu on the closing bracket) and specify the KScript or KPath under Title . If you leave

the title empty, the text of the control element will be used instead. Enter the script type under Tag

. The available script types are all the types available in ODT, with the exception of KPathImage .

Technical Handbook 5.8 - 1.6. Reports and printing

256

1.6.2. Create print templates for lists

Print templates for lists are saved in the “TECHNOLOGY/Print components” area in the Knowledge

Builder. Each “Print template for lists” object contains a print template document (XLSX) and a

relation that specifies to which objects the print template is to be applied. Optionally, an object list

can be specified that should be used for generating the output. This allows the format of the list

that the user sees on the screen, and the format of the list that was output, to be different.

When the attribute “Document (print template)” was not created, then when a document is

generated, an Excel file is generated that contains one spreadsheet with the data in the object list

and the column headings from the object list configuration, i.e. an Excel file does not necessarily

have to be specified as the print template.

The following example shows a print template for lists with objects of the “Task” type.

Technical Handbook 5.8 - 1.6. Reports and printing

257

XLSX templates can be created using Microsoft Excel 2007 or higher. These templates only function

with object lists.

Creating the Excel file

A standard Excel file is used as a template, and must include an additional spreadsheet called

“data”. This spreadsheet is subsequently filled with the object list data, and this without headings

and beginning with cell A1.

The other spreadsheets can reference data from the “data” sheet in formulas. i-views ensures that

all formulas are calculated again as soon as the completed Excel file is next opened using Excel.

Technical Handbook 5.8 - 1.6. Reports and printing

258

1.6.3. Document format conversion with OpenOffice/LibreOffice

The output format of the print operation corresponds to the template used. If you would like to

receive a different output format, you have to set up a converter.

To do so, you need an installation of LibreOffice or OpenOffice Version 4.0 or above on the

computer that is to perform the conversion. This is usually located in the same place as the bridge

or Job-Client that also executes the print operation.

In the configuration file (bridge.ini, jobclient.ini, etc.) you also have to specify the path to the

"soffice” program which is part of the LibreOffice/OpenOffice installation and located in the

"program" subdirectory there. This must be specified as an absolute path; relative paths

(..\LibreOffice\etc.) are not possible here.

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

Conversion service

If you do not want to keep a LibreOffice/OpenOffice installation on all workstations or server

installations from which formats are to be converted, an appropriately converted REST bridge can

perform the conversion.

To do so, the .ini file of the REST bridge must have the following format:

[Default]
host=localhost

[KHTTPRestBridge]
port=3040
volume=cardAdmin
services=jodService

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

In the Admin tool, you enter the address at which the conversion service can be reached under

system configuration/components/conversion service.

Example:

http://localhost:3040/jodService/jodconverter/service

Document formats

Technical Handbook 5.8 - 1.6. Reports and printing

259

To ensure output formats are available, appropriately configured objects of the “Converter

document format” type must be available in the Knowledge Graph.

The important thing is that not all formats can be converted into all formats. The most important

ones are:

Name Extension Mime type

Portable Document Format pdf application/pdf

OpenDocument Text odt application/vnd.oasis.opendocument.

text

Microsoft Word doc application/msword

Technical Handbook 5.8 - 1.6. Reports and printing

260

1.7. Tagging

The tagging component allows objects from the Knowledge Graph (persons, topics, etc.) to be

found or be created in documents.

Tagging requires:

• A configured tagging component in the Knowledge Graph

• A tagging software (Intrafind, OpenNLP) that finds potential objects in a text

Tagging is performed in three steps

1. The document text for tagging is defined (e.g. the value of a text attribute)

2. The text is passed on to the tagging software, which analyzes the text and delivers a series of

tags

3. The configuration is used to search for existing objects in the Knowledge Graph for each tag,

and to create any potentially new objects. The objects are linked with the document by means

of a relation.

1.7.1. Configuration

To use tagging, you need to use the Tagging component which can be added in the Admin tool. This

component sets up the required schema.

Following that, you can configure it in Knowledge Builder under “Technical” > “Tagging.”

Every tagging configuration consists of:

• An interface configuration of the tagging software to be used (Intrafind, OpenNLP)

• Configuration of the text extraction that determines the text to be tagged in a document

• Tag configurations that determine how objects are found, created and linked in the Knowledge

Graph

1.7.1.1. Tagging configuration

The tagging configuration bundles all the information required for tagging.

It is however mandatory to specify the tagger interface to be used.

Specification of the text extraction to be used is optional. Alternatively this can also be determined

dynamically (see the corresponding sub-chapter).

Technical Handbook 5.8 - 1.7. Tagging

261

Furthermore, it is possible to specify an adjustment script that can be used to influence tagging.

Additional adjustments can also be made in the configurations for tags and for text extraction.

Newly created adjustment scripts contain commented-out function bodies. In order to activate

them you only need to remove the comment signs.

1.7.1.2. Interface configuration

The Intrafind interface has the following settings:

Configuration name Freely selectable name

Parameter (optional) This is transferred to Intrafind using the interface and

it controls tagging

URL URL of the Intrafind tagger

Update-URL (optional) URL of the Intrafind List Service, used for export of

known tags, see also 1.7.1.5

In the case of OpenNLP, only the URL of the REST service is required along with the optional

configuration name.

The interface “Internal tagger” is only intended for test purposes / internal demos for which

connecting an external system is unwanted. This tagger makes no claim to returning results that

make sense.

Technical Handbook 5.8 - 1.7. Tagging

262

1.7.1.3. Text extraction

If the text to be tagged is not determined dynamically, e.g. because only the text of a very specific

attribute type or the text of a document is to be extracted, text extraction must be configured.

This configuration can be added on the “Text extraction” tab.

Configuration name Freely selectable name

apply to Object type to which this configuration applies. Is used if no

explicit text extraction is specified during the tagging

configuration.

Script for text extraction Optional script for determining text

To specify the attribute types to be tagged, one or more text part extractions (hierarchically sorted

on the left side) are added to the text extraction. In each text part extraction, the attribute type to

be tagged is stored under “extracts text from.”

In addition to strings, blobs can also be used as text part extractions. Text is extracted from these

and forwarded to the tagging interface. To do this, text extraction must be configured in the client

(bridge or KB) (see chapter i-views services > Text extraction).

The optional script has three arguments

textDocument $k.TextDocument Outputs the text to be tagged

element $k.SemanticElement The element whose text is to be extracted

attributes $k.Attribute [] Array of attributes of the element. The

attributes are collected according to the

configuration.

The following example writes the values of the attributes in sequence:

function extractText(textDocument, element, attributes)
{

Technical Handbook 5.8 - 1.7. Tagging

263

 attributes.forEach(function(attribute) {
 textDocument.println(attribute.valueString());
 });
}

1.7.1.4. Tag types

The tag type configuration determines how objects are found, created and linked in the Knowledge

Graph. To do this, you can specify a separate configuration for each tag type provided by the tagging

interface. You can create a new configuration for the tagging configuration in the hierarchy view on

the left side.

By default, the interfaces provide the following tag types:

Intrafind PersonName, Location, TFIDF

OpenNLP NP

A tag configuration can apply to one or more tag types.

The configuration offers the following settings:

Adaptation script Script to affect tagging. The template contains a row of functions

that are commented out and can be activated.

Apply to Type in the Knowledge Graph that corresponds to the tag type. If

objects are to be searched/created and no additional

configuration information is specified, this type is used.

Configuration name Freely selectable name

Technical Handbook 5.8 - 1.7. Tagging

264

Search for existing objects Search that contains the text of the tag as the searchString

parameter and searches for one suitable object in the

Knowledge Graph.Several searches can be specified, e.g. to keep

the individual searches more compact.If there are several hits,

query search must return the suitable hit. If several hits of

different quality are found, the highest quality hit is used. If no

best hit can be determined, no object is assigned.

Create tag objects

automatically

If no object was found and this option was activated, new

objects are created.You have to ensure that the search for

existing objects find these as new objects are created every time

tagging takes place.If no adaptation script applies here, an object

of the specified type is created for “apply to” and the text of the

tag is set as its name.

Tag relation type This relation type is used to link documents to the objects found

by the tagger.

Tag type The tag types specified above. If no tag type is defined, the

configuration applies to all types of tags.

Uses export Here, an export configuration can be specified which can be used

to export all tags of the type or a subset thereof. Refer to the

next section for details.

1.7.1.5. Export of known tags

There is an export function used to save information from the Knowledge Graph in a tagging

service, e.g. Intrafind. This is currently only supported for Intrafind, where it performs the following:

One, or several, lists can be generated that are then saved to the tagging interface. Each list export

assigns naming attributes (e.g. name, synonym) to the semantic elements for export. The tagger

then searches for these names in texts, and can deliver the suitable semantic element as well. For

example, the list of known organizations can be exported this way, and the tagger can identify them

reliably.

Technical Handbook 5.8 - 1.7. Tagging

265

The Intrafind list export is configured for every tag type and is also influenced by the tag type

configuration . Generation configuration options:

Configuration name Freely selectable name

Naming attribute (Optional) attribute that identifies the object. Multiple

specifications possible. If no attribute has been specified, the

name attribute is exported by default.

Object filter (Optional) A search can be specified here that specifies the set of

objects. If no search has been specified, all types that are

assigned in the tag type configuration by means of Apply to are

exported.

Intrafind-specific matching options . These have a direct influence on the performance of the

tagging service:

Observe upper/lower case Case-insensitive matching is activated by default. Case-sensitive

matching can be activated here.

Ignore diacritics (umlauts, etc.) [Presumably] This option is used to ignore characters with

accents or umlauts, e.g. ‘Geräte’ will match with ‘Gerate.’

Phonetic matching [Presumably] For example, match “photography” with

“fotografie.”

Language-dependent matching This option activates the linguistic processing of the names

transferred. In doing so, it is important that the data is

maintained correctly according to language in the Knowledge

Graph, as every language must be processed using its own

linguistics.

Performing the export

Technical Handbook 5.8 - 1.7. Tagging

266

There are three relevant buttons to performing the export:

• the zigzag arrow (found at the export config or the "top" tagging configuration) "refreshes" the

configuration cache, such that the newly changed configuration will have an effect

• the floppy disk symbol found at the export config opens a dialog to save the exported list to a

directory. The same symbol found at the top tagging configuration will export all lists at once.

(hint: you have to select an existing directory , and the files will be written into it)

• the up-pointing arrow (found at the top tagging configuration if configured) is used to upload

all lists via the Intrafind list service. This option is only possible, if the list service was installed

for the given environment, i.e. if the list service is configured. See also "Interface configuration"

→ "Update-URL" above on how to configure that. After entering the correct credentials, the

upload will take place (this may take a while with spinning cursor as feedback). On success, the

response will indicate whether the service was restarted and how many files were uploaded.

1.7.1.6. Overlapping filter group

The tagger may deliver several tags for one text passage. In some cases, the user explicitly allows

this overlap and have several tags displayed.

The overlap filter group does the following:

• All tags types that are summarized into a group like this must be free of overlaps.

• Within a group, a script can be used to specify a prioritization to influence the decision about

which tag is displayed in the end

• In order to allow overlaps, at least two groups like this must exist

• All tag types without a group are summarized in the “Default” overlap filter group.

Prioritization with script

/**
 * When there are conflicting tags (e.g. overlapping), this function can
influence the conflict resolution by building a sort key.
 * The sortOrder compares the array from left to right, lower numbers are
sorted before higher ones. If something larger is to have a higher
priority, it therefore needs to be negated.
 * e.g.: [-1, 3] < [0, 0] < [1, -3] < [1, -2]
 *
 * @param {$k.Tag[]} tags
 * @param {$k.TaggingContext} taggingContext
 * @returns {integer[]} an array of numbers that is used to sort the
conflicting tags.
 **/
function tagSortOrder(tag, taggingContext)
{

Technical Handbook 5.8 - 1.7. Tagging

267

 var smallestSpanReducer = function(minPos, span){return Math.min
(minPos, span.start)};
 var positionMinimum = tag.spans().reduce(smallestSpanReducer, Number
.MAX_VALUE);
 return [-tag.tagTypePriority(), -tag.canonicalText().length,
positionMinimum];
}

A script must return a list of integers, whereby the first element in this list has the most influence.

In principle, it functions the same ways as sorting by several columns, meaning that the second

element is only used when the same value occurs in the first element.

Default prioritization

If no script has been specified, or the tag type is grouped in the implicit “Default” group, then the

following prioritization is used:

• Order of the tag types – higher priority first

• Longer tags given preference

• Position within the overlap (meaning in the case of “a red wall”, “a red” is given preference over

“red wall”, because it is closer to the front)

Also compare the script template.

1.7.2. View configuration

Two views are available for the display:

• Markup view

• Tag list

The markup view can be used in both the Knowledge Builder and in the ViewConfiguration Mapper.

The view can be used everywhere that other views such as properties or hierarchies can be used.

The view has a permanently integrated tag button in the Knowledge Builder. There is an integrated

action type “Tag” in the ViewConfiguration Mapper, which can also be used in a custom button.

The tag list is only available in the View-Configuration Mapper and is the content of a panel (e.g. as

a sub-configuration of a panel with a fixed view) there. If a markup view with tag buttons was

configured in another panel, its panel should be linked to the tag list panel using the relation

“Influenced” so that the tag list is updated after tagging.

Technical Handbook 5.8 - 1.7. Tagging

268

Both views have the obligatory configuration setting “Tagging configuration used”, which connects

the view to the tagging configuration.

1.7.2.1. Debug Log

The KB can output debug information during the tagging process. The information is written to the

#tagging channel (see manual for documentation regarding channels) and can be output to a file,

for example.

To do so, create a .txt file in the directory of the KB and rename it “kb.ini”. Then add the following

content:

[Default]
logtargets=tagging
[tagging]
type=file
format=plain
channels=tagging
loglevel=DEBUG
file=tagging.log
maxLogSize=10
maxBacklogFiles=1

This creates a “tagging.log” file where you can view the tags found by Intrafind for the tag types.

This makes it possible to identify which strings are suggested by Intrafind as tags, and also which tag

types (e.g. signifterm/tfidf or organization) are used to find them.

Technical Handbook 5.8 - 1.7. Tagging

269

1.7.3. Tagging by Script

Tagging can also be performed by script. To do so, create an object of the type

$k.TaggingConfiguration.

The tag(context) function is used to perform the tagging. Tagging is controlled by an object of the

type $k.TaggingContext. Because it is stateful, a new one must be created every time tag() is called.

The TaggingConfiguration object is stateless and can be reused.

var document = $k.Registry.elementAtValue("RDF-ID", "opennlp-testdocument
");
var configElement = $k.Registry.elementAtValue("tagging.name", "opennlp
tagger config");
var tagger = $k.TaggingConfiguration.from(configElement);
var context = new $k.TaggingContext();
context.setSource(document);
tagger.tag(context);
$k.out.print("Found " + context.tags().length + " tags");

1.7.4. Required software

The Intrafind tagger must be purchased and installed separately. The corresponding Intrafind List

Service can be provided by i-views.

The OpenNLP connection is made using a REST interface to OpenNLP provided by i-views.

Technical Handbook 5.8 - 1.7. Tagging

270

1.8. Development support

1.8.1. Dev tools

Different tools are available to facilitate development.

• K-Infinity plug-in: Offers support or JetBrains’s products This includes the synchronization of

source files, KJavascript and KPath support.

1.8.2. Dev service

The Knowledge-Builder provides the option of allowing access from external applications. This

allows, for example, synchronization with development environments or specific elements of an

application to be opened from the browser.

The Dev service must be started in the Knowledge-Builder for this. To do so, start by opening the

Settings and in the Personal tab, going to Dev tools . A port can now be specified here at which the

service should be able to be reached. The service can be started and stopped manually using the

buttons next to it. If the “Automatic start” checkbox is activated, then the service is automatically

started with the Knowledge-Builder.

If the Knowledge-Builder features an ini file (the default name is “kn.ini”), then it can save the

settings permanently. The settings can also be entered manually in the ini file:

[DevService]
autostart=true
port=3050

Technical Handbook 5.8 - 1.8. Development support

271

1.9. KB plugins and components

1.9.1. Units component

The units plugin serves for adequate display of values of scale units - consisting of the numeric

value and its appended unit symbol. For different decimal prefixes, multiple entries with relative

factors can be defined for one and the same scale unit type. The output of the values and their

units takes effect within the Knowledge Builder and the web frontend via the view configuration

mapper. For example, an export can use the information to convert the values of an attribute into

another unit required by a target system (unit conversion).

Since 5.4, the units engine is an integrated component of the Knowledge Graph. After installation

by means of the Admin Tool, the units component is available within the Knowledge Graph in the

section "TECHNICAL" > "Scale units". It contains the required object types "Kind of Quantity" and

"Scale Unit".

Examples:

• Kind of Quantity: length, voltage, temperature

• Scale unit: meter, inch, millivolts, Kelvin

A kind of quantity is related to the respective scale unit via the relation "measured in", whereas a

scale unit can be related to one kind of quantity only. Via the relation "Base unit of", a scale unit is

assigned to an attribute type. Attributes of this attribute type then are entered and displayed in

forms of the related scale unit.

The units component "ETIM" comes with standard units of the ETIM classification. These units can

be supplemented with customized units.

Configuration:

• " Unit symbol ": string which is going to be appended to the value. For a value of "1", the "Unit

symbol (singular)" attribute is used instead.

◦ Example: "2.5 cm", "4 minutes", "1 minute".

• "Factor": factor of the value in relation to the base value. The scale unit with factor "1"

represents the base value in which the attribute value is going to be stored.

◦ Example: "Unit (distance)" has the scale unit "mm" with factor "1", the scale unit "cm" has

factor "10" and the scale unit "m" has the factor "1000". The 'raw value' stored in a related

attribute therefore represents the value in millimeters, "mm".

• "Fraction": fraction of the value in relation to the base unit. By using factor and fraction, a

higher accuracy is achieved when converting units.

Technical Handbook 5.8 - 1.9. KB plugins and components

272

NOTE

When displaying attribute values by means of virtual property scripts, value() will

return the attribute value itself whereas valueString() will return the value and its

unit according to the units plugin.

For more information about the units plugin, please contact empolis intelligent views: support@i-

views.com.

1.9.2. Custom components

Custom components are bundles of semantic elements, queries, scripts and other elements. These

can be transferred to other Knowledge Graphs. Common usage scenarios:

• Define a component that acts as the base for specialized components

• Develop components and transfer them to integration and production systems

A component is an object that consists of

• a name

• a version

• an URI that is used as a base for RDF-URIs

• a string prefix that is used as a base for configuration names

• optional rules that define which objects are part of the component

To simplify and shorten this chapter everything that can be assigned to a component will be called

an element. This includes:

• Object-concepts

• Objects

• Relation-concepts

• Attribute-concepts

• REST elements

• ViewConfig elements

• Data sources

• Mappings of data sources

Technical Handbook 5.8 - 1.9. KB plugins and components

273

mailto:support@i-views.com
mailto:support@i-views.com

• Queries

• Topic collections

• Folders

• Scripts

• Triggers

• Accessright-paramerters

WARNING
The actual property-objects themselves are not to be assigned to a

component. They will be transfered along with their object(s).

NOTE

When exporting folders or topic collections, they will only know their elements

(including subfolders), but not what folder they are a subfolder of. Therefore, after

an import, these folders can’t be found in the folders section but instead under

TECHNICAL → Registered objects → Folders/Topic collections.

This also means that only the top folder of a hierarchy needs to be reassigned to

the folders section after import since it still knows its subfolders.

If folders or topic collections contain elements which are neither part of the component nor exist in

the target graph, they can still be exported but will produce warnings on import since their

elements can’t be found.

NOTE

When exporting a property that uses an index, the index itself will also be

exported. If the target graph does not have an index with the same name and

configuration, it will be created. Otherwise the imported elements will be assigned

to the existing one. If the import results in multiple indexes with the same

configuration, they can be merged in the KB options via Index configuration →

Indexes.

1.9.2.1. Configuration

Add the software component Custom components in the Admin Tool. This component adds the

required schema. Components can then be managed at: Technical → Custom components

All defined components are listed here and new components can be created.

NOTE

There are additional hidden columns for this table showing the Assignment-style

and the Handling of surplus elements, that can be enabled via the Choose

columns option in the table settings. The table settings need to be enabled in the

KB settings under Personal → Editors → Show table column settings. The table

settings can then be found in the top right of the table after reloading it.

A component is an object that consists of:

Technical Handbook 5.8 - 1.9. KB plugins and components

274

Configuration value Description

Name The name of the component.

Description A short text that should describe the use or content of the

componet.

Prefix A short string that can be used to identify elements of this

component.

Base URI An URI that can be used to identify elements of this component.

NOTE
See the chapter Choosing prefix and base URI

for more information on valid base URIs.

Select elements based on

prefix/URI/Relation

Boolean value. If true, elements of this component are identified

by using its base-URI and prefix.

Include dependencies Boolean value. If true, when exporting this component, all

elements, that this component is dependent on, will be exported

aswell, regardless of wether they are assigned to this component

or not.

Handling of surplus elements Choose how elements that are part of the component in the

target Graph but aren’t part of the exported file will be handled

when importing this component into the target Graph.

• Keep: Keep the surplus elements as part of the component

• Put in the bin: Remove the surplus elements from the

component and save them in the bin section of the cutom

components

• Execute script: Send them to a java-script which has to be

specified before the export

• Delete: Delete the surplus elements from the graph

NOTE

When importing a component the settings and

script of the imported component will be used

regardless of what options were chosen for the

same component in the target-graph.

Script to process surplus

elements

The java-script which will be called with the surplus elements on

import if the Execute script option was selected for the handling

of surplus elements.

Keep additional translations Boolean value. If true, don’t overwrite any additional

translations that are configured for attributetypes in the target-

graph when importing this component.

Technical Handbook 5.8 - 1.9. KB plugins and components

275

Configuration value Description

Read only Boolean value. If true, it prevents the user from editing anything

related to this component except the component object itself.

Nothing can be added or removed from the component and its

elements cannot be edited. It is however still possible to draw

relations to and from elements of the component. It is also still

possible, although not recommended, to manually add the base-

URI or prefix to an unrelated topic making it a part of the

component. This only allows you to add the element in one way

though since after that it is write protected.

Deactivate 'Read only' after

import

Boolean value. If true, the Read only attribute of this component

will be set to false after being imported.

Attribute for identification

during transfer

Declares a userdefined attribute to be used as an identifier for

elements on transfer.

NOTE
The attribute needs to have an uniqueness

index and should be a string-attribute.

Assignment-style Defines how elements are assigned to this component:

• Relation: A one-way-relation is drawn from the element to

the component.

• Relation (Adjust internal name): A one-way-relation is

drawn from the element to the component. Additionally the

internal name of the element will be adjusted with the prefix

where possible.

• Prefix/Base-URI: The configured prefix and base-URI are

used to mark the name, internal name and RDF-URI of the

element.

Requires component Declare other components as necessary for this one to work.

Overwrites component Boolean value. If true, an element that is part of this component

and of one that is necessary for it, it will only belong to this

component.

Version The version of the component consisting of major version, minor

version and patch.

There are some more options to select elements to be part of a component. For more information

see the chapter Additional selection and configuration of specific elements.

1.9.2.2. A minimal example

Open the Custom components area and create a new component topic. It will ask for a name, which

can be freely chosen and changed at any time and another three mandatory values:

Technical Handbook 5.8 - 1.9. KB plugins and components

276

• Prefix : A string prefix that is used to select objects that have a configuration name starting with

this string. It will also be used to suggest a configuration name when creating new elements.

Use 'accounting' for example.

• Base URI : A URI that will be used as base for creating RDF URIs. It should end with the prefix,

e.g. 'http://example.org/accounting'.

• Handling of surplus elements: This specifies what happens when a component is imported and

the same component is already part of the graph but has elements which are not in the import.

Now that the component is set up you can start assigning elements to it. To do so navigate to any

element you want to assign and open its context-menu. There you should see the Custom

components submenu which contains three ways to assign the element:

1. Assign element directly assigns the element to the chosen component.

2. You can also choose Open assignment-tool to get an overview of what elements are connected

to this one and then assign any element you deem necessary for the component.

3. Additionally there is the option Assign to x aswell, which assigns the element to the last

component that an element was assigned to.

When looking at the assigned element you should see its assignment noted on the right side of its

banner region as well as the updated RDF-URI and internal name or registry key depending on what

kind of element you assigned.

1.9.2.3. Choosing prefix and base URI

Although there are no technical restrictions when specifying a prefix or a base URI, there are a few

rules that make it easier to handle custom components:

• Only use alpha-numerical characters and periods.

• Do not add a period at the end of the prefix as it is automatically used as a separator.

• Do not add a '#' at the end of the base-URI as it is automatically used as a separator.

WARNING In version 5.4 the '#' still needs to be manually added to the base URI.

• Do not use generic names that can be mistaken for built-in components, e.g. 'viewconfig' or

'rest'.

• Use a prefix that makes it obvious which component it belongs to.

• Use the prefix as the last part of the base URI, as shown in the minimal example in the

preceding chapter.

NOTE

An URI (unique resource identifier) is usually used to precisely locate a resource in

the internet and is thus a web address. Since our base-URI is a namespace using

that concept, it should also start with http:// or https:// followed by a domain

representing your company or project. After that should come another '/' and the

prefix of the component. This would lead to something like:

Technical Handbook 5.8 - 1.9. KB plugins and components

277

https://example.org/accounting with the project being to provide examples and

the component for accounting elements.

Since we are just using the URI to identify elements and their assigned component

in the graph, it does not need to actually lead to anything when looked up in a web

browser.

1.9.2.4. Changing prefix and base URI

Manually changing the prefix or base URI does not carry these changes to the selected elements

thus deselecting them.

You can change the prefix or base URI and update the selected elements with the new values by

pressing the edit icon in the detail-view of the component. In the custom components section

select the component and in the bottom left the specific object you want to update. Then click the

edit icon above the banner section of the component.

In the dialog you can change existing values and new ones but not remove existing ones. Changed

or new values will immediately be used to update the elements that are selected by the edited

object.

When changing the component-object itself only the elements that are selected exclusively by said

object will be affected. The elements that are also selected by sub-objects will not be updated as

the sub-objects override the component selection because of their additional options.

WARNING

If the prefix and base URI of the component and its sub-objects are the same

all objects will select all the elements and it will be impossible to

automatically separate them again.

NOTE

Should a problem occur during the overwriting process, the elements that were

already overwritten will keep their new values while the component still has the

old ones. While this means that those elements are temporarily not part of the

component it also makes it easy to just restart the overwriting after fixing the

problem to adjust the rest of the elements.

Technical Handbook 5.8 - 1.9. KB plugins and components

278

1.9.2.5. Assignment of Elements

How an element is assigned to a component depends on the assignment-style chosen for the

component.

If the chosen style is Relation, semantic elements will be assigned by drawing a one-way-relation

from the element to the component.

There is also a variation of this style that will adjust internal names additionally to the relation in

order to prevent confusion because of no or wrong prefixes.

If the chosen style is Prefix/Base-URI, the assignment of an element is signaled by some of its

identifing attributes:

• RDF-URI starts with the base-URI specified by the component

• Internal name starts with the prefix specified by the component

• Registry key starts with the prefix specified by the component

• Name starts with the prefix specified by the component

The name is only used by custom components for specific elements that follow naming conventions

like for example view-config elements.

NOTE

Only one of these attributes is needed to recognize the assignment, but a RDF-URI

is necessary to export elements. If no RDF-URI is set before export it will be

created automatically by combining the base-URI of the component and the name

of the element.

Usually these attributes are edited automatically when using the provided tools to assign or

unassign elements, but they can also be adjusted manually.

The name of the component that an element belongs to is shown on the right side of its banner

region. This can be deactivated in the Knowledge-Builder settings via the menu Editors.

It’s also possible to view which elements are part of a component by clicking the right magnifying

glass in the detail view of the component.

Technical Handbook 5.8 - 1.9. KB plugins and components

279

1.9.2.5.1. Assigning elements

For most elements, the UI displays a list of available components in form of a drop-down field upon

creation. When selecting a component, the prefix of that component is used to fill in the name of

the new element. The UI also tries to automatically select a component based on the context. For

example, when creating a subtype of a type that is part of a component, then that component will

be selected.

Under certain circumstances however, some elements are assigned automatically:

• When creating a new mapping using an existing data-source, that is unassigned and unused,

assign the data-source to the same component as the mapping.

• When registering the unregistered data-source used by an assigned mapping, assign the

data.source to the same component.

• When linking a previously unused and unassigned data-source to an assigned mapping, assign

the data-source to the same component.

• When adding an extension to a topic, assign the extension to the same component that the

topic is assigned to.

The UI does not force providing an internal name or registry key for new elements. When an

element is created without a registry key and a component is selected, the registry key will be

created by combining the prefix of the component and the name of the element. Internal names

are not created from scratch and only existing ones get adjusted by adding the prefix. This can be

adjusted in the settings.

After creation, single and multiple elements can easily be assigned to a component via the context

menu options in the custom components submenu: Assign element, Assign to x as well, with x

being the last assigned component, or via the assignment-tool.

NOTE
The exact behavior when assigning elements can be adjusted as described in the

chapter System settings.

The context menu additionally allows you to open the current component of single elements, to

avoid having to navigate to the custom components section, and to open the assignment-tool which

Technical Handbook 5.8 - 1.9. KB plugins and components

280

is also used to assign elements but provides a lot more options and insights than the regular assign

dialog.

NOTE

When assigning a relation concept to a component both of its directions will be

assigned. The custom component logic always treats the two halfs of a relation

concept as one element.

When assigning an element whose RDF-URI does not match the base URI of the

component, it will get an RDF-URI-Alias using the base URI.

Additionally, there are two options which are only available for ViewConfig elements that can be

used to replace an element of the component with another external element and prevent future

updates from overwriting the replacement.

WARNING
This feature should only be used as a last resort, as it is potentially very prone

to errors because of the many possible interactions with replaced elements.

1.9.2.5.2. The assignment-tool

The assignment-tool is used to get a good overview of how the elements you want to assign are

connected and what layering issues they have.

The left side provides filters for the top tree view to remove specific types of elements. It also has

special filters to only see elements that have no assignment, have an assignment or have layering

issues. Every filter shows how many unique elements of that category are in the top tree view.

Technical Handbook 5.8 - 1.9. KB plugins and components

281

When toggling off a filter the corresponding elements will be hidden, except if there are other

elements below them that shouldn’t be hidden. In that case the node will just be greyed out as

seen in the picture above. In the upper section of the filters, thats about the types of elements,

there are buttons to toggle every filter of that section on or off.

The top middle has a tree view of the element(s) that the tool was opened on with all the elements

that somehow depend on that element. This does not apply to ViewConfig-elements as it makes

more sense also show things like used scripts instaed of just dependents.

Each node shows what type of element it represents, what custom component that element is

assigned to and the name of the element. If any element produces layering issues due to its

assigned component or because it is assigned to multiple components at once, the component(s)

will be highlighted in bold, red letters and a warning symbol is displayed in front of the node. When

hovering a node with a layering issue a tooltip will appear describing the cause of the layering issue.

Elements with sub-nodes that have layering issues will also have the same icon to indicate a

problem further into the tree.

NOTE

These tooltips are only meant to explain the current situation that causes the

layering issue, not as a prompt to add nonsensical dependencies between

components to remove these layering issues.

For better visibility instances are bundled under a special node that shows the number of instances

below it and up to 5 components that some of the different instances are assigned to. If the setting

the use instances is disabled these nodes will not exist as no instances that are only there through

their concepts will be displyed.

The bottom tree view contains all elements that the currently selected element(s) from the top tree

view are dependent on. If a selected element from above has a layering issue the cause will be

highlighted here.

Example: In the picture above you can see that the selected relation 'is superior of' has a

layering issues because it belongs to the 'Company' component, but is dependent on the type

'Person' which is assigned to the 'Musicians' component, as you can quickly see in the list of

dependencies. This means that the 'Company' component is dependent on the 'Musicians'

component which should not be the case which is why it is not configured and thus causes a

layering issue. As suggested on the right side, the only components that this relation can

currently be assigned to without issues are the Musicians and Works components.

On the right side is the custom component selection. By default it shows all components that the

currently seleted element(s) in the top tree view can be assigned to without causing layering issues.

To see all components Show all can be selected. The additional components that will then be

displayed are highlighted in red. Doubleclicking a component open a new window to edit the

component.

At the bottom you can see how many unique elements the top tree view contains, how many

layering issues these have and the number of currently selected elements in the top tree view.

Technical Handbook 5.8 - 1.9. KB plugins and components

282

Unique elements means that if the top tree view shows two types that can both have the same

relation, that relation will be shown below both types but will only count as one unique element.

The context menu of elements in the tree-views have the options to open a new assignment-tool

window with the selected elements as the roots and to edit a single selected element by spawning

a new window of that element. Additionally there is an option to expand and select all sub-nodes of

the selected nodes.

NOTE

In case of looping dependencies all sub-elements will be selected exactly once

even if not all nodes can be expanded. So after using this option on the root

node(s) there will always be one selected node for every unique element.

Once at least one element of the top tree view and a component are selected the Assign button in

the bottom right can be pressed which opens a list of all elements that will be assigned to confirm

the assignment. After confimation the assigning process starts and in the end all elements that

couldn’t be assigned along with the reason for the failure will be displayed.

In both lists you can double click an Element to open and edit it.

NOTE

Having an assignment-tool window open while assigning an element will

automatically update that element if present. This does not work if the element is

assigned by manually editing its attributes.

When changing components while having an assignment-tool open, you can press

F5 to refresh the tool. This will update the list of components, their dependencies

and all layering errors. Holding down the 'Ctrl' key while pressing F5, will also

reload the assignments of all elements in the tool.

If you just want a quick overview for the direct dependencies of an element, you can open its

context-menu and select Custom components → Show dependencies. This will open the graph

editor for this element along with its dependencies.

1.9.2.5.3. Assign with regex search

Another way to assign elements is to define a regular expression and assign all matching elements

to the selected component. This feature can be found under TECHNICAL → Custom components by

navigating to the desired component.

Technical Handbook 5.8 - 1.9. KB plugins and components

283

basics-en.adoc#graph-editor
basics-en.adoc#graph-editor

The first thing to choose here is wether to check elements by all attributes that are used for the

prefix or by their RDF-URI. Next you define the regular expression used to search for elements to

assign. This regular expression needs to contain at least one group part which will then be replaced

by what is written in the second textfield. By default this is the prefix of the component with a dot.

NOTE

If the group defined in the expression is not at the beginning of the found value it

will not be assigned to the component as the prefix/base-URI will not be at the

start of the value either.

Example: Using the regular expression ^(oldPrefix\.).* will match everything that starts with

'oldPrefix.'.

1.9.2.5.4. Component suggestions

The list of available components only shows components that won’t cause layering issues for the

element and thus follows some rules to ensure that:

• Write-protected components are never suggested.

• Only components that are dependent on all components of the most direct elements needed

for this element to work (e.g. the type of an object; a relation used by a query) that have a

component will be suggested.

• Only components that are depended on by all components of the most direct elements that

need this element to work (e.g. an object of a type; a query using a relation) that have a

component will be suggested.

• If no restrictions are found, all non-write-protected components are suggested.

Technical Handbook 5.8 - 1.9. KB plugins and components

284

1.9.2.5.5. Unassigning elements

To unassign an element from its current component you can open the context-menu of the element

and select custom components → Remove element.

Unassigning an element will delete its RDF URI, deregister the registry key and remove the prefix

from the normal and internal Name. Additionally, the element will be added to a bin folder that is

located under TECHNICAL → Custom Components → Removed elements.

NOTE

When un- or re-assigning an element, it keeps its name and its internal name

without the prefix or with a new prefix. If an element is renamed and the internal

name and URI need to use the new name as well, they need to be either adjusted

manually or deleted before reassigning the element, otherwise they still use the

old name.

1.9.2.5.6. The bin folder

The bin-folder is located under TECHNICAL → Custom components → Removed elements. It has

two subfolders for semantic elements and registered objects.

Elements are added to their respective bin-folder in these two situations:

1. They get unassigned from their component

2. They are surplus elements after an import and the imported component has the surplus

handling option set to Put in the bin

There are three ways for elements to be removed from their bin-folder:

1. The element gets assigned to a component

2. The element gets restored via right-clicking it or its bin-folder and selecting the restore option

3. The element gets removed via right-clicking it or its bin-folder and selecting a removal option

that applies to it

Restoring an element will set its internal name and RDF-URI or its registry key to the value they had

when the element was put in its bin folder.

It is possible to see the references to the element before it was removed from its component via its

context-menu.

NOTE

If the component that the element was unassigned from has changed its prefix or

base-URI before the element is restored, the changes will not apply to the restored

element which will still have the exact values from when it was unassigned.

WARNING

Danger of loss of data!

Unlike schema elements such as object types or property types, registered

objects will be deregistered on removing their assignment. Deregistration

Technical Handbook 5.8 - 1.9. KB plugins and components

285

leads to deletion if the object is not located in at least one folder.

Thus, removing registered objects from the bin folder will most often delete

them.

Accidentally deleted elements cannot be restored. In that case the elements

must be recreated.

References to the registry key of deleted objects will not work anymore and

must be fixed manually.

→ To prevent accidental deletion, make sure that such objects are registered

or that they at least are located in some different folder.

1.9.2.5.7. Finding layering issues

Apart from looking at the assignment-tool there is another way to quickly find all layering issues of

a component.

After choosing a component under TECHNICAL → Custom components and clicking the Show

dependencies button on the left, you get a lists of all components that the analyzed one is

dependent on.

Technical Handbook 5.8 - 1.9. KB plugins and components

286

Every component shows the number of dependencies to itself in brackets.

Highlighted components are not declared as a dependency, but still have elements that the

analyzed component needs, thus causing a layering issue.

When clicking Show referenced components* on the right, another list will be shown. This list

contains components with a connection to the analyzed one, that does not enforce a specific

dependency direction.

NOTE
If the component to analyze contains a lot of objects, the analysis of the right list

may take some time.

Both lists have the same context-menu with the following options:

• Open graph editor: Opens the graph editor on all elements connecting the selected component

with the analyzed one. This also happens when double-clicking a component. This will not close

the window.

• Show dependencies: Opens this window for the selected component.

• Register dependency: Draws the Requires component relation from the analyzed component to

the selected one.

• Refresh list: Refreshes the list by analyzing the component again. This only analyzes what is

necessary for the selected list. Presing F5 will refresh both lists, unless the right one is not

shown, in which case only the left one is refreshed.

NOTE Refreshing a list takes as long as it did when opening them the first time.

Pressing the F5 key will reload all shown lists.

1.9.2.5.8. Changing the assignment-style

There are two ways to change the assignment-style of a component:

1. You can just directly change the configuration of the component. From that point on all

Technical Handbook 5.8 - 1.9. KB plugins and components

287

basics-en.adoc#graph-editor

elements will use the chosen style for assignment. Previously assigned elements however are

not changed by this.

2. You can use the tool acccessed by clicking the Changing assignment-style button at the

component, as shown below. In the dialog that opens, you can choose which assignment-style

the component should use from now on. This method will also adjust all assigned elements of

the component to use the new assignment style. Additionally the dialog offers the option to

remove all previously used means of assignment (the assignment-relation and RDF-URI-aliases).

1.9.2.6. Access Rights and Trigger Definitions

Component-specific rules for access rights or triggers can be defined directly for the respective

component. The two attributes Access rights and Trigger at the component definition object are

used for this purpose.

Rules defined here are automatically inserted into the rights or trigger decision tree. Custom

component-specific rules are inserted after the system component-specific rules and before the

general user-defined rules. Within the custom component-specific rules, the ordering is determined

by the component dependency.

NOTE
To assign existing rights and trigger definitions to a component, you can simply use

drag & drop to move them under a new Konfiguration, that is part of a component.

WARNING

Make sure that all registered objects referenced by component-specific rules

are either assigned directly to the same component or to one of the

components in the dependency chain.

1.9.2.7. Additional selection and configuration of specific elements

By default, the prefix and base URI define which objects are selected when determining the

contents of the component. This default can be turned off by deselecting the option Select

elements based on prefix/URI.

NOTE
Using an assign function after disabling the selection via prefix and URI will still

add the prefix and base URI to the element but without recognizing it as part of

Technical Handbook 5.8 - 1.9. KB plugins and components

288

the component.

Even after disabling that it is still possible to add elements of the component and even give them

special configurations. This can be achieved by using the left part of the detail-view of a component

to add the following sub-objects:

• Selection of semantic elements

• Selection of registered objects

These objects have options to select and configure elements separately from the component. The

configurations of these objects only apply to elements that are selected by the respective objects.

Apart from those configurations there are no differences between elements selected by the

component itself or by these sub-objects. They are all part of the component and are presented

and exported as one set.

If an element is assigned via the option in its context menu, the prefix and base URI of the

component itself and not the ones configured in these sub-objects are used.

1.9.2.7.1. Selection of semantic elements

This sub-object can select elements using a prefix, base URI or query to be part of the component.

Using a query will select the elements without changing them (e.g. no specific URI or internal Name

needed).

Configuration value Description

Include dependencies Boolean value. If true, required elements of selected elements

are selected as well. This is limited to certain built-in

dependencies, e.g. selecting a ViewConfig table also selects its

table columns.

Select all instances of

component types

Boolean value. If true, all elements of selected types are

selected, too.

Prefix Optional prefix; used to select elements for this object. If not set,

the prefix of the component itself will be used.

Select by internal name Boolean value. If true, elements are selected if their internal

name match the prefix. Overrides the choice made in the

component object itself.

Base URI Optional URI used to select elements for this object. If not set,

the base URI of the component itself will be used.

Select by RDF URI Boolean value. If true, elements are selected if their RDF-URI

match the base URI. Overrides the choice made in the

component object itself.

Query for semantic elements A query that defines which additional semantic elements should

be selected.

Technical Handbook 5.8 - 1.9. KB plugins and components

289

If the selection via internal name or RDF-URI is enabled without specifying a prefix or base-URI

respectively, they will use the prefix and base-URI provided by the component-object itself. Doing

so means that the additional options from these sub-objects will apply to all elements selected by

the component-object itself since they will also be selected by this sub-object.

1.9.2.7.2. Selection of registered objects

This sub-object can select elements using a prefix and restrict in which registries will be searched.

Configuration value Description

Include dependencies Boolean value. If true, elements that are required by selected

elements are selected as well.

Examples: Scripts referencing queries; queries containing query

macros

Prefix Optional prefix used to select elements for this object. If not set,

the prefix of the component itself will be used.

Covers registry Selects which registry types these configurations apply for. If

none are selected, they apply for all registry elements that are

part of the component.

If no prefix is specified, then the prefix of the component-object itself will be used. Doing so means

that the additional options from these sub-objects will apply to all elements selected by the

component-object itself since they will also be selected by the sub-object.

1.9.2.8. Adding custom dependencies of elements

Using the dependency-definement-tool you can designate any relation to be a dependency-relation.

These relations will tell the custom components that their sources are dependent on their

respective targets and will be used to, for example, build the tree of the assignment-tool or find

possible components for elements.

The tool can be opened by clicking the relation icon of a component under TECHNICAL → Custom

components.

Technical Handbook 5.8 - 1.9. KB plugins and components

290

On the left is a table of all relations that have been designated as a dependecy-relation along with

the component they are assigned to. The table is sorted alphabetically by components and then the

name of the relations.

If the table contains a relation and its inverse relation their names will be highlighted in bold, red

letters. Additionally, if a relation is assigned to more then one component, those components will

also be highlighted in bold, red letters.

The context-menu of table-rows allows you to open new windows to edit the relation or the

component as well as open an assignment-tool on the relation. Double-clicking will also open a new

window to edit the relation.

To the right are filters for every component in the graph as well as one for relations that are not yet

assigned. There is also a checkbox at the top to show every relation regardless of the filters. At the

start the only active filter will be the one of the component that was selected when opening the

tool.

At the bottom are two buttons to add new relations as dependency-relations or remove some of

the current ones. When adding a new relation the corresponding filter will automatically be

activated.

1.9.2.9. Settings

To get to the custom component settings click on the cog icon in the top right of the KB.

There are two types of settings:

• Settings regarding the appearance of custom components in the Personal tab

• Settings regarding assignment of custom components in the System tab

Technical Handbook 5.8 - 1.9. KB plugins and components

291

1.9.2.9.1. Personal settings

These settings are used to customize how custom components are shown to a user. They are tied to

that user and have no influence on other users.

• Show assignment in banner-region: If true, each element will have its assigned component

shown on the right side of its banner region.

• Show column with assignment in tables: If true, most default tables in the KB will have an

additional column containing the components assigned to the elements in the table.

NOTE

Regardless of the enablement of this setting, the custom component column

can still be configured for individual tables under Personal → Editors by

enabling the Show table column settings option and then clicking the menu to

the top right of the chosen table. There you can choose which columns should

be displayed. These settings override the settings to display the custom

component column.

• Use instances for component calculation: If true, every time the recommended components of

an element are computed concepts of instances will take their instances into consideration.

Additionally, instances will be shown the assigment-tool.

WARNING

This is disabled by default because having to go through a lot of instances

can have a huge impact on the performance, especially when opening the

assignment-tool, and usually does not change the result much.

• Show dialog to override handling of surplus elements: If true, before every import a dialog

will ask if you want to handle surplus elements differently than configured at the component

that is about to be imported. This override only applies to this specific import and is not saved.

1.9.2.9.2. System settings

These settings are used to customize the behavior of custom components when assigning elements.

These changes are system-wide and thus effect other users.

• Add the prefix to configuration-names on assignment: If true, configuration-names of view-

configuration elements will have the prefix added when assigned to a component.

• Create missing configuration-names on assignment: If true, the assigned component will try to

create a configuration name for its newly assigned view-configuration element if it didn’t have

one before.

• Create mising internal names on assignment: If true, the assigned component will try to create

an internal name for its newly assigned topic if it didn’t have one before.

• When assigning a mapping also assign the used data-source: If true, data-sources will also be

assigned when the mapping that uses them is assigned to a component.

• Only when the data-source is unassigned: This is a restriction for the prior setting. If true, data-

sources will only be assigned with the mapping if they are not already assigned to another

Technical Handbook 5.8 - 1.9. KB plugins and components

292

component.

• When assigning a data-source use the registry key of the sole mapping using it as fallback: If

true, a data-source that only has one mapping using it and no way to create a registry key other

than its private id, will copy the registry key of said mapping.

• When assigning an object also assign all of its extensions: If true, assigning an object will

automatically assign all of its extension-objects to the same component.

• Not if the extensions are assigned to a different component than their core-object: This is a

restriction for the prior setting. If true, the extension-objects will only be assigned with the

core-object if they are not already assigned to another component.

1.9.2.10. Transfer

When transfering components from one graph to another, all instances of types that exist and can

be identified in both graphs will be synced as follows:

• Attributes will always be overwritten by the import.

• For relations the behavior depends on the component of the relation target.

Component of relation target Overwritten on import

The imported component Yes

A component, that the imported one is

dependent on

Yes

A component, that is dependent on the

imported one

No

A component, that is independent of the

imported one

No

No component No

NOTE

If a concept of the component is a subconcept, its superconcept needs to be either

in the same component or in a component that is configured as a dependency of

the compenent of the subconcept. Otherwise the subconcept will turn into an

independent concept after importing the component. The only exception to this is

if the superconcept is part of a software component, as it is currently impossible to

configure the dependency of a custom component of a software component.

1.9.2.10.1. Export

A properly configured component can be exported at any time by opening the component object in

the Knowledge-Builder and pressing the button Export component in the detail editor.

Technical Handbook 5.8 - 1.9. KB plugins and components

293

NOTE

When exporting a component all semantic elements will be given a RDF-URI if they

don’t have one already. If the component has an ID-attribute defined, it also tries

to generate missing IDs for all semantic elements.

When clicking export you can choose between to options:

1. All: Export the whole component includeing all assigned elements

2. Definition: Export only the component itself and its sub-objects without any assigned elements

NOTE

When choosing to only update the definition of a component, the Handling of

surplus elements attribute will have no effect, as it would apply to all elements of

the component.

Before a component can be exported some conditions need to be fulfilled:

• The component needs a name.

• The component needs a prefix.

• The component needs a proper base-URI.

• The graph needs a proper base-URL (Can be set in the KB options under System → RDF).

• The component needs to know how to handle surplus elements.

• The component cannot be part of a dependency loop.

• If the component has an ID-attribute defined, it needs to have a uniquness index, an internal

name and a RDF-URI.

Additionally there are some conditions which are not mandatory but very helpful:

• If the component has an ID-attribute defined, it should be a string attribute, as otherwise

missing IDs will not be generated on export.

• If the component has an ID-attribute defined, the attribute should be assigned to the

component.

Technical Handbook 5.8 - 1.9. KB plugins and components

294

1.9.2.10.2. Import

An exported component can be imported via the Admin Tool or via the Knowledge Builder.

Import via Admin Tool:

1. Open System configuration → Components.

2. Press Add model component and choose Import custom component.

3. Select the exported file or specify a file URL.

4. Choose wether to use or override the handling of surplus elements configuration of the

component for this import.

5. Result: The imported component appears in the list of components. Note that the import also

adds the required software component Custom components in case it hasn’t already been

added.

The component object can be opened in the Knowledge-Builder under Technical → Custom

components

Import via Knowledge Builder:

NOTE
This requires the software component Custom components to be added to the

system beforehand.

1. Navigate to TECHNICAL → Custom components.

2. Press the Import component button which is the rightmost icon at the top.

3. Select the exported file directly or specify a file URL.

4. Choose wether to use or override the handling of surplus elements of the component for this

import.

Warnings after the import:

If the the import had no problems and there were no surplus elements, a Close button will appear

below the loading bars. It will complete the import.

Otherwise a new window will open. On its left side will be a table containing all warnings that

occured during the import. The right side will show all surplus elements and how they were

handled.

If one of these lists is empty, it will not be shown.

Technical Handbook 5.8 - 1.9. KB plugins and components

295

These warnings can include things like syncing indexes or that some domains could not be removed

because they are still in use in the target-graph. Mostly it will be warnings about Elements not being

found though. These can usually be fixed by looking up the missing elements in the source graph

and assigning them to the desired component.

In this table all elements are displayed using their RDF-name as they might not exist in the target

graph and just use the import identifiers. The highlighted elements could not be found in the target

graph.

To help fix these problems, the table of warnings can be exported via the button in the bottom left.

It can then be read from the source graph to show the same table.

From there you can fix the problems directly at the source by editing the elements via right clicking

them. In this table the elements will also be displayed by their actual names unless they were

deleted before opening the table, in which case it will say Element not found. You can also hide

rows that are already fixed using their context-menu.

In case there are no Elements to be edited in the table you might be able to find the ID of relevant

elements in the description on the right. These IDs can be looked up in the KB by clicking on the

menu in the top right selecting Administrator → Lookup semantic element with ID.

Technical Handbook 5.8 - 1.9. KB plugins and components

296

1.9.2.10.3. Removing an imported component

An imported component can be removed from within the Knowledge Builder by selecting the

component under TECHNICAL → Custom components and clicking the Delete button on the right

side of the detail view of the component.

When deleting a component you can choose wether to only delete the component and its sub-

objects for additional selection or the entire component including all assigned elements (semantic

elements, queries, etc.).

NOTE

Any additional property-concepts which are defined exclusively for elements that

will be removed will also be deleted as they cannot exist without a defined

domain.

Warning: If you try to remove a component like other objects via its context-menu or the buttons

above the table it will only remove the component-object and its sub-objects without the assigned

elements.

Technical Handbook 5.8 - 1.9. KB plugins and components

297

1.9.2.11. Commandline commands

The Batch-tool provides the following commands for custom components:

Command Parameter Value Optional

ImportCustomCo

mponent

file filename of the component to import No

surplusHandling keep, bin or delete to override the

handling of surplus elements of the

component to import

Yes

ExportCustomCo

mponent

file filename for the exported component No

uri the base-URI of the component to

export

No

Technical Handbook 5.8 - 1.9. KB plugins and components

298

1.10. External Index

In contrast to internal indexing, external indexing involves transferring data from the knowledge

graph to a third-party system so that its features can be used in the search. The tools for mapping

data sources are used to transfer the data. Triggers are used to update the external data, and

specialized implementations are available for the third-party system for the search functionality.

1.10.1. Application Areas

• Realization of functions (aggregation, linguistics, path algorithms, etc.), which are not offered

by i-views.

• Acceleration of the search, result display and faceting (especially for large data volumes)

• Decoupling in the architecture of the application (e.g. UI directly on external index)

• "Overhang" data - i.e. there are more objects in the external index than are known to the

K.Graph

• Coupling/data exchange with other systems

Technical Handbook 5.8 - 1.10. External Index

299

2. Admin Tool
You can use the Admin tool to create new Knowledge Graphs, manage all Knowledge Graphs of a

mediator and configure individual Knowledge Graphs.

The Admin tool is invoked by default with the following:

• Windows: admin.exe

• Mac OS: admin

• Linux: visual admin-64.im

It is safe to rename the files.

2.1. Admin tool configuration

Like the Knowledge Builder, the admin tool can be startet with English or German user interface

(UI). The preset UI language ist German. To start the admin tool with English UI, a configuration

needs to be done using the selection dialog, an ini file or a command line argument. The language

selection dialog is available via the start dialog:

NOTE

If a new Knowledge Graph is created using the admin tool, the system attributes

and system relations are created in the same language as the admin tool has been

started with.

Technical Handbook 5.8 - 2. Admin Tool

300

Besides setting the UI language of the admin tool using the selection dialog, setting the UI language

of the (initial) default UI language can be set using the ini file or a command line argument.

The content of the ini file "admin.ini" for starting the admin tool with English UI is as follows:

[Default]
language=eng

The command line argument to switch the language is:

... -language eng

Please note that without further configuration, the ini file needs to be located in the same directory

as the admin tool itself to take effect.

Technical Handbook 5.8 - 2.1. Admin tool configuration

301

2.2. Launch window

After the Admin tool has started, the Start window appears.

2.2.1. Server

The URL of the server is entered in the free text field Server. Valid URLs use one of the protocols

cnp://,cnps://,http:// or https:// followed by [<hostname or IP address>[:<port
number>]]. If no protocol is specified, the protocol cnp:// is used. If not port is given, the

standard port for the protocol is selected. This format corresponds to the interface setting on the

mediator.

If the mediator that is used to administrate the Knowledge Graphs is running on the same computer

as the Admin tool, it can also be addressed using the computer name localhost.

If the field remains blank, then the Knowledge Graphs are accessed which are in the direct

subfolder volumes relative to the position of the Admin tool. No mediator is required for this type

of access.

Entries entered once in the free text field are saved. The … button allows them to be selected from

a list in a separate window.

The Administrate button is used to access the server administration, for a subsequent dialog

requires the servers password.

2.2.2. Knowledge Graph

The Knowledge Graph that is to be administrated is specified in the free text field Knowledge Graph

.

Entries entered once in the free text field are saved. The … button allows them to be selected from

a list in a separate window. To display all Knowledge Graphs, the user may be prompted to enter the

server password.

2.2.3. Administrate, New and Start

Administrate is used to access the server administration, for which authentication using the server

Technical Handbook 5.8 - 2.2. Launch window

302

password is required.

New forwards to Knowledge Graph generation.

Start forwards to the individual graph administration. The entries user name and password are

used for this for logging in with an administrator account.

2.2.4. About

You can use the About button to retrieve version-specific information in a separate window via the

Admin tool.

Specifically, you can retrieve:

• the version number of the Admin tool (Build),

• the publication status of the Admin tool (Release state),

• the maximum system memory in bytes that can be used by the Admin tool (Memory bound),

• the amount of memory used at which the process will start reclaiming memory (GC threshold),

• the version number and the digital finger print of the execution environment used by the

Admin tool (VM version),

• the active HTTP proxy configuration (HTTP Proxy),

• the external libraries present and their versions (External Libraries),

• the language setting active in the operating system (Locale),

• the fonts used in the Admin tool (Fonts),

• the software components including version numbers present in the software (Software

Technical Handbook 5.8 - 2.2. Launch window

303

components) and

• the core packages including version number used in the Admin tool (Packages).

Information on the License, Knowledge Graph version and Knowledge Graph information is not

decisive here.

The information is shown in an invisible text field, which has a context menu that can be activated

by right-clicking:

• Copy copies the selected text area to the clipboard of the operating system.

• Find allows a string to be input in a separate window, and its next occurrence in accordance

with the read direction in relation to the position of the cursor set by clicking the mouse. The

query is case-sensitive.

• Find Again searches for the selected text area and finds its next occurrence in according to the

read direction.

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text

segment.

The Copy button at the bottom copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for this build of the Admin tool to the clipboard of

the operating system. This key can be used in the configuration of a mediator to restrict the tool

build versions allowed to access the mediator.

The OK button enables you to return to the start window.

Technical Handbook 5.8 - 2.2. Launch window

304

2.3. Create a new Knowledge Graph

A new Knowledge Graph is created via a separate Knowledge Graph creation window . It can be

reached via the New button on the start screen . Any inputs in the Knowledge Graph free text field

of the start screen is ignored.

2.3.1. Server

The name or the IP address of the computer on which the mediator is running is specified in the

free text field Server. The value is copied from the start screen. If you use the server field in this

dialog the same conditions as in the start screen apply.

If the field remains blank, the Knowledge Graph is generated in the volumes subfolder relative to

the location of the Admin tool.

2.3.2. New Knowledge Graph

The name of the Knowledge Graph is specified in the free text field New Knowledge Graph. The

characters allowed for this purpose are specified by the file system of the operating system on

which the Knowledge Graph is to be stored. To ensure that the data can also be stored in different

file systems, consider the following best practices:

• 64 characters maximum

• No blank spaces at the start or end

• Characters used: Upper and lower case ASCII letter characters, numbers, space and -+.
Permitted are also all Latin letters, !@#$%&'()+-.[]^`{}~Œœ and ASCII

characters 160-255 but not advised

• The following character sequences are not allowed: AUX, CON, NUL, PRN as well as COM0-

Technical Handbook 5.8 - 2.3. Create a new Knowledge Graph

305

COM9 and LPT0-LPT9

A name must be specified.

The name can subsequently be changed only during copy processes of the Knowledge Graph or by

changing file and directory names. If you make a change, keep in mind that the name of the

Knowledge Graph might be referenced in initialization files and that the license might have been

adapted to the name.

2.3.3. Server password

The mediator server supports authentication via a password. If a password has been set for the

mediator it will be used to create the new Knowledge Graph. The server password must be entered

in the Server password free text field. If no password has been assigned, the field must remain

empty.

2.3.4. License

A Knowledge Graph must have a valid license so that Knowledge Builder and other software

components (with the exception of the Admin tool) can access it. Use the … button to access the

file system of the operating system in order to load a license key (file name: <License
name>.key).

2.3.5. User name

The name of the first user registered in the Knowledge Graph is specified in the User name free text

field. The type and quantity of permitted characters is not restricted. The Administrator default

setting is simply a suggestion. This field must not remain empty.

The name can be changed later on in the Admin tool or the Knowledge Builder. The user created in

this way automatically is granted administrative rights.

2.3.6. Password (user)

In the Password free text field, you should enter a password for the first user registered in the

Knowledge Graph. This password will be required later on when this user attempts to log in to the

Knowledge Builder or the Admin tool for the new Knowledge Graph.

2.3.7. Ok and Cancel

The OK button creates the Knowledge Graph, factoring in the data entered. The Cancel button

cancels the process. In both cases, the system returns to the start screen.

Technical Handbook 5.8 - 2.3. Create a new Knowledge Graph

306

2.4. Server administration

The overall Knowledge Graph administration allows the administration of all Knowledge Graphs of a

mediator, or the local subfolder volumes respectively. It can be reached via the Administrate button

on the start screen. A corresponding entry in the Server field is necessary for this. Any entries in the

Knowledge Graph field of the start screen are ignored. If the Knowledge Graphs to be

administrated are addressed using a mediator, the correct mediator password must also be

specified in a separate window.

The overall graph administration window is comprised of a graph overview in the form of a table,

a message area and a menu line at the top.

2.4.1. Graph overview

The graph overview in the form of a table provides details about

• the name (Volume)

• the number of clients currently connected (Clients),

• the date and time of the last backup (last backup) and

• the last status message (Status) of the respective Knowledge Graph.

The individual columns can be sorted by clicking on the head of the column.

The data is only updated when triggering operations, and therefore is not always up-to-date. A

manual update can be forced at any time using the menu item Server -→ Refresh Knowledge Graph

Technical Handbook 5.8 - 2.4. Server administration

307

list .

2.4.2. Message area

The Message area outputs all status reports for all Knowledge Graphs. Status reports are created

when activities are triggered in the Admin tool. They are not saved when the Admin tool is closed.

To prevent this, they can be exported via the menu option File -→ Write administration log . The

Message area can be edited, but changes are ignored during export.

2.4.3. Menu line

The menu line consists of the following menu tabs:

File

Save administration log

saves all entries in the message window in a text file (default file name: admin.log). You can

freely choose the name and storage location in a saving dialog. This operation requires the

Admin tool to be connected to a mediator.

Reset session password

Log off

Closes server administration and opens the log-in window again.

Exit

Closes server administration

Server

Refresh Knowledge Graph list

Reloads the data collected in the graph overview in the overall graph administration

window.

Re-import ini file

Triggers the server to reload its ini file. Note, that not all options can be updated during

operation. The server outputs a message about updated options.

Download log

Downloads a copy of the mediator log file if present on the server (default file name:

mediator.log) to the local machine. You can freely choose the name and storage location of

the file in a saving dialog. The mediator log file keeps a log of all the mediators activities

from its first commissioning.

Server connections

Shows the client id and individual IP address of all software clients currently connected to

the mediator in the message field. The output contains a total count and is grouped by

Knowledge Graph. The client id is generated sequentially by the mediator and assigned

Technical Handbook 5.8 - 2.4. Server administration

308

(reusing free ids) whenever a new software component registers.

Transfer

Download Knowledge Graph

Creates a copy of the Knowledge Graph selected in the graph overview and saves it locally in

the volumes subfolder that is located relative to the location of the Admin tool. A new name

can be assigned to this copy in a separately appearing dialog.

Copy Knowledge Graph

Creates a copy of the selected Knowledge Graph and saves it on the same server as the

original Knowledge Graph. A new name must be assigned to this copy in a separate dialog.

Upload Knowledge Graph

Uploads a local Knowledge Graph to the server. In a separate dialog, a local graph can be

selected from a list, which is filled from the volumes directory relative to the Admin tools

directory location. A new name can be assigned to this copy and it must differ from all graph

names already present on the server.

Replace Knowledge Graph

Exchanges the contents of a selected Knowledge Graph with the contents of a locally present

graph. In the process, the uploaded copy is given the name of the Knowledge Graph it has

replaced. The local Knowledge Graph, which must be stored in the volumes subfolder that is

relative to the position of the Admin tool, is selected in a separate selection window.

As a result of the copy processes initiated by transfer operations, the block allocation of the clusters

and blobs within the Knowledge Graph copies is redefined, and their space consumption is

optimized in the process. The resulting compression effect is identical to the one achieved by the

operation Manage → Compress volume.

With the exception of the Copy volume operation, all these operations require the Admin tool to be

connected to a mediator.

Administrate

Open Admin tool

Opens the Admin tool on the selected Knowledge Graph. Since this administration interface

used authentication on the server level, no further authentication is required. In a separate

window a list of accounts with administrative access in the selected Knowledge Graph is

presented. Here the account to use when opening the Admin tool in "per graph" mode can

be selected.

This makes it possible to access the user management of the volume if the administrator

password has been lost.

Create backup

Creates a backup of the Knowledge Graph selected in the Knowledge Graph overview and

saves it in the backup folder on the server. Every backup is a full copy of the original

Knowledge Graph.

Technical Handbook 5.8 - 2.4. Server administration

309

When the backup is initiated, a separate window asks whether the user wants to wait until

the copy process is complete. If applicable, further use of the Admin tool is blocked until this

time. Otherwise the copy process starts in the background, and there is no message

regarding the process or completion of the copy process.

Restore backup

Offers a list of available Knowledge Graphs with backups present on the server. After picking

a knowledge graph a second dialog offers the list of timestamps for backups of that graph.

When selecting a timestamp, a new name must be assigned for the backup to be restored

to.

Delete backup

Deletes a selected backup. To select this backup, two separate selection windows must be

navigated: in the first, the Knowledge Graph must be selected; in the second, the backup

timestamp must be selected from a list sorted by creation date.

The block assignment of clusters and blobs within the original Knowledge Graph is not

modified when a Knowledge Graph copy is created. The copy process initiated by the backup

operations therefore creates no compression effect.

Delete Knowledge Graph

deletes the Knowledge Graph selected in the Knowledge Graph overview.

Compress Knowledge Graph

Remove free blocks in the files comprising the selected Knowledge Graph. Free blocks

originate from changed data freed by the garbage collection.

The copying processes for clusters and blobs first move all unused blocks to the file end and

then release them in the file system of the operating system.

Update volume version

Updates the version of the internal file system of the Knowledge Graph selected in the

Knowledge Graph overview. If the Knowledge Graph is addressed via a mediator, the version

it contains is used; otherwise, the version included in the Admin tool is used. The update

should be performed, when upgrading from previous i-views versions.

Garbage collection

Garbage collection is a procedure that deletes objects that are no longer referenced (according

to a programming terminology reading) from the Knowledge Graph. It thereby minimizes

reduces the storage usage of the Knowledge Graph. Use of the garbage collection requires that

the Knowledge Graph that is to be cleaned up is accessed via a mediator.

Start

Initiates a new garbage collection run for the Knowledge Graph selected in the Knowledge

Graph overview or continues a garbage collection paused for it. No confirmation is sent

when the process is completed. You can determine its progress via the Status menu option.

Technical Handbook 5.8 - 2.4. Server administration

310

Pause

Halts the execution of the active garbage collection for the Knowledge Graph selected in the

Knowledge Graph overview.

Stop

Terminates the execution of the active garbage collection for the Knowledge Graph selected

in the Knowledge Graph overview.

Status

Fetches the status of the current garbage collection process for the Knowledge Graph

selected in the Knowledge Graph overview and displays it in the status column of the

Knowledge Graph overview and in the message field. If garbage collection is active,

feedback on its progress is provided in percent.

Technical Handbook 5.8 - 2.4. Server administration

311

2.5. Individual Knowledge Graph administration

Individual Knowledge Graph administration allows you to manage an individual Knowledge Graph. It

can be reached via the Start button on the start screen. This requires the corresponding entries in

the fields Server , Knowledge Graph , and authentication field combination, by default

Authentication set toName and password, User and Password of the start screen.

2.5.1. User authentication

To access the Knowledge Graph administration window a user account with administrative rights

needs to be authenticated.

If you no longer have access to the Knowledge Graph, you can access the Knowlede Graph through

authentication on the server by logging on to the Server administration.

Valid authentication methods for logging in to a specific Knowledge Graph depend on the

configuration of the mediator and the graph. These details need to be provided to the users of the

Admin tool.

Possible authentication methods are:

Name and password

The fields User and Password are used to authenticate against accounts defined in the

Knowledge Graph

JSON Web Token

(experimental) A valid JWT needs to be pasted into the Password field. The token issuer needs

to include the allowed operations as claims in the token. The User field contents are ignored.

OAuth

To log in the user is redirected to the configured OAuth authentication provider service in the

browser. After successful authentication and if the users account is authorized to log in to the

installation, the Admin tool opens.

Windows negotiate

Use the Windows negotiate API to authenticate the user with the Knowledge Graph.

2.5.2. Individual Knowledge Graph administration window

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

312

The Knowledge Graph administration window has a menu list with a multilevel structure on the

left, and an operation window on the right. The content of the operation window depends on the

menu option selected in the menu list.

The Back button returns you to the start window.

The Exit button closes the Admin tool.

If the Knowledge Graph to be administrated is addressed without a mediator, other clients cannot

access the Knowledge Graph via the Knowledge Builder or another instance of the Admin tool for as

long as the Knowledge Graph administration window is open.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

313

2.5.2.1. Database

2.5.2.1.1. Administrate

Backup

Creates a backup of the Knowledge Graph on the server. Every backup is a full copy of the

original Knowledge Graph.

Before the backup is created, a separate window asks whether the user wants to wait until the

copy process is complete. If applicable, further use of the Admin tool is blocked until this time.

Otherwise the copy process starts in the background, and there is no message regarding the

process or completion of the copy process.

The block assignment of clusters and blobs within the original Knowledge Graph is not modified

when a Knowledge Graph copy is created. The copy process initiated by the backup operations

therefore creates no compression effect.

Replace with backup

Allows to replace the current Knowledge Graph with one of its backups created earlier on. A

dialog with available backups offers the selection of a specific backup set. If performed all

connected clients (including this Admin tool) will shortly lose the connection and reconnect

again.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

314

Delete backup

Deletes an individual backup of this Knowledge Graph from the list of available backups.

Download

Downloads a copy of the Knowledge Graph and saves it locally to the volumes subfolder that is

located relative to the location of the Admin tool. A new name can be assigned to this copy in a

separately appearing free text field.

Upload volume

Transfers a locally stored Knowledge Graph and replaces the current Knowledge Graph with this

Knowledge Graph (afterwards you are logged off automatically).

2.5.2.2. Information

2.5.2.2.1. Jobclient

In order to relieve the workload on the Knowledge Builder for specific, processor-intensive

processes such as indexing, querying Knowledge Graphs and executing scripts, these processes can

be performed by Job-Clients. Some are optionally executed by Job-Clients while others are

exclusively performed them. The use of jobs is usually configured in the graph, but the user

interface of the Knowledge Builder offers the execution as job in several locations. To perform these

jobs at least one Job-Client must be configured and running for the intended kind of job. The Admin

tool largely functions as an observer in this case. Jobs not completed appear in the Knowledge

Builder under the entry Tasks in the Technology category. In order to use the Admin tool to manage

Job-Clients, the Admin tool must be connected to a mediator.

The Job-Clients overview table on the top right shows the following for each job-client that is

currently running:

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

315

• its name in the format [Job-Client-Name]@[Mediator-Name] (name),

• its client id (ID),

• its IP address relative to the mediator (IP),

• the name of the mediator connected to it (Server),

• the process number assigned by the operating system (process),

• the job types assigned to it (Pool),

• its work status (Status) and

• the number of jobs it has completed (Done).

The Client id assigned by the mediator and a separate number is assigned with each new client

connection. The Job-Client name and the job types assigned to the Job-Client are defined in the

initialization file for the respective Job-Client (default file name: jobclient.ini) under the key name

or the key jobPools respectively. Each job type of a Job-Client is shown in a row of its own in the

Job-Client overview, so that a Job-Client regularly takes up several rows.

The individual columns of the Job-Clients overview can be sorted by clicking on the head of the

column. Right-clicking a row also opens a context menu:

• Display information:: displays all data listed in the selected row, with the exception of the job

type and the completed number of jobs, in a new window. Added are

◦ the date and time of the last time the Job-Client was started (startUpTime),

◦ the maximum working memory capacity available for use by it in bytes (max Memory),

◦ the name of its log file (logFileName) and

◦ its specific name, under which it can be forced to shut down (a concatenation of the string

“jobclient” and the Job-Client number) (shutDownString).

• The data there can be copied to the clipboard of the operating system (Copy to clipboard

button) or be exported to any location as a text file that can be given any name using a saving

dialog (Save button).

• The operation triggered using the menu item Display information can, alternatively, be

performed by double-clicking a row in the Job-Clients overview.

• Remove Job-Client ends the Job-Client selected in the Job-Clients overview .

• Remove all Job-Clients ends all Job-Clients listed in the Job-Clients overview .

The job pools overview on the bottom right in form of a table lists all job types that are assigned to

at least one Job-Client in the Job-Clients overview . For each job type it displays,

• its name (name),

• its technical name used in the Job-Client’s initialization file (JobPool),

• the number of uncompleted jobs of this job type (ToDo),

• the number of failed jobs of this job type (Failed) and

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

316

• the number of Job-Clients available to execute the type of job (Job-Clients).

The individual columns of the job pools overview can be sorted by clicking on the head of the

column. Right-clicking a Job-Client also opens a context menu:

• Empty job pool deletes all uncompleted and failed jobs of the job type selected in the job pools

overview . This operation is only possible when no Job-Client is running.

• Configure error messages to ignore allows specific error messages to be blocked when

executing jobs of the job type selected in the job pools overview.

◦ If an error message is blocked this way, the job related to the error is not factored in when

determining the number of failed jobs in the job pools overview. This operation is only

possible when there are already jobs of the job type selected in the job pools overview

waiting to be processed, or that were already processed.

◦ The error messages to be blocked are administrated in a separate window:

▪ All error messages to be blocked are listed in the alphabetically sorted error message

list. An error message is blocked when its output text matches a text in the error

message list.

▪ "+" allows input of an error message to be blocked using a separate window. The error

message appears in the error message list.

▪ "…" allows the error message selected in the error message list to be changed.

▪ "-" deletes the error message selected in the error message list .

2.5.2.2.2. Performance

Client

Allows to activate the collection of performance data for clients.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

317

Record duration configures the number of minutes to keep the performance data collection active.

The preset is 5 minutes.

Report every configures the duration in seconds between performance data snapshots. The preset

is every 10 seconds.

Log targets offers the logging to the internal log collector and/or a configured Influx time series

database.

Start starts the client performance data collection with the given parameters. It will stop after the

configured duration or when klicking

Stop stops a running client performance analysis.

The key performance indicators are shown in a nested list in the key performance indicator

overview. Clicking on the triangle symbols to the right of the categories allows listed subitems to be

expanded and collapsed. Alternatively, this can be performed using a context menu, which can be

accessed by right-clicking a list item:

• Expand opens all directly listed subitems in the list item selected.

• Expand fully opens all directly and indirectly listed subitems in the list item selected.

• Contract fully collapses all listed subitems in the list item selected.

Double-clicking on a list item allows all key performance indicators stored below it to be shown at a

glance in a separate window. There, they can be copied to the clipboard of the operating system

(Copy to clipboard button) or exported to a text file (Save button).

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

318

Below the collected statistics there are for buttons available:

Refresh updats the collectected performance indicators shown in the key performance indicator

overview.

Reset deletes the collected performance indicators shown in the key performance indicator

overview.

Copy to clipboard copies the key performance indicators shown in the key performance indicator

overview to the clipboard of the operating system.

Table opens a dialog with a tabular display of the collected performance data.

Server

Test performance starts a process to evaluate the performance of the mediator connection. This

sends several requests to the mediator and monitors timing and throughput of the connection.

Measurements are taken of

• the duration until a small file is transmitted (Roundtrip: Blob)

• the result of a mediator support call request (Roundtrip: RPC)

• the average transmission rate when sending several 1 MB files (Throughput: Blob (1.0 MB))

and

• the average transmission rate when sending several 100 KB files (Throughput: Blob (100.0 KB)

).

The test results are shown to the results list after the test is finished.

Copy to clipboard copies the test results in the results list to the clipboard of the operating system

as plain text.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

319

2.5.2.2.3. Version information

This menu item can be used to retrieve version-specific information for the Knowledge Graph and

Admin tool.

Specifically, you can retrieve:

• the version number of the Admin tool (Build),

• the publication status of the Admin tool (Release state),

• the license information present in the graph (License),

• the version number of the Knowledge Graph (Knowledge Graph version),

• the name of the Knowledge Graph and the mediator used (Knowledge Graph information),

• the maximum system memory in bytes that can be used by the Admin tool (Memory bound),

• the amount of memory used at which the process will start reclaiming memory (GC threshold),

• the version number and the digital finger print of the execution environment used by the

Admin tool (VM version),

• the active HTTP proxy configuration (HTTP Proxy),

• the external libraries present and their versions (External Libraries),

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

320

• the language setting active in the operating system (Locale),

• the fonts used in the Admin tool (Fonts),

• the software components including version numbers present in the software (Software

components) and

• the core packages including version number used in the Admin tool (Packages).

The information is output in a text area, which has a context menu that can be activated by right-

clicking:

• Copy copies the selected text area to the clipboard of the operating system.

• Find Again searches for the selected text area and finds its next occurrence in according to the

read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accordance

with the read direction in relation to the position of the cursor set by clicking the mouse. The

query is case-sensitive.

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text

segment.

The Copy button at the bottom copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for this build of the Admin tool to the clipboard of

the operating system. This key can be used in the configuration of a mediator to restrict the tool

build versions allowed to access the mediator.

2.5.2.3. System configuration

2.5.2.3.1. User

The user administration show the list of configured user accounts in the Knowledge Graph. It can

also link these accounts relevant for the login to the Knowledge Builder and Admin tool to user

objects in the graph.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

321

The user overview in the form of a table shows, information for the accounts registered in the

Knowledge Graph. The fields are:

• the user name (User),

• the object of the user-generated subgraph the user is optionally linked to (Associated with),

• which status the user currently has (Status),

• the date and time of the last login of this account using the Knowledge Builder (Login

timestamp) if the user is still logged in.

The Status provides information about whether a user has administrator rights, whether a user with

administrator rights does not have a password and whether a user is logged into the Knowledge

Graph using the Knowledge Builder. Names of users with administrator rights without a password

are marked in red.

Create creates a new user. User name (obligatory) and password (optional) are defined in a

separate window. The type and quantity of permitted characters is not restricted.

Associate associates the account with a user object from the graph model. This association is

necessary for Knowledge Graph with enabled access rights managment and accounts, that do not

have administrative access.

Drop association removes the selected users association with a Knowledge Graph object.

Change password changes the password of the user selected in the user overview . The new

password is entered two times in two windows that appear consecutively.

Logout logs out the user selected in the user overview from the Knowledge Graph following a

security confirmation. This works only for users currently logged in with the Knowledge Builder.

Delete deletes the account object selected in the user overview following a security confirmation.

At least one user with administrator rights must remain.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

322

Rename allows a new user name to be assigned for the user selected in the user overview by

means of a free text field in a separate window. If the free text field remains blank, no renaming

occurs.

Message opens a text input window to send a message to the user selected in the user overview.

The message is buffered in the graph and appears to the user in the Knowledge Builder as soon as

the user logs in to the Knowledge Graph. The user cannot reply to this message sent from the

Admin tool.

Administrator assigns administrative rights to the account selected in the user overview, or

removes the flag. A user must have a password to obtain administrator rights. At least one user in

the graph must have administrator rights.

Password change is a flag, that when set forces the user to change the password after successful

login in the Knowledge Builder. This is usually used when a new account is created by an

administrative to to hand out an initial password.

The following three fields Administrators, Users and Active indicate the number of user account

with adminitrative rights, the number of all user accounts and the number of active user accounts.

2.5.2.3.2. Blob storage

Attribute values of attributes with the attribute value type file (called blobs) can also be stored in a

blob store outside the Knowledge Graph. The advantage of this is that they can be managed

independently of the Knowledge Graph and can thus be managed in a different system

environment. To store blobs in a blob store, the blob store must be set up and connected to a

configured blob service (a software service).

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

323

Create generates a new blob store. Using the name format [Knowledge Graph ID]+[blob store ID] ,

the blob store overview appears in the text field above it.

Delete deletes the blob store selected in the blob store overview .

The numeric field Deletable files shows the number of blobs no longer required in the blob store

overview of the selected blob store. Blobs are no longer required when their respective attributes

have been deleted from the Knowledge Graph or if the connection between blob service and blob

store has been removed using the Admin tool.

Delete deletes all blobs that are no longer required in the blob store selected in the blob store

overview .

You can identify a blob service in the free text field URLs . This is done by entering the network

address of the initialization file of the corresponding blob service (default file name: blobservice.ini)

stored under the interfaces key including the prefix http . If the blob service is supposed to be

addressed via several network addresses, these can be entered in comma-separated form.

Alternatively, the blob service integrated in the mediator can also be addressed. In the initialization

file of the mediator (default file name: mediator.ini), the value true must be set under the key

startBlobService and the free text field URLs must be left blank. The internal checkbox to the right

of the free text field URLs indicates whether the integrated blob service or an external blob service

is addressed. The blob service integrated into the mediator is not configured via the mediator

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

324

initialization file but via a separate initialization file (default file name: blobservice.ini).

Add connects the blob store selected in the blob store overview to the blob service identified via

the free text field URLs . To do so, the blob service must be active. If linking is successful, the blob

store using the name format [Knowledge Graph ID]+[blob store ID] appears in the text field below,

the overview of registered blob stores.

Update updates the overview of registered blob stores. To do this, a blob store must be selected in

the blob store overview.

Remove interrupts the connection of the blob store selected in the overview of registered blob

stores to the blob service and removes the blob store from the overview. In doing so, all blobs

stored in the blob store irrevocably lose their internal references to the respective attributes in the

Knowledge Graph and can no longer be retrieved in the Knowledge Graph. To ensure removal is

successful, the blob store selected in the overview of registered blob stores must also be selected

in the complete blob store overview.

All blobs stored via a blob service are stored in a subfolder called blobs that is located relative to

the position of the blob service. The internal assignment of every blob to its blob store and its

Knowledge Graph is established using an SQLite database.

2.5.2.3.3. Components

Knowledge Graphs consist of Knowledge Graph components. In addition to the basic functions, they

basically provide the Knowledge Graph with additional interfaces and user interfaces for user data

that can be displayed in the browser (web front-ends).

Publication status components (Release States), of which there are three variants (Preview ,

Release Candidate , Release) are a special subgroup of Knowledge Graph components. If such a

component is installed in the Knowledge Graph, only software components with suitable

publication statuses are able to access the Knowledge Graph.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

325

The Software list provides an alphabetical list of all Knowledge Graph components supplied with

the Admin tool and their respective version numbers. If they need a separate license, there is also a

note as to whether this is included in the current license of the Knowledge Graph. Publication status

components do not have a version number.

If you right-click on a Knowledge Graph component, a context menu appears. The menu item Add

standard component available there has the same functions as the button of the same name.

Add standard component installs the Knowledge Graph component selected in the software list in

the Knowledge Graph. A separate window informs of the installation status. Some Knowledge

Graph components require other Knowledge Graph components installed in the Knowledge Graph.

Most installed Knowledge Graph components (except for publication status components) appear as

separate entries in the Technical category in Knowledge Builder. Only one publication status

component can be installed at a time.

Write license template generates a template whose content is to be completed for the component

license configuration file to be used to generate the license key, and stores it at a location of your

choice via a saving dialog (default file name: [Knowledge Graph].componentLicenseTemplate.ini).

Irrespective of the configuration of the Knowledge Graph just administered, configuration

placeholders are specified for the components KEM , i-views core and Knowledge Builder . The

version number of the respective Knowledge Graph component supplied in the Admin tool is pre-

entered in every configuration placeholder.

The Knowledge Graph list alphabetically lists all Knowledge Graph components installed in the

Knowledge Graph with their respective version numbers. An installed Knowledge Graph component

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

326

for which a newer version is provided in the Admin tool is highlighted in red. The optional

Knowledge Builder component is pre-installed in a new Knowledge Graph by default.

The text fields Name and Version show the name and the three-digit version number of the

installed Knowledge Graph component selected in the Knowledge Graph list.

Add generic component adds a generic model component or a generic software component to the

Knowledge Graph list. The component type is selected in a separate window. Generic components

allow bundling of project-specifically created Knowledge Graph extensions and simplify their

installation (removal) and version monitoring via the Admin tool. The name and version number of

a generic Knowledge Graph component installed in the Knowledge Graph can be freely assigned in

the corresponding text fields.

Update (the name changes to Renew, if it can be deactivated) updates the installed Knowledge

Graph component selected in the Knowledge Graph to the version supplied in the Admin tool. If

the language of the currently running Admin tool differs from the language of the Admin tool with

which the Knowledge Graph component was originally installed in the Knowledge Graph, identifiers

of all elements and element types of this Knowledge Graph component are also updated.

Depending on the Knowledge Graph component, the update of the old identifiers either adds new

identifiers in the language of the Admin tool that is currently running (the respective applicable

language version is then displayed depending on the language setting in Knowledge Builder) or

replaces the old identifiers with new identifiers.

Remove removes the installed Knowledge Graph component selected in the Knowledge Graph list.

If Knowledge Graph components in the installed status in Knowledge Builder have an entry in the

Technical category, they leave their own subgraph after they have been removed, which has to be

removed manually. Knowledge Graph components can only be removed if no other Knowledge

Graph components that depend on the Knowledge Graph component to be removed are installed.

The two Knowledge Graph components i-views Core and View Configuration offer basic functions

and cannot be removed.

Boost libraries 1.18.0

This configuration menu appears only if the boost libraries Knowledge Graph component is

installed.

With the exception of the blob service and the mediator, all the software components can interpret

JavaScript. In order to improve the scope and speed of interpretation of regular expressions

embedded in JavaScript, it is possible to transfer their interpretation to the Boost.Regex library.

Under Windows and Linux, the library (file name in Windows: boost_regex.dll , file name in Linux:

libboost_regex.so) must be in the same directory as the transferred software component. In Mac

OS the library is integrated in the file of the transferring software component.

The boost libraries Knowledge Graph component makes it possible to ensure that access to the

Boost.Regex library is possible.

If the Boost libraries required for all incl. Admins option is selected, all software components apart

from the Admin tool can only access the Knowledge Graph if they can access the Boost.Regex

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

327

library.

If the Boost libraries required for all apart from Admins option is selected, all software

components apart from the Admin tool can only access the Knowledge Graph if they can access the

Boost.Regex library. The only ones excepted from this access lock are users with administrator rights

who access the Knowledge Graph via the Knowledge Builder.

If the Boost libraries not required, logging only option is selected, each software component enters

a corresponding warning in its respective log file, if available, if it cannot access the Boost.Regex

library during start-up. Access to the Knowledge Graph remains possible regardless.

Knowledge portal

This configuration menu appears only if the Knowledge portal component is installed.

The Knowledge portal component enables a Knowledge Graph to operate a knowledge portal (of a

front-end that can be displayed via browser). The configuration of the display and control elements

of this front-end is performed in the Knowledge Builder on the relevant element types via an editor

specially provided by the Knowledge Graph component for that purpose and with the help of the

XML markup language. To make maintenance easier, and for the logical regulation of XML

documents, it is possible to install schemas in the DTD format, on the basis of which the XML

documents can be validated.

In the front-end, a distinction is made between an edit view and a presentation view, each of which

have exclusive display and control elements. Separate DTD schemas are maintained for both views.

Each of the control elements explained below exists for every view.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

328

The Select button can be used to access the file system of the operating system in order to load a

DTD schema file for the relevant view and install it in the Knowledge Graph. The default file name

for edit view DTDs is editConfig.dtd , and the default file name for presentation view DTDs is

viewConfig.dtd .

Reset deletes the DTD schema installed for the relevant view from the Knowledge Graph.

Display shows the DTD schema installed for the relevant view in a separate window. There it can be

copied to the clipboard of the operating system (Copy to clipboard button) or exported to any

location via a saving dialog as a text file with a name of your choice (Save button). The window also

features a context menu of its own, which can be opened by right-clicking:

• Search allows a string to be input in a separate window, and next appears in accordance with

the read direction in relation to the position of the cursor set by clicking the mouse. The query

is case-sensitive.

• Mark all marks the entire text. Alternatively, the mouse pointer can be used to mark any text

segment.

• Copy copies the selected text area to the clipboard of the operating system.

Converter service

This configuration menu appears only if the print component Knowledge Graph component is

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

329

installed.

The print component allows selected Knowledge Graph elements to be integrated into an electronic

document that can be saved. To do so, a document template in the formats ODT, DOCX or RTF must

be imported into the Knowledge Graph using the Knowledge Builder and be linked to the

Knowledge Graph element to be integrated into a document. This layout of this document template

is created in an external Office program. You can use KScript and KPath to define placeholders to be

filled out by elements of the Knowledge Graph.

The conversion service is a function of the print component. If the context menu item Print is used

to generate a document in the Knowledge Builder, then along with the original format of the

imported document template, diverse other output formats can be selected into which the

document template can be converted. To ensure this conversion functions, a suitably configured

bridge (a software service) must be started and be linked to the print component, and a version of

LibreOffice or OpenOffice must be installed.

The bridge is suitably configured using its initialization file (default file name: bridge.ini). The value

jodService must be added in the section [KHTTPRestBridge] under the key services . Moreover, a

new section [file-format-conversion] must be created and be stored there using the key value pair

sofficePath=“[File path]/soffice.exe“ with a correct path name for the location of the LibreOffice or

OpenOffice start file.

The bridge is linked to the print component using the free text field URL. The network address of

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

330

the bridge is entered there in the format http://[Bridge-IP-Number]:[Bridge-

Port]/jodService/jodconverter/service . The path section /jodService/jodconverter/service has

historical reasons and activates the predefined jodService.

Check starts a test process. The test process uses REST to send a test document to the bridge

defined using the network address and expects that a properly converted test document is

returned. The test result is output in a separate window.

The free text field Timeout is used to define how many seconds to wait for the return of the

converted test document before generating an error message. The preset is 20 seconds.

2.5.2.3.4. Licence

A Knowledge Graph must have a valid license so that Knowledge Builder and other software

components (with the exception of the Admin tool) can work with it.

The Status field specifies whether the license is currently valid or invalid. If it is invalid, a reason is

also stated. Reasons for an invalid license can be exceedance of the validity date or maximum

number of allowed registered users.

The Customer field describes the client for whom the license was issued. In addition to the name,

address and department may also be listed.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

331

The Components field displays the content of the component license configuration file [Knowledge

Graph].componentLicenseTemplate.ini used to generate the license key. This specifies

• The licensed versions of individual components (version),

• The maximum number of registered users with administrator rights (maxAdminUsers) and

• The maximum number of registered users without administrator rights (maxUsers)

The Partner field contains the name of the partner via which the license is forwarded.

The Valid to field contains the date on which the license expires.

The Valid for Knowledge Graphs field contains a list of names of all Knowledge Graphs to which the

license is restricted. This can be entered using a regular expression.

The Valid for servers field contains a list of all IP addresses and port numbers that can be used to

reach a mediator connected to the Knowledge Graph.

The fields Partner , Valid to , Valid for Knowledge Graphs and Valid for servers can be left blank.

All fields have a context menu that can be activated by right-clicking.

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text

segment.

• Copy copies the selected text area to the clipboard of the operating system.

• Find Again searches for the selected text area and finds its next occurrence in according to the

read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accordance

with the read direction in relation to the position of the cursor set by clicking the mouse. The

query is case-sensitive.

Add / Renew makes it possible to load a new license key (file name: [License name].key) via the file

system of the operating system.

2.5.2.4. Maintenance

2.5.2.4.1. Client caches

To improve performance, software components accessing the Knowledge Graph often fall back on

their own buffers (cache). These buffer the schema and configuration data of the Knowledge Graph

so they can access them more quickly if they need to use them later on.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

332

Reset client caches deletes these buffered data. This makes sense if they are obsolete due to

changes to the schema or the configuration. This operation requires that the Knowledge Graph is

activated via a mediator.

2.5.2.4.2. Garbage Collection

Garbage collection is a procedure that deletes objects that are no longer referenced (according to a

programming terminology reading) from the Knowledge Graph and thereby minimizes the memory

usage of the Knowledge Graph. Use of the garbage collection requires that the Knowledge Graph

that is to be cleaned up is activated via a mediator.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

333

Start launches a new garbage collection for the Knowledge Graph or continues a paused garbage

collection. No confirmation is sent when the process is completed. You can determine its progress

via the Refresh menu option.

Pause interrupts the execution of the active garbage collection for the Knowledge Graph.

Stop cancels the execution of the active garbage collection for the Knowledge Graph.

Refresh writes the current state of the garbage collection for the Knowledge Graph to the

neighboring text field. If garbage collection is active, feedback on its progress is provided in percent.

2.5.2.4.3. Maintenance

Perform maintenance now checks

• the license (license)

• indexes (indexes),

• registered objects (the registry),

• rights (access rights),

• triggers (trigger) and

• installed Knowledge Graph components (active components)

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

334

for faults. Over the course of the check, the statistics for property frequencies per object (metrics)

that can be viewed using the Knowledge Builder are updated.

Any faults found are collected in a fault overview in the form of a table. For each fault,

• a short description, if relevant including the cluster ID and the frame ID (format cluster

ID/frame ID) of the faulty object (in the terminology interpreted by the program) (notification

),

• the superordinate semantic element affected by the fault (object),

• its type (type),

• the severity of the fault (priority) and

• the first point in time at which it was identified in the form of a date (date)

are output. The individual columns of the table can be sorted by clicking on the head of the column.

Details displays all data listed in the fault overview of the selected fault in a new window. The time

of the first point in time at which it was identified and date and time of the last time it was

identified are added. The data there can be copied to the clipboard of the operating system (Copy

to clipboard button) or be exported to any location as a text file that can be given any name using a

saving dialog (Save button). The operation triggered using the Details button can, alternatively, be

performed by double-clicking a fault in the fault overview.

Remove deletes the fault selected in the fault overview. This does not effect the first point in time

at which the fault was identified.

2.5.2.4.4. Maintenance information

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

335

This menu option can be used to call up a chronologically ordered maintenance history of all

essential administration processes in the Knowledge Graph since its creation. It contains backup

and transfer processes, component installations and updates, and the execution of maintenance

scripts and garbage collection, each with the time and date.

The maintenance history has a context menu that can be activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text

segment.

• Copy copies the selected text area to the clipboard of the operating system.

• Find Again searches for the selected text area and finds its next occurrence in according to the

read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accordance

with the read direction in relation to the position of the cursor set by clicking the mouse. The

query is case-sensitive.

Copy to clipboard copies the entire maintenance history to the clipboard of the operating system.

Add comment allows a note to be entered via a free text field in a separate window. It is given a

timestamp and added to the maintenance history. Notes added to the maintenance history cannot

be deleted.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

336

2.5.2.4.5. Maintenance message

The Set button activates a maintenance block that prevents all users from accessing the Knowledge

Graph via the Knowledge Builder. To do this, a maintenance notification must be written.

The maintenance notification is written in the free text field Maintenance notification. It is

displayed as an error message shown to all users who try to access the Knowledge Graph via the

Knowledge Builder when the maintenance block is active.

The Reset button removes the previously set maintenance block and deletes the maintenance

notification.

2.5.2.4.6. Maintenance script

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

337

Select maintenance script can be used to access the file system of the operating system in order to

load a maintenance script (file name: [Maintenance script].kss). Maintenance scripts are produced

on a case-specific basis in the programming language Smalltalk and permit operations that cannot

be implemented using the predefined functions of the Admin tool or using the KEM or JS interfaces.

If the maintenance script has a description, this description is output in an invisible text field under

the Select maintenance script button after the maintenance script has been loaded. This text field

has a context menu that can be activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text

segment.

• Copy copies the selected text area to the clipboard of the operating system.

• Find Again searches for the selected text area and finds its next occurrence in according to the

read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accordance

with the read direction in relation to the position of the cursor set by clicking the mouse. The

query is case-sensitive.

Execute maintenance script starts the maintenance script. A separate window tells you when the

maintenance script was executed and, depending on the script, offers additional execution

information or permits script-specific execution options.

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

338

2.5.2.5. XML import/export

2.5.2.5.1. Schema and configuration

Along with subgraphs generated by the user and imported using components (schemas with useful

data), a Knowledge Graph, by extension, is also comprised of diverse other modules (configurations)

that extend, configure or work with this subgraph in functional terms. Schemas and configurations

are referred to jointly as configurations within the context of this menu item.

Numerous configurations of a Knowledge Graph can be systematically exported and imported.

Preparation of schema for object transfer

For transfer of specific semantic elements - especially instances (individual objects, attributes and

relations of respective types) - and for controlling the export and import behavior, preconfigured

XML attributes are required.

Preparation of XML attributes

To generate the XML attribute types, the " Update " option of the Admin tool adds the Boolean

attribute types to the Knowledge Graph (if they do not yet exist in it) as follows:

• XMl-Schematransfer: Export all objects

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

339

• XML-Schematransfer: Export direct objects

• XML-Schematransfer: Do not overwrite

• XML-Schematransfer: Do not export type and all subtypes

• XML-Schematransfer: Do not export subtypes

These attribute types are required to select which elements and element types of the configuration

type Knowledge Graph found in this configuration should be exported or not. To do so, these

attribute types are attached to suitable object types using the Knowledge Builder and are given

suitable attribute values.

If nothing has been configured using these attribute values, then the export applies for every object

type, but not its objects. If an object or object type is exported, all attributes and relations directly

connected to it and their attribute or relation types respectively are also exported.

The configuration overview is a list providing an overview of all configuration types in a Knowledge

Graph that can, in principle, be transferred by means of the operations described in the following.

Able to be transferred by principle are

• individual, registered mappings of data sources (mappings of data sources)

• individual search fields configured by administrators and are user-defined (queries)

• individual data source access settings for use for mappings of data sources (data sources)

• the print configuration (print configuration)

• the set of all modules defined within the category Determination of view configuration (view

configuration determination)

• individual index filters (index filter)

• individual index configurations (indexes)

• the LDAP authentication (LDAP)

• the license for the Knowledge Graph (license)

• individual, registered collections of semantic objects (collection of semantic elements)

• individual, registered scripts (scripts)

• the working folder (organizing folder)

• the set of all modules defined within the triggers category (Triggers)

• individual subgraphs (Knowledge Graph) and

• the set of all modules defined within the rights category (access rights).

Display

The configuration overview also manages all configurations specifically intended for export.

Configurations intended for export appear as an expandable list of subitems of their respective

configuration types. If these configurations require other configurations for successful export, these

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

340

other configurations are, in turn, listed in the form of an expandable list of subitems of the

respective configurations. Configuration types without their own configurations are marked in

italics, configuration types with their own configurations are marked in bold and show the number

of configurations assigned to them in brackets. Configuration und configurations of each

configuration type are sorted in alphabetical order respectively.

Navigation

Expanding and collapsing lists of subitems in the configuration overview is carried out by clicking

on the triangle symbols to the left of the listed items. Alternatively, this can be implemented using a

context menu, which can be accessed by right-clicking a list item:

• Expand opens all directly listed subitems in the list item selected.

• Expand fully opens all directly and indirectly listed subitems in the list item selected.

• Contract fully collapses all listed subitems in the list item selected.

Adding/removing configurations

Add adds a configuration of the configuration type selected there to the configuration overview . If

more than one configuration exists in the Knowledge Graph for the configuration type selected,

then a selection option follows in a separate window. Selection is carried out there by either clicking

individually on the respective configurations in a list, or collectively by using the Select/deselect all

button.

Remove either deletes all configurations of the configuration type selected in the configuration

overview or the configuration selected in the configuration overview .

Add all adds all configurations existing in the Knowledge Graph to the configuration overview and

distributes them among the respective suitable configuration types.

Maintenance scripts

The … buttons can be used to access the file system of the operating system in order to load a

maintenance script (file name: [Maintenance script].kss). Maintenance scripts are produced on a

case-specific basis in the programming language Smalltalk and permit operations that cannot be

implemented using the predefined functions of the Admin tool or using the KEM or JS interfaces.

If a maintenance script loads, the file name of the maintenance script selected appears in the text

field positioned to the left of the respective button. If configurations are imported afterwards, then

the maintenance script is executed. If configurations are exported afterwards, the maintenance

script is also exported and only executed when these configurations are imported. The exact time of

execution of the maintenance script in relation to the import process depends on which of the two

… buttons was used to load it. It is either before the import process starts, or after the import

process finishes.

Export and import

Export exports the configuration selected in the configuration overview . An export as one single

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

341

archive file in the archive format tar or as individual files in a folder can be selected. The export

method is selected in a separate window:

• The free text fields File or Directory can be used to specify the name of the archive file (file

name: [Knowledge Graph].tar) or the folder respectively (no default name). The archive file or

the folder respectively is created in the same folder as the Admin tool. Alternatively, Select can

be used to open a saving dialog to define any name and location used to save the archive file or

the folder respectively.

Import imports configurations to the Knowledge Graph after confirming a prompt. An import from

one single archive file in the archive format tar or from individual files in a folder can be selected.

The import method is selected in a separate window:

• The free text fields File or Directory can be used to specify the name of the archive file (file

name: [Knowledge Graph].tar) or the folder respectively (no default name). The archive file or

the folder respectively is searched for in the same folder as the Admin tool. Alternatively, Select

can be used to access the file system of the operating system to select an archive file or a folder

respectively from any location.

• If the archive file or the folder to be imported respectively is selected, an overview of the

configurations it contains appears in an additional window. This overview can be copied to the

clipboard of the operating system (Copy to clipboard button) or be exported to any location as

a text file that can be given any name using a saving dialog (Save button). The Import button

starts the import process. The window also features a context menu of its own, which can be

opened by right-clicking:

◦ Search allows a string to be input in a separate window, and next appears in accordance

with the read direction in relation to the position of the cursor set by clicking the mouse.

The query is case-sensitive.

◦ Mark all marks the entire text. Alternatively, the mouse pointer can be used to mark any

text segment.

◦ Copy copies the selected text area to the clipboard of the operating system.

Save saves the configurations currently selected in the configuration overview for this Knowledge

Graph as an XML file. A saving dialog is used to define a name and the location of the XML file

(default file name: instruction.xml).

Load accesses the file system of the operating system to load a previously saved selection of

configurations for this Knowledge Graph from an XML file (default file name: instruction.xml).

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

342

3. View Configuration Mapper

3.1. Introduction

View configurations can be transported into a web front-end and be displayed here in a

straightforward way using the ViewConfiguration Mapper (VCM for short). To do so, the JSON

generated in the view configuration is transported to the front-end via the REST interface in i-views

and is translated into HTML there using mustache templates.

In addition, standard interactions such as content maintenance are supported directly, and the

option is provided to execute user-specific actions in the front-end that were defined in the view

configuration using VCM.

The ViewConfiguration Mapper is a single-page application that runs in the client’s browser. It uses

ractive (ractive.js.org) for an interactive and reactive application that is based on mustache

templates. (mustache.github.io/) .

Technical Handbook 5.8 - 3. View Configuration Mapper

343

http://ractive.js.org
https://mustache.github.io/

3.2. Interaction patterns

When creating user interfaces with the i-views web GUI framework, you will have to deal with at

least two different major design aspects: static and dynamic behaviour.

Static behaviour describes the way in which elements of the Knowledge Graph are displayed, how

they are ordered and filtered, mapped to widgets, arranged on the page and the like. Defining static

behaviour requires good domain knowledge as well as graphic designer’s skills.

Dynamic behaviour on the other hand side is closer to the work of a programmer as it describes

the flow of interaction, data manipulation, handling of state, refresh of display areas and so forth.

Describing dynamic behaviour often requires programming (i.e. scripting in JavaScript) and is more

difficult to capture. Usually an application developer must browse through several scripts and

configuration settings to understand the dynamic behaviour of an application.

Interaction patterns help to cope with the task of designing the dynamics of an application. At the

same time, they help users in understanding the behaviour of an application by providing well

known mechanisms which re-appear in many other applications.

Well known patterns include for example:

• navigation bar

• shopping cart

• wizards

• simple search

• etc.

This guide is not meant to be a comprehensive list of interaction patterns – such collections can be

found in literature. Though, we would like to show how selected patterns can be realized using the

i-views web GUI.

In the first part of this guide, we present those components that take part in the dynamic behaviour

– either by controlling interaction flow or by being influenced or controlled.

In the second part we discuss application state.

In the third part we show how selected patterns can be implemented with the i-views web GUI

framework.

3.2.1. Building blocks of dynamic behavior

3.2.1.1. Panels

Panels and views are mainly elements of static behaviour. As panel contents and visibility may

change over time, panels are frequently part of dynamic application behaviour as well.

Technical Handbook 5.8 - 3.2. Interaction patterns

344

First, panel contents depend on the type of panel: Layout panels contain other panels whereas

view panels contain views – either statically or dynamically determined.

All types of panels may carry one specific " domain model " at a given time. The domain model may

be an element of the Knowledge Graph, a list of elements, a (parametrized) search definition, or

search parameters. Panel contents (= domain model) are determined according to one of the

following cases:

Possible case Additional option Additional option

a) Resulting from an action

(see chapter below)

("Show result in panel" or

action within the same

panel)

+ e) Optional: computed by

a script (" Script for target

model ") in addition to a)

or b)

(+) f) Optional, but not

recommended in the first

place: computed by a

script (" Script for context

element ") in addition to

e) or c)
b) Passed through on

panel dependency

activation ("influences")

c) Passed through on panel activation cascade (see section

below)

d) No action or activation (contents may be determined

inherently by panel (sub-)configuration, e.g. 'Search' or

'Graph')

Alternative option

g) Optional, but not

recommended in the first place:

a configured fixed element of the

knowledge graph ("context

element")

Panels exist in the two states: visible (or active) and invisible (or inactive). The state of a panel can

be changed by activating or deactivating the panel. This process is initially triggered by an action

(see chapter below). After that, a cascade of further activations and deactivations is conducted

depending on panel structure and configured dependencies.

The following rules apply with respect to panel activation:

• Rule A ("static activation"): The main window panel of the application is always active when an

application starts (for the web frontend: application = view config mapper (VCM))

• Rule B ("action activation"): The execution location (location at which an action is triggered by

a user, e. g. by clicking on a button or onto a table row) determines which panel becomes

active when the action is executed

Based on A/B, there are subsequent activations based on these rules:

1. Influenced panels are activated (e.g. by relation "influences")

2. Panels with a specialized function (e.g. window title) are activated automatically by their

Technical Handbook 5.8 - 3.2. Interaction patterns

345

superordinate panel in the corresponding hierarchy (e.g. main panel or dialog panel)

3. Subpanels are activated

4. In the case of a panel with a changing layout: Sister panels of the active subpanel are

deactivated

5. Continue with 1. until no further panels can be activated (an integrated cycle test prevents

endless loops)

6. Make sure that all parent panels of activated panels are activated as well

Subsequent activations of step 1 - 3 pass the domain model (context) from one panel to the next. If,

for example, panel A shows the element "Mr. Meyer", then the activated subpanel B also shows

"Mr. Meyer". This default behaviour may be altered according to panel content rules (using scripts

or a fix context element; see cases e), f) or g) above).

The so-called " Activation mode " can be used to optimize the calculation of the panel contents in

step B (action activation) and in step 1 (influencing). This avoids the recalculation of panel contents

that are currently not displayed despite activation, because they are not visible (e.g. a shopping

basket). The available activation modes are as follows:

• The option " Refresh model and view " updates the panel contents only if panel is active

• The option " Refresh view only " updates the view contents (friends of Mr Miller), keeps view

state (table page 4) and domain model (Mr Miller)

• The option " Default " is the fallback setting when neither of the other options described above

were selected (update the panel contents and activate the panel)

3.2.1.2. Actions

Actions are the main driver for dynamic behaviour . They are triggered by user interaction in the

web frontend, i.e. whenever the user activates a button , menu item, or hyperlink. Actions may

change the state of the Knowledge Graph or they purely are of navigational nature - thus changing

only application states (e. g. current visibility of panels, user selections etc.).

The action definition (= configuration of the action) comprises the direct effect of the action as well

as the changes in display contents thereafter. The action effect depends on the selected action type,

parameters, and action target (panels) which will be determined on run-time.

Changes in display contents as consequence of an action are more complicated to understand. The

following rules apply:

1. The panels configured as panels to be activated ("show result in panel") are activated with the

domain model returned as action result – optionally modified by a script ("script for target

model") and optionally disabled by another script ("script for activation").

2. If the former rule does not apply, the panel configuration containing the action may determine

the panel to be activated ("show action results in panel"). This configuration is inherited along

the parent-child structure of the panels.

Technical Handbook 5.8 - 3.2. Interaction patterns

346

3. If the former two rules do not apply, the panel containing the action is activated.

4. In addition, panels to be activated or deactivated can be set by the action script using functions

"actionResult.addActivation()"and "actionResult.setCurrentPanel()"

After applying these rules, subsequent activations will be conducted according to the activation

rules in the panel section above.

3.2.1.3. Scripted actions

Action configurations with user-defined action scripts offer the broadest range of possible action

behaviour.

The i-views JavaScript-API allows full access to and modification of the Knowledge Graph –

considering the user’s access rights restrictions, of course. Additionally, the current state of the

application can be accessed and modified as well as the current view, session, user, and panel are

available to the action script. The following parameters or functions are provided:

• Action: the current action is the first parameter of the action script

• View: the view is the "this" object of the action script

• Session: can be accessed by "action.session()" or as shown below in the section about sessions

• Panel: can be accessed by "this.panelView()" – the panel is only available to the action if the

configuration option "panel contents required" is selected

3.2.1.4. Actions and views

Usually, the receiver of an action is the view the action is attached to. This is the case for all actions

that are configured as member of a menu of a view and for special actions directly configured for

the view, e.g. the “click action” of a table. When a menu is configured “stand-alone”, e.g. as a

navigation bar , all actions of the menu have their own view, which is of type “ActionView”.

3.2.1.5. Built-in actions

Built-in actions are executed whenever no (custom) action script is present. The action type

("action type") determines what will happen on action execution and what the result domain model

of the action will look like. Built-in actions are usually specialized to specific views and require

correct parametrization.

Action type " save " deals with form data from edit views, writing data back to the Knowledge

Graph. The web frontend will automatically detect the corresponding edit view to a given "save"

action if there is only one edit view visible. If you have more than one edit view visible at the same

time, use "view roles" to link an action to a corresponding view.

NOTE
An action can handle only one view role, whereas a view can be related to

different view roles.

Action type " read " has the same effect as no action type and the same effect as an empty action

Technical Handbook 5.8 - 3.2. Interaction patterns

347

script – it does nothing and the result domain model is the current domain model of the view.

Action type " select " has the same effect as action type " read " but the resulting domain model is

the element specified by the parameter " selectedElement " (set by the web frontend).

3.2.1.6. Transactions / Action Sequences

Actions modifying the Knowledge Graph automatically run a transaction ensuring a consistent all-

or-nothing modification. However, there are situations in which changes that the user makes to the

Knowledge Graph are split into a sequence of consecutive actions – especially when user

interaction is necessary to determine further action parametrization or to abort of the process so

far.

Example: A new object needs to be created within a dialog. To allow the user aborting the creation

of the new object by pressing a cancel button of the dialog, the dialog invoking action starts a

transaction, the cancel button cancels the transaction (action type: "Cancel") and a save button

commits the transaction.

In order to encapsulate a sequence of actions into one transaction, you mark the first action with

"Transaction - begin " and the final action with "Transaction - commit ".

Caution:

• Risk of data loss caused by never-ending transaction. When actions are configured with

"transaction - begin" only, a single never-ending transaction will be created. A never-ending

transaction has the potential to grow continuously once started, recapturing all actions since

the begin of transaction, until the system first becomes slower and then breaks down

completely. Additionally, changes never will be saved since saving is triggered at the end of a

transaction only in order to keep up consistency.

To avoid these effects, make sure to set a " transaction - commit " as soon as the sequence of

actions is complete enough for achieving the required state.

Only set an action to "transaction - begin" if you also set a subsequent action to " transaction -

commit ".

• Risk of losing data integrity in case of repetitive transaction execution

Transactions must not be executed on elements with variable order.

The transaction history of a transaction records which action is executed on which semantic

element of a particular order. When executing a further action within a transaction, the transaction

history with its fixed order of actions is repeated and the new action is supplemented to that

history.

If the order of semantic elements varies when the transaction is repeated (e. g. by creating

elements by means of a script or by determining elements executing a query), this results into a

misalignment of the order of actions to their respective element of a particular order, leading to

Technical Handbook 5.8 - 3.2. Interaction patterns

348

actions being processed on wrong elements.

When processing semantic elements in a transaction sequence, therefore make sure that the order

of elements keeps deterministic. To keep a deterministic order, the elements need to be sorted

after a fixed property.

Example: An action A executes a query for meals. The search result is “Pudding” and “Fish”. The

action additionally creates two rating objects and links the ratings to “Pudding” and “Fish”. The user

is enabled to write a comment (attribute) on each rating. The next action B saves the comments at

the rating objects and ends the transaction. The execution of action is as follows: A , A + B . Action A

therefore is executed twice. An important aspect is the deterministic order of found meals: since

the result of a query has no specific order, the assignment of the first comment to “Pudding” or to

“Fish” happens by coincidence. Therefore, the query result needs to be assorted first to ensure a

correct assignment of first and second rating object to the relevant meal. Only this makes it possible

to prevent the pudding from receiving the rating “Very tender, but too many fish bones“.

The transaction commit can also be brought about dynamically via the " setTransactionCommit() "

script function.

If the transaction is to be cancelled, you can achieve this by means of an action of the " Cancel "

type. Cancelling means that all previous changes to the Knowledge Graph conducted within the

transaction are undone. The " setFailed() " script function can be used to dynamically initiate a

cancellation.

As a transaction is always coupled with the duration of a session (see below), a transaction is

cancelled automatically when the session ends in which the transaction was started.

If, for example, you open a dialog at the start of the transaction and the dialog is closed before the

transaction was completed, the transaction is cancelled automatically. This does not apply to

dialogs that are opened while a transaction is already running: opening a dialog creates a new

session on the session stack which is independent from the currently running transaction. Dialog

sequences (one dialog is closed, and another dialog is opened immediately) do not interrupt the

transaction either.

NOTE
Only one transaction can be processed at once. A transaction within another

transaction is not supported.

3.2.1.7. Recall actions

Sometimes an action needs to start a sequence of actions and after the last action in the sequence

wants to come back to the original context for finalization. This mechanism can - but does not have

to - be combined with a long-running transaction as described above.

The desired behaviour can be achieved by configuring a recall script ("Script (recall)") which is

activated when calling the function "action.recallMarkedAction()" in the last action of the sequence.

The recall script is then executed with the same environment (view, action, parameters) present

when the action was first executed.

Technical Handbook 5.8 - 3.2. Interaction patterns

349

The environment necessary to run a recall script is stored on the current session and will thus be

dropped on session end. The function "action.dropMarkedAction()" allows removing the

environment from the session in the case that the whole sequence of actions shall be aborted.

3.2.1.8. Sessions

In sense of the view configuration, a session serves as temporary storage for variable values which

can be read from and written to within scripts of the view configuration. This in turn allows

representing the current state of an application.

Sessions are run-time objects, instantiated while running an i-views web application. Sessions form

a stack. The first session lasts the entire duration of the web session; that is from the time the

application is called until the respective browser window is closed. You can always call up the first

session by using function " $k.Session.main() ".

Opening a dialog generates a new session on the stack. The closing of the dialog removes the

corresponding session from the stack again.

The activation of panels, which are marked with a " Session boundary ", also generates a new

session on the stack which lasts until the panel is deactivated. The element of the new session is set

to the current element of the panel and can be used in the future by using the " element() "

function on this session.

Use the function " $k.Session.actual() " to access the top session of the stack.

Values are written to a session variable by means of " $k.Session.actual().setVariable() " and are

read from a session variable by means of " $k.Session.actual().getVariable() ".

3.2.2. Application state

The application state comprises the activation states of the following:

• panels

• panel contents

• session stack

• session variables

Actions allow application designers to change application states. Unfortunately, as explicated above,

there are numerous options and parameters that influence especially panel activation and contents.

As a result, the desired effect is often not achieved or is spoiled by unwanted side effects. To make

applications’ dynamic behaviour simpler to understand and maintain, it is therefore necessary to

use clear, modular building blocks keeping action effects as local as possible.

Here, the session stack together with session variables plays an important role by providing a local,

temporary context to such a building block.

Technical Handbook 5.8 - 3.2. Interaction patterns

350

System architecture considerations

There are two main players in the i-views web GUI framework: a JavaScript application running in

the web browser and the i-view REST interface running at server-side.

As the REST interface is stateless by design, the application state resides completely in the front-

end (web browser).

At the same time, application logic (static and dynamic behaviour) is exclusively available in the

back-end (Knowledge Graph) and applied when calling the REST API.

As a result, all necessary application state must be provided by the front-end when calling the REST

API. Usually this is done automatically by the framework. For example, the session stack is always

being provided and is thus available to back-end scripts.

For efficiency reasons, only the state of the view an action is attached to will be provided when the

action is executed. Sometimes this is not sufficient and configuration options like " panel contents

needed " have to be set.

3.2.3. Interaction patterns and recipes

For the needed information about usage and rationals of interaction patterns for your user

interface, see ui-patterns.com first. The website describes the needed patterns, whereas the

implementation of the very solution is supplemented in here.

The following subchapters show recipes on how to implemnt the i-views specific solution of certain

patterns for user interfaces using the view configuration mapper.

3.2.3.1. Navigation bar

Similar to the visualization of an "Alternative" view, panel tabs with a navigation bar can be used.

The advantage of panel tabs with navigation bar in comparison to the alternative: panel tabs can

contain further sub panels, allowing configuration of more specific layouts as well as using all of the

panel related functions a view doesn’t come with (view models, session boundaries, interaction

etc.).

In order to configure panel tabs with a navigation bar, proceed as follows:

1. Configuration of panel structure:

◦ Create a panel containing a menu residing on top or at the side of the screen.

◦ Depending on the intended layout of the navigation bar menu, select menu type "Tool bar"

for horizontal layout or "List" for vertical layout.

◦ Create a button for each section to be displayed.

◦ Create another panel of type "Switching Layout" that covers the remaining part of the

display area.

◦ Create a sub-panel of this panel for each section and mark each panel as "Session

Technical Handbook 5.8 - 3.2. Interaction patterns

351

http://ui-patterns.com/

boundary" (check box set to true).

2. Linking action to panel:

◦ Link each button (= action) to the corresponding section panel using the relation "Show

result in panel". This causes a panel to be activated when its button is pressed.

◦ Link each button (= action) to the panel of the menu in which the action itself is located in.

This causes an update of the button styling when the button is pressed.

3. Creating style for action:

◦ For a better usability, create a style "buttonActive" that gives a visual indication of the

button selection. First create the style at one action and then reuse (assign) the style to the

other actions as well.

◦ Add the following script at class (script) to each button:

function additionalPropertyValue(element) {
 var isActive = isActiveForSession($k.Session.actual(), this
.getPanelsToActivate())
 return isActive ? "yourButtonClass buttonActive" :
"yourButtonClass"
}

function isActiveForSession(session, panelsToActivate) {
 var sessionBoundaryActivatedConfig = session.
panelConfiguration()
 var isActive = panelsToActivate.indexOf
(sessionBoundaryActivatedConfig) > -1
 if(!isActive && session.parent()) {
 isActive = isActiveForSession(session.parent(),
panelsToActivate)
 }
 return isActive
}

Replace "yourButtonClass" by the name of the class that is intended to be used for the

button.

4. Defining the CSS class for the style

For the style, add a class for the active button to the Options Resource of the REST service of

the "viewconfig" application.

To do so, use the organizer in the Knowledge Builder to navigate to "TECHNICAL" > "REST". In

the "REST Service" object list on the right side, select the service with the id "viewconfig". In

the detail editor of the service, select "vcm/options" and edit the entry for "CSS".

Technical Handbook 5.8 - 3.2. Interaction patterns

352

Example: let’s assume a class ".navigation-button" is already in use for the buttons. Then a

further class ".navigation-button.buttonActive" is needed for styling of the active state of the

button:

.navigation-button {width: 200px;}

.navigation-button.butttonActive {background-color: red !important;}

5. Refresh interfaces of REST and VCM:

◦ Update REST-Service and ViewConfig and reload the web frontend (since panels have been

created).

Result: When clicking on a button, the representative panel is shown and the buttons is

styled with an active style.

3.2.3.2. Dialog (modal)

Configure a dialog panel. Make sure the panel has proper title and a menu with a button labelled

"X" to close the dialog. Check the "close panel" option for the close action. Configure the body part

of the dialog as desired. Optionally, configure a footer panel with menu buttons "Ok" and/or

"Cancel" – both with "close panel" option checked as above.

Finally, configure an action to open the dialog. Connect the action to the dialog panel using the

relation "show result in panel". Make sure that the action result is the domain model you want to

present in the dialog.

3.2.3.3. Wizard

A wizard is used to guide the user throughout an input process that contains several steps . The

following wizard example configuration is as follows:

• An action button returns the semantic element to be edited or created and displays it on

another panel or opens a dialog. While doing so, the action begins a transaction so that editing

can be aborted anytime.

Technical Handbook 5.8 - 3.2. Interaction patterns

353

• Within the panel or dialog, each step is presented on a separate subordinate page.

• A sub configuration displays progress information and is equipped with

"Back"/"Forward"/"Save"/"Cancel" buttons. In case of a dialog, the dialog footer panel is

suitable for such a purpose.

Configure a panel of type " switching layout ". Each step of the wizard is then presented in a sub-

panel of this panel. Embed the switching panel into a dialog panel or make sure that there are no

other means of navigation despite "forward/save", "back", and "cancel". Configure a (footer) panel

below the switching panel with navigation buttons "forward" and "back".

The wizard operates with an edit view in each sub panel of the switching layout. The superordinate

panel (e. g. dialog panel) is activated by means of an action starting a transaction : when the wizard

is abandoned without saving ("Cancel"), the changes are aborted. Each step initiates an

intermediate save action ("Forward"/"Back") within the transaction.

NOTE

Each sub panel of the switching layout must contain an edit view. Otherwise the

action buttons won’t operate. If introductory text is needed for a step, it therefore

cannot be placed solely in a separate sub panel without edit view.

This wizard can be used with either the buttons placed in the same panel as the

edit view or in a separate panel different from the edit view (e. g. dialog footer

panel)

Register a script with the key " wizard ":

$k.define([], function () {

 function currentPageIndex() {
 var index = $k.Session.actual().getVariable('currentPageIndex')
 if (!index) {
 return 1
 }
 return index
 }

 function numberOfPages() {
 var switchingConfig = $k.Session.actual().panelConfiguration()
 var switchingPanel = $k.PanelConfiguration.from(switchingConfig)
 return switchingPanel.subPanels().length
 }

 function nextPage(view) {
 var currentPage = $k.PanelConfiguration.from(view.panelView
().configurationElement())
 var switchingPanel = currentPage.parent()

Technical Handbook 5.8 - 3.2. Interaction patterns

354

 var pages = switchingPanel.subPanels()
 var currentIdx = pages.indexOf(currentPage)
 var nextPage = null
 if (currentIdx < (pages.length - 1)) {
 nextPage = pages[currentIdx + 1] // index based on
start value 1
 $k.Session.actual().setVariable('currentPageIndex', currentIdx + 2)
 }
 return nextPage
 }

 function previousPage(view) {
 var currentPage = $k.PanelConfiguration.from(view.panelView
().configurationElement())
 var switchingPanel = currentPage.parent()
 var pages = switchingPanel.subPanels()
 var currentIdx = pages.indexOf(currentPage)
 var previousPage = null
 if (currentIdx > 0) { // 0-basiert
 previousPage = pages[currentIdx - 1] //
index based on start value 1
 $k.Session.actual().setVariable('currentPageIndex', currentIdx)
 }
 return previousPage
 }

 return {
 currentPageIndex: currentPageIndex,
 numberOfPages: numberOfPages,
 nextPage: nextPage,
 previousPage: previousPage
 }
})

This script contains the functions as follows:

"currentPageIndex()", "numberOfPages()", "nextPage(view)" and "previousPage(view)" returning

the current page, the number of pages, the next page and the previous page. Use this information

for the action, label, and enablement scripts of the "forward" and "backward" buttons.

For the footer panel, add a text view for displaying the pages and a menu. At the menu, add an

action for the forward button: to save intermediate changes, select the action type "Save".

Label script for " forward " button:

Technical Handbook 5.8 - 3.2. Interaction patterns

355

function label(element) { var text var wizard = $k.module('wizard') var
currenPageIndex = wizard.currentPageIndex() var numberOfPages = wizard
.numberOfPages() text = "Save" if (currenPageIndex == numberOfPages)
return text text = "Forward" return text}

Action script for " forward " button - e. g. action type "Save" with "Script (after action)":

function postAction(element, action) { var nextPage = $k.module('wizard
').nextPage(this) if (nextPage == null) { action.setClosePanel(true)
action.setTransactionCommit(true) } else { action.result
().activatePanelConfiguration(nextPage) }}

If the last step is reached (= last sub panel visible), the "forward" button acts as a save button and

commits the transaction - leading to all changes done in the dialog being saved. Committing the

transaction will also save all intermittently saved changes that happend during the transaction.

Action script for “ backward ” button - e. g. action type "Save" with "Script (after action)":

function postAction(element, action) { var previousPage = $k.module(
'wizard').previousPage(this) if (previousPage !== null) action.
result().activatePanelConfiguration(previousPage)}

Enablement script for “ backward ” button:

function actionEnabled(element) { var wizard = $k.module('wizard') var
currenPageIndex = wizard.currentPageIndex() return currenPageIndex > 1
// index based on start value 1}

Add a label to the text view in the footer panel showing the current page number and total for

progress indication. Provide a label script as follows:

function label(element) { var wizard = $k.module('wizard') var
currentPageIndex = wizard.currentPageIndex() var numberOfPages = wizard
.numberOfPages(); return currentPageIndex.toString() + ' / ' +
numberOfPages.toString();}

Configure further functionality for each step of the wizard as needed.

Technical Handbook 5.8 - 3.2. Interaction patterns

356

3.2.3.4. Transaction

Configure the first action as "transaction: begin " and the final action as "transaction: commit ".

Every in-between action should have an alternative action allowing users to abort the transaction.

Configure abort actions with "action type: abort ".

To clearly indicate the scope of the transaction use "Dialog" or "Wizard" patterns.

3.2.3.5. Guided input

Attach a menu to the property configuration for which you want to provide input guidance. Add an

action to the menu and configure the action to do whatever is necessary to initiate the process.

Configure a "Script (recall)" that will be executed after the guided process has finished:

function customActionRecall(action, actionResult) {

 this.setNewValue(actionResult.element());

 actionResult.activatePanel(this.panelView());

}

In this script, the input value will be written to the property input field (function "setNewValue()")

and the action result will be equipped with the contents of the current panel which is necessary as

we otherwise might loose other input fields’ values on the same panel.

Connect the action to a dialog panel or a sister switching panel using the relation "show result in

panel". Configure the targeted panel to guide through the process of input value determination (see

e.g. patterns "wizard" or "dialog" above).

The final action of the process must invoke the recall script and make sure that possible dialog

panels are closed. Additionally, the input field’s value must be passed to the recall script e.g. by

setting the action result accordingly.

function customAction(action, actionResult) {

 actionResult.setModel(action.selectedElement())

 action.recallMarkedAction()

}

Provide the user with the ability to abort the process. The aborting action must remove the recall

action from the session:

Technical Handbook 5.8 - 3.2. Interaction patterns

357

function customAction(action, actionResult) {

 action. dropMarkedAction()

}

3.2.3.6. Search and Filter

Searching for a specific element of the knowledge graph is often a complex task that has to be

supported by various user interface elements and functionalities. First, the search has to be

parametrized to the user’s needs. After initiating the search, the results are visualized in a way that

allows the user to distinguish between different elements and finally select one or more. Optionally,

further filtering of search results is needed.

In any case, the configuration of a search compoundis required, which on the one hand defines the

search configuration to be used and on the other hand brings together the states of all the views

involved, which are usually spread across several panels.

3.2.3.6.1. Parameter

Parameters are entered using form inputs. In order for the user input to be processed in the

appropriate search parameters, the form input must be configured as part of a search compound as

described in the chapter on form input. Web applications often have a globally available search with

a single parameter in a header bar that is always visible. More complex parameterized search

functionality requires more space for the parameters and is therefore only made visible when

required. In any case, it has proven to be advisable to place the parameter form inputs on a

separate panel. === Triggering the Search

The search process can be triggered as soon as the user has specified all the required search

parameters. If there is only one parameter, it can be triggered directly by an "Accept action" on the

form input. Otherwise, a separate button is required. The action for triggering the search can either

have the action type "Script" or no action type. It is important that the required values from the

form input are available for the parameters when the search is triggered. To do this, the action must

be executed on a view that is located on the same panel as the form entries for the parameters. The

action for triggering the search must also activate the panel with the view of the search result or

the panel with the view for filtering the search result. === Filtering

The user can use a facet view to further narrow down the search result. To do this, the facet view

must be part of a search compound. An interaction configuration of the facet view is not required. If

the facet selection is changed, the panel is automatically recalculated with the updated facet

selection. In order for the search result view to be adapted to the facet selection, the panel of the

facet selection must influence the panel with the view of the search result. This is of course not

necessary if both are on the same panel. For performance reasons, however, it is recommended to

configure separate panels. === Search result

Various views can be configured as output in the search compound to display the search results:

Technical Handbook 5.8 - 3.2. Interaction patterns

358

• Table

• Graph

• Layout

• Alternative

In the case of Layout and Alternative, a "Script for domain model" is required, which distributes the

elements of the search result to the subviews:

function domainModel() {
 var subModels = []
 try { subModels = this.domainModel().elements() } catch (error) { }
 return subModels
}

3.2.3.7. Mirrored State

If the user navigates to a new panel, the views contained on it are recalculated on the basis of an

"empty" base state. If you want to start at this point with a state that the user has already created

by manipulating the views of other panels, you can configure the corresponding views as the source

and target of a "Mirror compound".

Example: Panel A is located on the main page of the application and contains a form input F1 for a

global search. Panel B contains the search result and also shows the entered search parameter in a

form input F2. If you connect F1 via the "Mirrored from" relation and F2 via the "Mirroring from"

relation with a mirror compound, the state of F1 is mirrored when F2 is initialized. Mirroring is

unidirectional, but can also be configured bidirectionally if required. In this case the views involved

are both "Mirroring" and "Mirrored".

3.2.3.8. Customized relation target dialog

The standard relation target dialog provides default functionalities:

• A list of the possible relation targets displayed by their primary name. Clicking onto a list entry

closes the dialog and creates a relation to the selected target.

• A dropdown form entry allows selection of relation target types. A "New" button offers to

create a new object of the selected type to be used as relation target.

• A "Cancel" button closes the dialog without further action.

However, it might be the case that the dialog does not fit the needs for every web frontend. For

example, the table might need to show other properties than the primary name or the dialog offers

too much functionality - e. g. creating new objects of a type by an average user must be prohibited.

A customized relation target dialog can be created easily as follows:

Technical Handbook 5.8 - 3.2. Interaction patterns

359

1. At the property configuration for the relation, add a custom menu.

2. For the menu, select the menu type "View specific actions".

3. Add an action to the menu, select the action type "Choose relation target".

4. Create a new view role for the action.

5. In the ViewConfig Mapper tree, select the node "Dialog panels" and create a new dialog. In the

dialog, choose the template " RelationTargetDialog ".

6. A follow-up dialog asks for a name which will be used to creating the configuration names for

all components of the dialog panel, enhanced by the suffix ".relationTargetDialog".

7. Add the previously created view role to the dialog panel: this ensures that the action (choosing

a relation target) only takes place in the specific configuration the role is assigned to.

8. Adjust the ViewConfig elements (table, menu actions etc.) according to your needs. For

example, if a "New" button is not needed, remove it. If the both type selection and "New"

button are not needed, remove the whole corresponding footer panel.

Assigning a new default dialog for relation targets

The standard relation target dialog already is preconfigured as a dialog panel of the View

Configuration Mapper. It has the default view role "RelationTargetDialog" and it is displayed when

selection of a relation target dialog is initiated by clicking onto the search button "+" of the property

view.

By re-assigning the view role "RelationTargetDialog" to a customized dialog panel, this panel can be

used as default instead.

Tipp: When using a default dialog panel with the role "RelationTargetDialog", no custom action is

needed at the property edit.

Technical Handbook 5.8 - 3.2. Interaction patterns

360

3.3. Configuration

The usual procedure involves activation of the ViewConfiguration Mapper components in the

Knowledge Graph and the creation of a modification project, into which vcm is integrated. In order

to modify the look & feel, making changes in CSS alone may be sufficient. vcm supports LESS

(lesscss.org/). The templates can also be changed or supplemented for more complicated

modifications.

Grunt (gruntjs.com/) is used as the TaskRunner, and as a Package Manager Bower (bower.io/). More

detailed information and a list of the Grunt tasks is available in the README.md in the project.

3.3.1. Frontend configuration

The configuration of the web frontend is done by means of the vcm/options resource at the

viewconfig REST service:

There are two phases for which the options can be set:

1. Before authentication

2. After authentication

By default, only phase 1 is configured. If options need to be configured for the time after

authentication (e. g. setting the frontend language depending on the user account), a further

options resource must be created and then linked via " Optionen nach Authentifizierung ".

3.3.1.1. Options script

User-defined options

Technical Handbook 5.8 - 3.3. Configuration

361

http://lesscss.org/
http://gruntjs.com/
http://bower.io/

User-defined options can be set using the function setCustomOption at the VCMOptions object.

Option Standard

value

Description

disableUnloadWarning false Deactivates the warning when leaving the site (e. g. via

the browser back button or by clicking on an external

link)

history.enabled true Activates/deactivates the rewriting of the URL

(bookmarking)

history.initialContent true Activates/Deactivates the initial loading of panel

content

Example:

function configure(options, request) {
 options.setCustomOption('disableUnloadWarning', true)
}

Translations

Translations can be set using the function setTranslations at the VCMOptions object. When doing

so, it is important to use " base " as property name and not the language abbreviation " en " (see

following example). If this is not being considered, the standard translation texts for English are not

found anymore.

Key Description

login.form.message Shows a a message within the login mask

login.form.title Title of the login mask

login.form.submit.label Label of login button

login.form.username.label Label for user name text field

login.form.username.placehold

er

Placeholder for user name text field

login.form.password.label Label for password text field

login.form.password.placehold

er

Placeholder for password text field

Example:

function configure(options, request) {
 options.setTranslations({

Technical Handbook 5.8 - 3.3. Configuration

362

 de: {
 login: {
 form: {
 message: 'Bitte benutzen Sie ihr E-Mail als Login'
 }
 }
 },
 // base is the property name for english translations
 base: {
 login: {
 form: {
 message: 'Please use your e-mail as login'
 }
 }
 }
 }
}

3.3.2. View configurations for the View Configuration Mapper

The View Configuration mapper interprets all view configurations created in i-views. However, there

are several differences between processing in the Knowledge Builder and in the View Configuration

Mapper, which this chapter will discuss.

3.3.2.1. Panel configuration

If the web application is supposed to be based on a panel configuration, the application must be

linked to the panel configuration.

To do this, an object of the main window panel is appended to the application. All other panel

configurations can then be appended to this object. Additional panels (e.g. dialog panels) are

optional. However, if they are used in the web front-end, they must be connected to the application

in this way. It does not suffice to merely define it e.g. as a target window of an action because it

would not be taken into account for the display of the application otherwise.

3.3.2.2. Apply in

In order to determine a suitable view configuration for a semantic element, it is necessary to look to

Technical Handbook 5.8 - 3.3. Configuration

363

the type of the element and to the context in which the view configuration is to be used. This

context is determined via the “apply in” relation. If a view configuration is to be used in vcm, it

should therefore be ensured that the relation was sourced accordingly.

3.3.2.3. Style

To influence the display of a view, it is possible to use so-called “styles”. They can be used, for

example, to configure whether a heading is to be displayed, or whether data should be highlighted

in a specific way.

The setting for the styles for the display in the web front-end by means of the view configuration

mapper are available on the “View configuration mapper” tab. The prerequisite for this is that a

view configuration mapper component has been installed in the KB.

There are multiple setting options for the styles (see figure):

Technical Handbook 5.8 - 3.3. Configuration

364

There are a number of Style elements that are already defined in i-views. The following section

explains what these elements are and how these style elements are created in the Knowledge

Builder so that they can then be linked to individual elements of the view configuration of an

application.

In the view configuration, you first have to select the element with which one or more style

elements are to be linked. Depending on the type of the view configuration element, various tabs

are available for configuring the styles (“Actions and styles” → “Styles” or just “Styles”). Once you

have chosen this tab, you can either define a new style element or link and existing style

element . When defining a new style element it is first necessary to assign it a configuration

name. You can then configure it on the right side of the editor.

The following section describes the individual configuration options for style elements:

Technical Handbook 5.8 - 3.3. Configuration

365

Name Attribute

type

Configuratio

n type

Description

class String CSS class Styling through specification of a predefined CSS class i

the CSS of the ViewConfiguration Mapper or in the

“viewconfigmapper.config.GET” script

class (script) Reference to

script

Definition of CSS styling in the form of a script return

value

collapsed Boolean

dateFormat String

datetimepic

kerOptions

Reference to

script

downloadRe

quest

String

editCustom

Buttons

Boolean

editStageTo

ggle

Boolean

extra Reference to

script

Can be used to create a user-defined behavior for an

action with the help of the script and render mode.

Example: A script that returns URL attribute values is

used with the “external” renderMode and with a

parameter specification in the “href” line to define an

external web link for the action of a button.

extra String

extraDateFo

rmats

String

hideFilters Boolean Hides the table query filters in the table header

hideLabel Boolean Hides the label of a view configuration element (label

on the tab of an alternative remains)

href String Hyperlink Link to a website or folder path as per the HTML

standard. Alternatively, you can enter a parameter

name in curly brackets which is then equipped with a

URL under “extra” by means of a script.

localAction Boolean Limits the effect of an action to the current panel

numberFor

mat

String

readOnly Boolean Properties The properties of the view configuration element can

only be read in the application, not edited. That is why

no “Edit button” is displayed.

Technical Handbook 5.8 - 3.3. Configuration

366

Name Attribute

type

Configuratio

n type

Description

renderMode Selection Property See the “RenderModes” sub-chapter

renderMode String Property See the “RenderModes” sub-chapter

style String Here you can define CSS properties that are only used

for those views that are linked to this style.

style Reference to

script

Here you can use a script to define CSS properties that

are only used for those views that are linked to this

style.

target String

tooltip String Context help Note that is displayed during mouse hover

vcmDetailed Boolean

vcmMarkRo

wClick

Boolean If activated clicks on a table row will display them as

marked. This style has to be linked to a table.

vcmPluginCa

lendarOptio

ns

Reference to

script

VCM plugin Default values that can be defined by script, e.g. start

date when the calendar view is called

vcmPluginC

hartDataCol

umns

String VCM plugin

vcmPluginC

hartDataMo

de

String VCM plugin This is used if the data of the underlying table is to be

read out either by row (“rows”) or by column

(“columns”) for the chart to be displayed; if not

specified, the default data mode is “rows”

vcmPluginC

hartHeight

String VCM plugin Absolute height of a chart in pixels (e.g.: “300px”)

vcmPluginC

hartLabelCol

umn

String VCM plugin

vcmPluginC

hartOptions

Reference to

script

VCM plugin Script that can be used to control the display of

components of the chart: Display of keys, scaling of

axes etc.

Technical Handbook 5.8 - 3.3. Configuration

367

Name Attribute

type

Configuratio

n type

Description

vcmPluginC

hartType

Selection VCM plugin Selection options for the “chart” RenderMode

(applicable for tables):

• bar

• doughnut

• line

• pie

• pole

• radar

vcmPluginC

hartWidth

String VCM plugin Absolute width of a chart in pixels (e.g.: “380px”)

vcmStateCo

ntext

Selection Selection options:

• global

• page

• none

vcmStateCo

ntext

String

vcmTruncate String

NOTE

For each view configuration element separate styling possibilities are available

which are described in detail in the respective sub chapter. For example, a

properties view can be further adjusted regarding the layout of the labels and their

values using specific parameters.

3.3.2.3.1. Definition of style attributes

You can define your own style attributes in addition to those predefined by the application.

You can create the attributes of the styles under View configuration → Attribute types.

To ensure the style attribute is also written to the JSON output, an addition must be added to the

attribute in the schema. You get to the schema by clicking on “Schema” in the menu of the

attribute. In the schema, you then have to maintain the attribute “Property key” and enter the

name of the attribute there.

“Objects of style” must be entered in this “defined for” field. You add an entry by clicking on the

Plus icon (“Add” button). Once you have entered “Style” as the search term, a list appears from

which you select the entry “Style” (view configuration). Following that, you have to select the

additional tab page in which the new style element is supposed to be displayed.

Technical Handbook 5.8 - 3.3. Configuration

368

In the JSON output, the key and value pairs (StylePropertyKey → Style property) are output as an

array under additionalConfig .

Example

Configuration of the type String for style value

Configuration of the type Additional string for style value

Configuration of the type Display banner attribute

Technical Handbook 5.8 - 3.3. Configuration

369

Configuration of the object One style configuration of the type Style

JSON output:

"properties": [{
 "values": [{ ... }],
 "label": “First name",
 "additionalConfig": {
 "jsonKey1": ["jsonValue1"],
 "jsonKey2": ["jsonValue2"],
 “Display banner": ["true"]
 },
 "viewId": "ID34304_461524079",
 "schema": { ... }
}

3.3.2.3.2. Render modes

RenderModes can be used to apply additional predefined style properties.

Technical Handbook 5.8 - 3.3. Configuration

370

RenderModes are available in the styles in the view configuration on the “view configuration

mapper” tab, once via drop-down menu and additionally via input line. Here the freely selectable

value entered via the input line takes precedence, which means that it overwrites a value that was

selected via drop-down.

The following renderModes are available in the drop-down menu:

renderMode Explanation Applicability

breadcrumb Displays the hierarchy and path navigation Hierarchy

calendar Displays date information in a calendar view; the basis for this is

a table containing the attributes of the value type time , date ,

date and time , flexible time or interval with the date and time

type.

Table

chart Displays the data from a table in a chart. Under

vcmPluginChartType you can select the type of chart. Under

vcmPluginChartOptions you can use a script to format the chart

more precisely, e.g. axis scaling, display of keys etc.

Table

download Link to file download Action

external Generates an external link in connection with href; can be used,

for example, in combination with icon and tooltip . For dynamic

links, an identifier in curly brackets can be used in the href

attribute. If the extra script provides a JavaScript object with a

value for the identifier, this is entered automatically. You can, for

example, trigger a Google search for the name of the current

object in the following manner: href : https://www.google.com/

search?q={search} extra script

function additionalPropertyValue(element,
context) {
 return { search: element.name() }
}

Action

html Shows the string without masking String property

markdown Converts text sections equipped with mark-ups into text with

highlights by means of in-line formatting

Text or string

attribute

Technical Handbook 5.8 - 3.3. Configuration

371

https://www.google.com/search?q={search}
https://www.google.com/search?q={search}

renderMode Explanation Applicability

medialist Displays the table entries as an HTML text link; displays the

element with their icons

Table

multiline Necessary to display the input field for a string in multi-line view

in an edit view.

Property

nolink The relation target is not linked, but instead shown only as text. Relation

property

pre Displays the string as a pre-formatted and scrollable text String property

timeline Display of a data record in the form of a timeline; can be

arranged vertically or horizontally.

Script-

generated

view in group

translations Displays language variants (with the relevant flag icons in case of

the string attribute).

NOTE

This render mode cannot be combined with

another Style containing the render bode

"Multiline".

Property

The renderModes available in the input line are related to Bootstrap. They include the following

renderModes, for example:

renderMode Explanation Applicability

email Creates a link to the email address String property

Technical Handbook 5.8 - 3.3. Configuration

372

renderMode Explanation Applicability

image Displays an icon on the action Action

3.3.2.3.3. Usage of CSS

The view configuration mapper supports the use of Cascading Style Sheets (CSS). In addition to that,

it includes a predefined set of CSS properties to which you can refer in the style of the views. It also

offers you the option to define your own CSS properties.

The predefined set is based on the CSS classes defined the front-end framework bootstrap

(getbootstrap.com/docs/3.4/css/). To use these, they can be referenced in a style using the class

property (e.g. "h1" as the value for a heading).

Separate CSS properties can be defined using the following values:

• The attribute style or style (script) is available on a style. Here you can define a CSS that

applies only to views to which this style is linked.

• CSS properties that are supposed to apply to entire applications can be defined in the script

“viewconfigmapper.config.GET.” If separate CSS classes are defined there, you can access these

in the styles via the class attribute.

3.3.2.4. Execute in

When you create a user-defined action, you can also fetch the relation “execute in.” This has the

effect that the returned data is not applied to all VCM contents but that the change only relates to a

certain view. This view must be set as the relation target of “execute in.”

Technical Handbook 5.8 - 3.3. Configuration

373

https://getbootstrap.com/docs/3.4/css/

3.3.3. Login configuration

3.3.3.1. JWT authentication

3.3.3.1.1. Modify the login form

The login form can be modified using the following translation key:

Key Description

login.form.title Title of the form

login.form.message Descriptive/welcome text

login.form.username.label Label of the user name field

login.form.username.placehold

er

Placeholder of the user name field

login.form.password.label Label of the password field

login.form.password.placehold

er

Placeholder of the password field

3.3.4. The View Configuration Mapper component

To use the ViewConfiguration Mapper, activation of the corresponding components first in the

Admin tool is a prerequisite.

Technical Handbook 5.8 - 3.3. Configuration

374

The component ensures the specific properties required are created in the view configuration and

also creates all REST services that the vcm requires.

NOTE

All requests are preconfigured so that they expect an authentication. The attribute

Password and Login is required for an authentication on the object of the user,

with its schema generated by the component. Linking the user in the settings for

the Knowledge Builder is not necessary for this.

These are, specifically:

• action

Technical Handbook 5.8 - 3.3. Configuration

375

• blob

• config

• element

• topicIcon

• viewconfig-static

“action” and “element” perform all communication between the ViewConfiguration Mapper and i-

views. “blob” and “topicIcon” are responsible for delivery of the media data within a Knowledge

Graph. “viewconfig-static” defines the area of the REST bridge in which the VCM front-end files

(scripts, templates, etc.) are found. “config” is called during the initialization of vcm to configure

basic configurations (such as language and start topic). All REST services are preconfigured so that

modifying them is not always required. However, modifying the “config” request is recommended:

function respond(request, parameters, response){
 //Personalize your viewconfigmapper configuration here
 var options = {
 "application" : "viewConfigMapper",
 "user" : {
 "login" : $k.user().name()
 },
 "startElement" : $k.rootType().idString(),
 "language": getRequestLanguage(request),
 translations: getTranslations()
 };
 response.setText(JSON.stringify(options, undefined, "\t"));
}

Values to be modified are

• application : The application configured in the view configuration for the ViewConfiguration

Mapper. This is, by default, “viewConfigMapper” and therefore does not have to be modified.

• user : User configuration. The current version of vcm only reads the configured name of the

user for display in the front-end.

• startElement : ID or internal name of the topic that should be displayed initially when the start

screen is called up. The root type of the Knowledge Graph is preconfigured. This should be

modified.

• language : The language of the browser making the request is preconfigured. This attribute

should be configured for specific language settings. The relevant I18N settings are foreseen in

the front-end templates and can also be expanded in the attribute “Translations”. Modifications

to this should be made in these templates. At this point, only the language is being defined.

• translations : I18N templates are located in the front-end and should be modified there. Their

function can be extended at this point.

Technical Handbook 5.8 - 3.3. Configuration

376

3.3.5. Create a project with the View Configuration Mapper

To easily create an adjustment project, a project template is available in the Git under gitlab.ivda.i-

views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git. The README.md file of the

project explains all further steps. Initialization requires certain parameters. For example, you will be

asked for the basic path of the request and the name of the application. This data should be

available when first called.

3.3.6. Modify templates

The project template contains the directories components/ and partials/ in the webroot/ directory.

Both directories contain examples of ViewConfigMapper components and partials. You can add new

templates here. The basic templates of ViewConfigMapper remain available, so you only need to

create templates for special adjustments.

The js/ directory contains a JavaScript file where the ViewConfigMapper is initialized.

var vcmOptions = {
 config: {
 router: {
 urlRewrite: true
 },
 application: "{%= name %}",
 ajaxBasePath: "{%=ajax_base_path %}",
 instanceId: "vcm_{%= name%}"
 },
 partials: partials,
 components: components,
 translations: translations
};

var vcm = new ViewconfigMapper("#viewconfigmapper", vcmOptions);

The ViewConfigMapper receives the configuration settings, partials, components and translations.

The position in which the content is to be rendered is also specified (in this example: <div

id=viewconfigmapper"/>). For partials and components it is only important that they are located in

the relevant directories, because there are grunt tasks that extract the files and unload them to

separate JavaScript files.

Values for application, ajaxBasePath and instanceId would be set during the initialization call of the

project template.

3.3.7. Operate the frontend

The front-end can be built using grunt. The files required for operation are found in the /webroot

Technical Handbook 5.8 - 3.3. Configuration

377

http://gitlab.ivda.i-views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git
http://gitlab.ivda.i-views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git

directory following generation. It is accessed, if not configured otherwise, using the start screen

index.html.

In the most straightforward case, the files are found locally and can then only be used on the client

side.

There are several ways to make the front-end accessible. The component ViewConfiguration

Mapper automatically generates a REST service that can deliver static files. This can be used by

placing the files in the webroot directory in the corresponding directory in the REST bridge being

used (default is viewconfig-static). After this, the front-end can be addressed in the default

configuration via HOST:PORT/viewconfig/viewconfig-static/index.html. In addition, it is also possible

to deliver the files using a corresponding server.

Technical Handbook 5.8 - 3.3. Configuration

378

3.4. Actions

The VCM supports standard interactions, such as the editing of contents without these having to be

configured separately. However, it is possible to define user-defined actions in a view configuration.

These are actions of type "Script".

Selection is made via a drop-down menu.

For a script action, you have to select “Script” in this menu and create a “Script” under the “Script

(user defined)” entry in the list.

For customized VCM builds it may be necessary to create an action result that feeds the need of a

customized view. To achieve this you must use “Script (Action Response)”. Notice that you are not

allowed to modify the knowledge graph in an action response script.

Technical Handbook 5.8 - 3.4. Actions

379

3.5. Panels

Panels are configuration elements that separate the application interface into sections. They are

used to build the basic layout of an application.

Panels contain further panels or view configurations and can be nested in each other. They can

mutually affect each other.

Panels usually contain exactly one start element (an object or a type) during activation (= becoming

visible), which they pass on to their sub-configurations. Panels that contain view configurations that

display a set of objects (table, facet selection, graph) can also process a set of start elements.

Panels themselves have no other functions. These can only be defined with the help of actions and

view configurations.

There are different types of panels:

• Main window panels

• Dialog panels

• Window title panel

• Footer panels

• Normal panels

For each application there must be precisely one so-called main window panel , which can be

divided by means of subordinate panels. In addition, it can be allocated a window title panel

specifying the title and logo (Favicon) of the application.

It is also possible to assign additional dialog panels to the application; these panels can be displayed

as a pop-up on top of the main window. Next to additional panels, they can also contain window

title and footer panels.

A specific panel type must be selected for each panel .

• Layout panels (contain additional panels):

◦ Linear layout (all subordinate panels are displayed in horizontal or vertical order)

◦ Switching layout (only one of the subordinate panels is displayed at the same time)

◦ Variable-sized Layout (only for printing)

• View panels (contain view configuration(s)):

◦ Defined view (contains only one single defined configuration element)

◦ Flexible view (multiple views possible, depending on the type of start element)

Setting options

Technical Handbook 5.8 - 3.5. Panels

380

Name Value

Show action results in panel All actions that are shown in the source panel cause the target

panel to be displayed with the respective transferred object

(example: every click in the panel object list causes the result to

be shown in the details view panel).The action setting "show

result in panel" overrides this setting. Moreover, the setting has

no effect on "save" actions.

Influences Here you can specify a panel that is influenced by the current

panel (example: the objects displayed in the search results affect

which facets are displayed correspondingly).

Inherit to subpanels Boolean, meta-attribute of "Influences". This also allows

subpanels to activate the influenced panel when activated

(example: You have a navigation panel that should display the

same for each subpanel of a panel with a switching layout when

it is activated).

Script for target object With the help of scripts you can specify not only panels but also

conditions under which specific panels are affected by the

current panel.

Setting options for layout

Name Value

class CSS classes for the panel (considered only for web applications or

in the ViewConfig mapper)

Width/height The precise dimensions of the panel can be set here in percent

or down to the pixel.

Maximum width/height Alternatively, you can enter the maximum dimensions of the

panel here. The panel takes up as much space as possible

without exceeding these values.

Flex-grow/shrink Here you can specify the values for the relevant CSS property for

the growth or shrink factor of the panel. An element with a value

of 2 for flex-grow, for example, receives twice as much value as

an element with a value of 1.

overflow-x/y (scrollbar) This can be used to define how scrollbars are displayed if the

content of the panel does not fit into its horizontal (x) and

vertical (y) dimensions. The available options are auto , scroll

and hidden .

Style CSS styling rules for the panel (considered only in web

applications or in the ViewConfig mapper)

Technical Handbook 5.8 - 3.5. Panels

381

3.5.1. Activation of panels

Panels exhibit two basic conditions: “active” and “inactive”. A panel is visible when it is active.

The activation of panels functions using the following mechanisms:

1. The main window panel of the application is always active when an application starts

2. The execution location determines which panel become active when an action is executed

Based on A/B, there are subsequent activations based on these rules:

1. Panels influenced are activated

2. Panels with a specialized function (e.g. window title) are activated, and this from all panels in

the corresponding hierarchy

3. Subpanels are activated

4. In the case of a panel with a changing layout: Sister panels of the active subpanel are

deactivated

5. Continue with 1. until no further panels can be activated (an integrated cycle test prevents

endless loops)

Subsequent activations transport the model displayed respectively. If, for example, panel A shows

the object “Mr. Meier”, then the activated subpanel B also shows “Mr. Meier”.

Last of all, this ensures that all panels above the activated panel are also active. However, their

content is not calculated again.

Advanced activation mechanisms (version 5.2 or higher) :

So-called “Activation mode” can be used to optimize the calculation of the panel contents in step A

(action activation) and in step 1 (influencing).

This avoids the recalculation of panel contents that are currently not displayed because despite

activation, they are not within the visibility area (e.g. a shopping basket). The options “Refresh

model and view” and "Refresh view only" are provided for this case.

The option “Default” is the fallback setting when neither of the two options described above were

selected and leads to panel activation and evaluation of activation chains.

3.5.2. Layout panels

The application is divided into different areas using layout panels.

Linear Layout

Linear layouts arrange subordinate panels either next to each other or one above the other.

Technical Handbook 5.8 - 3.5. Panels

382

Name Value

Orientation (only available if

panel type " Linear Layout " has

been selected before)

• horizontal: display order from left to right

• vertical: display order from top to bottom

Switching Layout

Switching layouts permit alternative displays on the same visualization panel, with only one of the

subordinate panels being displayed at the same time.

Setting options for configuration

Name Value

Activate the first by default (for

changing layout only)

If a checkmark is set, this means that the first subordinate panel

is activated by default (the example below shows the start

screen)

3.5.3. View panels

View panels serve as containers for individual views. They can however contain no further panels.

Setting options

Name Value

Context element Here it is possible to specify a concrete object or concrete type

that serves as the source element from which further paths can

be pursued through the Knowledge Graph.

Cannot be overwritten by

external context element

If this option is activated, the configured context element is

always used. Influence from other panels has no effect in this

case.If no context element has been configured, the context

element remains empty.

Script for context element The script determines the start element. The external context

element is transferred as the argument.The “Cannot be

overwritten by external context element” option has no

influence, and the script is always executed.

Sub-configuration (only for

defined view)

Here it is possible to specify the one view configuration that is

used for the defined view.

3.5.4. Dialog panels

Dialog panels are special display areas whose contents are displayed in a dialog box. Dialog boxes

appear automatically when the corresponding dialog panel is activated. Just like with other panels,

activation is also possible via certain actions (see relation “Show result in panel” in Action

Technical Handbook 5.8 - 3.5. Panels

383

configurations) or generally on activation or updates of other panels (see relations “Show actions in

panel” and “influences” in other panel configurations).

Actions also have to be used to hide (“close”) dialog boxes. If the “Close panel” attribute is selected

in an action configuration, executing this action in a dialog box has the effect that the window is

closed. Hence, the action must be linked to a menu that is displayed in the dialog panel or one of its

subordinate panels.

Content-wise, dialog boxes are divided into the following three areas:

• Window title

• Content area

• Footer

The contents and the layout within the three areas can be specified using a panel configuration for

each. The dialog panel itself represents the content area. To configure the window title and footer, a

sub-configuration of the type window title or footer panel must be created on the dialog panel (see

the example below).

You can use the “Panel type” attribute on the actual dialog panel and on its window title and footer

panels to determine whether the respective panel provides layout or view functions. Detailed

descriptions of the different panel types are available in the preceding chapters.

Dialog panels can be created as follows in Knowledge Builder:

1. Use a user account that has administrator rights to log on to Knowledge Builder

2. In the navigation area, on the left, open the “Technical” category and select the sub-item “View

configuration.”

Technical Handbook 5.8 - 3.5. Panels

384

1. Select the “Application” tab on the right window.

1. In the list underneath, select the application to which you would like to add the dialog panel

(usually “View configuration mapper”).

Technical Handbook 5.8 - 3.5. Panels

385

1. Select the dialog panel section in the panel tree below and click on the Create icon

1. The newly created dialog panel is automatically selected in the panel tree and the details view

is displayed to the right of the panel tree

To create a window title or footer panel, you have to select the dialog panel in the panel tree, and

click on the icon for creating sub-configurations . Following this, a selection window appears in

which the entry “Window title” or “Footer” can be selected. Depending on the panel type of the

dialog panel, additional subelements can also be created in this way. These, however, then refer to

the content area of the dialog box.

Technical Handbook 5.8 - 3.5. Panels

386

3.6. Viewconfig elements

3.6.1. General

3.6.2. Alternative

An alternative view is a collective view for other views. That is, this type of view can be used to

group views that show data for a shared object (e.g. a Properties view with the life data of an artist

or a table view that lists the works of the artist). Unlike in a layout view, the summarized views are

not shown simultaneously, but instead in alternating order (e.g. via tabs).

To group views, the corresponding views are appended to the alternative view as subviews. Their

position decides the order in which they are displayed. Hence, the arrow buttons can be used to

change their positions.

The “Configuration” and “Extended” tabs feature options for specifying the general display of the

list:

Configuration name The configuration name can be used to identify views and

panels.

Label The value entered here appears as the heading of the alternative

Technical Handbook 5.8 - 3.6. Viewconfig elements

387

Default alternative By default the first attached view is displayed. If you prefer the

view on the third tab to be displayed first, for example, you can

specify this view here. The front-end remembers the last

displayed view within a session, so that the user always lands on

the tab they looked at most recently if they look at one

alternative view several times within a session.

Restore last selected

alternative

Script for label As an alternative to the “Label,” the title of the alternative can be

determined in a script.

bookmark identifier

Script for Default alternative

Script for visibility This script is used to define whether the alternative should be

displayed, and under what conditions.

Actions can be configured for the alternative in the “Menus” tab, while the “Styles” tab allows

certain display options to be selected. The “KB” tab features options that only apply to Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure for

which object types the alternative view is to be used and in which application contexts.

An alternative view should be used when several views are based on the data of an object or type,

but are to be displayed not simultaneously but alternatively.

3.6.3. Layout

A layout view is a collective view for other views. That is, this type of view can be used to group

views that show data for a shared object (e.g. a properties view with the life data of an artist or a

table view that lists the works of the artist). To group views, the corresponding views are appended

to the layout view as subviews. Their position decides the order in which they are displayed. Hence,

the arrow buttons can be used to change their positions.

Technical Handbook 5.8 - 3.6. Viewconfig elements

388

The “Configuration” and “Extended” tabs feature options for specifying the general display of the

layout:

Configuration name The configuration name can be used to identify views and

panels.

Label The value entered here appears as the header of the layout

Script for label As an alternative to the “Label,” the title of the layout can be

determined in a script.

Orientation Determines the orientation of the sub configuration elements in

the web frontend.

Resizable When enabled, a slider is displayed in the web frontend that

allows the user to resize the area of the layout view.

Boomark identifier

Role A view role is used to link an action to a corresponding view.

Script for visibility This script can be used to specify whether the layout is supposed

to be displayed.

The “Menus” tab lets you configure actions for the layout, while the “Styles” tab lets you select

certain display options. The “KB” tab features options that only apply to the Knowledge Builder and

are not used in the web front-end. The “Context” tab can be used to configure for which object type

the layout view is to be used and in which application contexts.

A layout view is to be used when several views, which are based on the data of an object or type,

are to be displayed simultaneously and grouped. In contrast to this, there is the alternative that

displays the contained views for an object alternatingly (e.g. as tabs).

Technical Handbook 5.8 - 3.6. Viewconfig elements

389

3.6.4. Flexible view

A flexible view determines its content dynamically based on the underlying model. Unlike layouts,

flexible views do not have a direct subconfiguration. If a view is linked to the flexible view via the

‘Apply to’ relation, this view is displayed whenever the flexible view has a knowledge graph element

that matches this view as a model. Whether a view matches a knowledge graph element is

controlled via the ‘Apply to’ relation of the view.

For more complex rules for determining the content of the flexible view, the detector system can be

used.

3.6.5. Hierarchy

A hierarchy view is a hierarchical representation of the configurable aspects of an object.

The configuration is performed in the Knowledge Builder by creating a hierarchy view.

Technical Handbook 5.8 - 3.6. Viewconfig elements

390

f176e8f7-d676-4f42-8eff-c22af034c27c

The “Configuration” tab provides options for determining the general display of the hierarchy:

Configuration name The configuration name can be used to identify views and

panels.

Label The value entered here appears as the heading of the hierarchy

bookmark itentifier

Script for icon

Show parent banner

Do not show detail view

Restore last expanded nodes

Click action

Script for visibility This script is used to define whether the list should be displayed.

Technical Handbook 5.8 - 3.6. Viewconfig elements

391

Structured query

(down)Structured query (up)

Script (down)Script (up)

Relation (down)Relation (up)

The hierarchy view starts with an object as the basis . This object

is passed to the hierarchy either by the context element on the

higher-level panel or by influencing it from another panel.Which

nodes and branches should be shown for this object can be

configured in both ascending and descending order. A relation

defined in the Knowledge Graph can be selected as a connection

between the nodes, however a structured query or even a script

can too. A combination of these three types is possible, i.e. it is

possible to specify a relation in a descending order, for example,

and a structured query in an ascending order. Specifying both

directions in optional, however it is also possible to configure the

ascending order or the descending order only. In the first case,

the object on which the hierarchy is based would be the node at

the bottom. And in the second case, the base object of the

hierarchy would then be the root node of the hierarchy.

Output up to depth

Sort downward The hierarchy is sorted in ascending order by default. Activating

the checkbox reverses this sort order.

Primary sort criterion The sort criterion is used to determine the aspect used to sort

the hierarchy elements on one level.

Secondary sort criterion Like “Primary sort criterion,” except this is only used if the

position computed from “primary sort criterion” is the same for

two or more attributes.

Script for sorting This script is used if “Script for sorting” was selected as the

primary or secondary sort criterion.

Disallow manual sorting This option is used to disable the option of allowing the user to

re-sort a hierarchy. This option is only used in the Knowledge

Builder.

It is possible to configure actions and styles on the entire hierarchy, or to only apply them at node

level. This is why there is a “Hierarchy” tab with the sub-items “Menus” and “Styles” and a “Nodes”

tab with the same subitems. Actions can be configured for the list in the “Menus” tab, while the

“Styles” tab allows certain display options to be selected. The “KB” tab features options that only

apply to the Knowledge Builder and are not used in the web front-end. The “Context” tab can be

used to configure for which object types the hierarchy view is to be used and in which application

contexts.

3.6.6. Properties

A Properties view is a list of the attributes and relations of an object.

Technical Handbook 5.8 - 3.6. Viewconfig elements

392

The “Configuration” tab features options for specifying the general display of the list:

Configuration name The configuration name can be used to identify views and

panels.

Label The value entered here appears as the heading of the list

Script for label As an alternative to the “Label,” the title of the list can be

determined in a script.

bookmark identifier

Initially expanded If there are a great many properties, they are not displayed

directly in the Knowledge Builder, but instead in expandable

form. Activating this option expands them directly.

Script for visibility This script is used to define whether the list should be displayed.

Sort downward Generally the contained attributes/relations are displayed in the

order specified by the order of the included property view. As it

is however possible to specify higher-level types (e.g. “User

relation”) here, the properties grouped in this way are sorted by

name in ascending order. You can change this order by activating

the “Sort downward” check-box.

Primary sort criterion Generally the contained attributes/relations are displayed in the

order specified by the order of the included property view. This

option can be used to change this behavior. The available values

are “Position”, “Script for sorting” and “Value”. In case of “Value”,

sorting is performed by attribute value, and not by the name of

the attribute.

Technical Handbook 5.8 - 3.6. Viewconfig elements

393

Secondary sort criterion Like “Primary sort criterion,” except this is only used if the

position computed from “primary sort criterion” is the same for

two or more attributes.

Script for sorting This script is used if “Script for sorting” was selected as the

primary or secondary sort criterion.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain

display options to be selected. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure for

which object types the Properties view is to be used and in which application contexts.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain

display options to be selected. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure for

which object types the Properties view is to be used and in which application contexts.

For the read view, the Properties view can be used on its own, but it is often also used in layout or

alternative views. In order to allow object properties to be modified, a Properties view must be

included in an Edit view.

The attributes and relations to be displayed for an object can be configured. For that purpose, it is

necessary to add property views to the Properties view which can be used to select the relevant

attribute/relation and determine in detail how these should be displayed.

3.6.6.1. Styling of a property view

Für individuelle Eigenschaften-Konfigurationen kann es vorkommen, dass die Aufteilung des

Layouts geändert werden muss, weil für eine darin befindliche Eigenschafts-View andere

Platzverhältnisse benötigt werden (Label vs. Eigenschaftswert). Dies lässt sich durch eine Anpassung

mit einem neuen Style unter "Style" > "Viewconfiguration-Mapper" > "class" erreichen.

Für den "class"-Eintrag gibt es die Klasse "list", die die Aufteilung zwischen Label und

darzustellendem Eigenschaftswert bestimmt. Voreingestellter Wert ist "list-5-6". Die Eigenschaften-

View ist in ein gedachtes Raster von zwölf Einheiten unterteilt, wobei die letzte Einheit für die

Aktion an einer Eigenschaft reserviert ist. Daraus ergibt sich ein Eintrag mit "list-N-M", wobei N+M =

11 ist. N steht für die Breite des Labels, M steht für die Breite des Eigenschaftswerts.

Wenn beispielsweise das Label einer untergeordneten Eigenschaft aufgrund der Benennung mehr

Platz benötigt, kann unter "class" der Wert "list-8-3" eingegeben werden.

Wenn das Label gar nicht dargestellt werden soll und durch die Option "hide label" deaktiviert ist,

kann unter "class" der Wert "list-0-11" eingegeben werden.

3.6.7. Property

A Property view is a display configuration of an attribute or a relation to an object. A Property view

can only be used underneath a Properties view.

Technical Handbook 5.8 - 3.6. Viewconfig elements

394

Configuration name The configuration name can be used to identify views and

panels.

Label The value entered here appears as the heading of the list

Script for label As an alternative to the “Label,” the title of the list can be

determined in a script.

bookmark identifier

Property

Query for virtual properties

Script for virtual properties

(automatic update)

Show filter

Show new properties Like “Primary sort criterion,” except this is only used if the

position computed from “primary sort criterion” is the same for

two or more attributes.

Configuration for embedded

meta properties

Technical Handbook 5.8 - 3.6. Viewconfig elements

395

Configuration für meta

properties

Click action

Tooltip

Placeholder text

Script for placeholder text

Scipt for tooltip

Script for visibility This script is used to define whether the list should be displayed.

Script for sorting This script is used if “Script for sorting” was selected as the

primary or secondary sort criterion.

Sort downward Generally the contained attributes/relations are displayed in the

order specified by the order of the included property view. As it

is however possible to specify higher-level types (e.g. “User

relation”) here, the properties grouped in this way are sorted by

name in ascending order. You can change this order by activating

the “Sort downward” check-box.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain

There are additional options for relations:

Technical Handbook 5.8 - 3.6. Viewconfig elements

396

Relation target view By default, a link or relation target editor is displayed in edit

mode. However, it can make sense to display e.g. a drop-down

list with pre-filtered relation targets instead. These alternative

views can be configured here.

Relation target filter To assist users with their selection of a suitable relation target, a

filter query can be placed here.

Relation target type filter If several object types have been defined as the target of a

relation, a filter on the displayed types can be configured at this

point.

Script for relation target

identifier

By default, the name of the relation target object is displayed.

This can be adapted here by means of a script.

Show relation target

In the “Menus” tab, you can configure additional actions for the property, while the “Styles” tab lets

you select certain display options. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. You can use the “Context” tab to trace in which view

the Property view is used.

Technical Handbook 5.8 - 3.6. Viewconfig elements

397

3.6.7.1. Relation target filter

To support the user in finding the suitable relation target, a query can be defined for filtering

possible relation targets by means of the option "Relation target filter". When the user clicks on the

magnifier symbol, a filtered amount of relation targets will be shown.

Example:

A user wants to select product parts by year as a relation target. If only certain products (with parts

used at a certain year) need to be presented in the relation target selection, the query for filtering

possible relation targets must comprise these conditions.

In the query, the accessed element (product) for specifying the conditions can be identified as

usual.

By standard, relation targets are shown in a simplified table, listed by their name. If a more detailed

table is needed, it can be configured and assigned to the property view (in this example

"PartsByYear") via the relation "apply in".

3.6.7.2. Styling of a property view

A property in a properties-list is displayed by default as follows:

Technical Handbook 5.8 - 3.6. Viewconfig elements

398

The label of a property is on the left side and the value is on the right side. As all view

configurations a property view can be styled, too. In the following you can see how to style a

property with an example.

For example, if you want to display the values right-aligned, you must first create the appropriate

css class:

.text-align-right .property-value {text-align: right;}

This must then be passed as style to the individual properties for which this class should apply:

The result of the four styled properties

3.6.8. Edit

And edit view is used to manage user modification of attributes or relations.

Technical Handbook 5.8 - 3.6. Viewconfig elements

399

In the process, all child configurations of the properties type are displayed as form fields. An edit

view can contain exactly one child view, which is either a properties configuration or a structuring

view (layout, alternative) containing properties configurations. Changes can be synchronized with

the Knowledge Graph by means of a Save button.

The “Configuration” tab features options for specifying the general display of the edit view:

Role In order to use custom buttons outside the same panel (e. g.

within the footer panel of a dialog), the view role can be used to

assign the actions of custom buttons for the edit view. For this

purpose, a menu with actions must be configured and its actions

must be interrelated via the view role to the edit view.If no

custom role is specified, the implicit role of an edit view is "edit".

Technical Handbook 5.8 - 3.6. Viewconfig elements

400

Auto save This option is available since i-views 5.4. It is also known as

"Micro-edit" and enables the automatic saving of changes being

made, without the need for a button press (meaning: without

the need to trigger an action of the action type "save").

NOTE

To avoid low performance and erratic behavior

of property edits, the option "Auto save" should

not be used in combination with a long running

transaction.

Since a transaction leads to new entries being

added onto the web frontend session stack

each time a save action is triggered, the

performance decreases due to increasing data

amounts transferred back and forth.

Edit mode switchable (not

available anymore)

Since i-views 5.4 and on, this option is not available anymore.

This option enables the form mode to be "switchable". That

means, Properties are first shown in read mode only. A Switch

button then allows the user to switch to edit mode.

Only custom buttons (not

available anymore)

Since i-views 5.4 and on, the option "Only custom buttons" is not

available anymore. Instead, every button (except for the entry

delete buttons) needs to be configured. For example, a button

with an action of the action type "Save" must be configured for

saving actions if the option "Auto save" is not enabled.

Layout of property groups in an edit view

If a different layout is needed for edit views, there are following possibilities:

• Several Properties views can be arranged underneath an Edit view by means of an intermediate

Layout view. This allows horizontal or vertcal orientation of input elements.

• The pattern of label vs. value can be modified so that, for example, the label gets more space.

This is done by applying a style onto the properties view, containing a class reference "list-n-m",

whereas n+m = 10.

NOTE

In contratst to the properties view used without an edit view, the properties

view used within an edit allows a layout pattern of 10 units in total instead of

12 units . When using 12 units for n+m in list-n-m, the edit might be scattered.

3.6.9. Form inputs

Form input views serve for retrieving user input values which are independent from the existence of

a semantic element. The input of the form input fields can be fetched and processed by means of

an action using a script, e. g. by saving as an attribute value, or used as the input of a search

compound to provide a search with parameters.

Technical Handbook 5.8 - 3.6. Viewconfig elements

401

It should be noted that in contrast to Edit views, an action with the action type "Save" has no effect

on form views and will not persist the values.

The following form input types are available:

Form input for Value capturing

Boolean Checkbox for input of boolean values

Date and time A date picker that can be customized to accept either a date, a

time with hours and minutes, or both

Number A number spinner that can be customized to accept either

integers or decimals

Choice Specification of a script which returns an array of character

strings or semantic elements for selection in forms of a drop-

down entry. The selection/display can be preset with an initial

value using the script.

String Input field for character strings

Input with proposals An input field that assists the user by proposing suitable values.

Reading out form inputs using actions or scripts

To process the values from the input fields, an action or a script needs a way for addressing them.

An action can either be located in a menu at the form input itself or at a different location, whereas

a reference needs to be set up from the action to the form input by means of role assignment

("perform by"). A role assigned to a form input can also be used by a script to access the

corresponding view, which will provide the input value.

NOTE

When using a view role, the identifier of the role must not contain any whitespace.

Since one view can have several roles, the roles are processed in a whitespace-

separated form. A single view role with an identifier containing a whitespace-

separated string therefore would be misinterpreted as several roles, leading to

errors.

Following application scenarios are possible:

1. Reading out multiple form inputs under a common layout using a single action, but process

each entry individually: Relating the action via a role to the form view, addressing each

individual value via an individual role by means of "this.viewsWithRole(roleName)[0].value()".

2. Reading out only one form input : Relating an action via a role to the form entry view,

addressing the entry value by means of "this.value()".

3. Reading out all form inputs at once - provided the values being of the same type or the order

of values is not important: Relating the action via a role to the layout view, assigning one role to

all form inputs and addressing all values at once by means of "this.viewsWithRole(roleName)",

then processing the array items.

Technical Handbook 5.8 - 3.6. Viewconfig elements

402

NOTE

Addressing all form inputs by assigning one role to all form inputs and the

action by means of "this.value()" will not work since roles must be uniquely

assignable in the web frontend.

Example:

A layout view contains the form inputs for "choice", "boolean" and "string".

• If an action only needs to access one dedicated form input, e. g. the string input field, the input

view gets a role called "inputField" and the action is related to the role "inputField" via the

relation "perform by". Then the action of the action type "Script" gets a custom script called

"Script (custom)". In every case, "this" is the view the action is located in or - if a role is

assigned - it is the view interrelated via the role. The value of the input field is then read out by

means of "this.value()".

• If all three entries need to be read out individually by means of one action at once, the action

needs to be related to the layout view via a role ("form") and the individual form inputs each

get their own role. To address the input field again in this case, the action is related to the

"form" role via the entry/relation "perform by". The action has the action type "Script" and the

"Script (custom)". Now, "this" is the layout view. To access the input field within the script, the

view with the assigned role "inputField" needs to be addressed. The value of the input field is

then read out by means of "this.viewsWithRole('inputField')[0].value()". Since "viewsWithRole"

returns an array, the one and only input field view is the first (one and only) array element with

the index number 0.

Forms as input for search compounds

Forms can also be used to act as parameter input for a search. To achieve that, a form input needs

to be be linked to a search compound by the "Input of" relation. Furthermore, the "Parameter

name" must be configured. It determines which search parameter the form input relates to. If the

form input is marked as "Required" and no user input is provided, the search will not be executed.

Otherwise, the search parameter is deactivated if the input is empty. For further details refer to the

chapter on Search compounds.

Input validation

Form inputs can be marked as "Required". In this case the input field receives a designation to

indicate to the user, that an input is mandatory. This also influences how a missing parameter is

handled if the form input is part of a search compound (see above).

The second validation mechanism is the "Script for validation" that can be configured for any form

input. Consider the following example for a script that validates the input of a number field:

function validateFormValue(value) {
 if (value < 0 || value > 10) {
 this.setValidationErrorMessage('Only values between 0 and 10 are
allowed.')

Technical Handbook 5.8 - 3.6. Viewconfig elements

403

37617f13-ef07-44db-b6a8-12b7b0cb5799

 return false
 }
 return true
}

The validation error message is presented to the frontend user who can then correct his input. If

the validation script returns "false", the invalid value will not be accessible by any scripts and will

also not be passed to the query, if the form input is part of a search compound.

It is also possible to access the values of other form inputs by using any of the methods described

above. It should be taken care though that there is no circular dependency between the validation

of multiple form inputs. In that case they will not be able to access each other’s values and will

receive undefined instead.

Input with proposals

For an input with proposals, there are two ways to configure how values should be derived from

user input. When specifying a "Query for proposed values", the user will be presented with the

query results. To make the query results dependand on the current user input, the predefined

parameter "searchString" can be used. Alternatively, a "Script for proposed values" can be provided:

function valueProposals(searchString) {
 return [
 new $k.TypeAheadProposal(searchString.toUpperCase()), // a function
applied to the user input
 new $k.TypeAheadProposal(42, 'forty-two'), // a static number with
label
 new $k.TypeAheadProposal($k.Registry.element('myElement')) // a
semantic element of the knowledge graph
]
}

In any case, there are two additional configuration options:

• Threshold: Defines the number of characters the user must type, before the first request for

proposals is sent. For expensive queries, this value should be chosen sufficiently high to reduce

performance impact. The default threshold value is 3.

• Restrict input to proposals: If this checkbox is set, the user will not be able to submit any value

that was not proposed to him. Otherwise, the user is free to edit the chosen proposal before

submitting.

3.6.10. Table

A table view is a display configuration of a list of objects. A table view can be used independently at

different points and its content depends on the context.

Technical Handbook 5.8 - 3.6. Viewconfig elements

404

The “Configuration” tab features options for specifying the general display and behavior.

Action (selection) The action configured here is executed if a row is selected in the

front-end (e.g. by clicking).

Number of rows (page size) This specifies the maximum number of rows that are displayed

on one page.

Automatic search Options: * Automatic search * Automatic search up to limit * No

automatic search

Label A table is displayed with the heading in the front-ends. By

default, the name is generated from the context. You can use

“Label” to display a value other than the name.

Configuration name The configuration name can be used to identify views and

panels.

Without column filter Here you can determine whether a column filter is supposed to

be displayed between the table header and table content. The

column filter can be used to filter the query result for the column

by entering a term.

Script for label Instead of using the “Label,” the displayed attribute name can be

determined in a script.

Table of This references the view whose results are displayed in the

preceding table. This can be a query, of a query result view or

another table.

On the “Sorting” tab, you can configure the sort response using the columns.

The “Table” tab has two sub-items: “Menus” and “Styles.” In the “Menus” tab, you can configure

additional actions for the table, while the “Styles” tab lets you select certain display options that

Technical Handbook 5.8 - 3.6. Viewconfig elements

405

affect the entire table. In the next tab, “Columns" > "Styles" you then select the display options for

columns accordingly.

The columns of the table are defined using sub-configurations, which are explained in the next

section. The order of the columns can be changed using arrow buttons in the tree view on the left

side.

The column view represents the configuration of an entire column. Here you can influence the

display and the response (e.g. filtering).

The content of the cells (“column element”) in turn is defined by the sub-configuration as described

in the next section.

Configuration name The configuration name can be used to identify views and

panels.

Label Column name displayed

Script for label Instead of using the “Label,” the displayed attribute name can be

determined in a script.

bookmark identifier

Column width (%) Width of the column in percent of the width of the table

Standard operator This is where the default is selected from the possible filter

operators If nothing is configured, the first one in the list is

selected.

Search string

Technical Handbook 5.8 - 3.6. Viewconfig elements

406

Do not show This is used to hide a column. It is nonetheless calculated in the

background and can be used e.g. for sorting.

Mandatory for query

Not sortable In the default setting, the columns can be sorted by clicking on

the header. This function can be deactivated here.

Script for preprocessing input

fields

The text that was specified in the column filters can be

influenced via a script here.

Search text The text for column filtering can be specified in advance here.

The column element sub-configuration determines the content of the column. The content is

typically derived from the elements to which this table refers.

Configuration name The configuration name can be used to identify views and

panels.

Do not show This is used to hide the column element. This is nonetheless

calculated in the background and can be used e.g. for sorting or

filtering.

Do not create

Do not search

Emphasis This lets you choose if the content of the column element is to

be highlighted by underlining it.

Mapping element

Property The property of the element to be displayed in this column

Quality

Technical Handbook 5.8 - 3.6. Viewconfig elements

407

Structured query element As an alternative to “Property,” the content to be displayed can

also be determined using a structured query.

Script As an alternative to the first two method, the content to be

displayed can also be derived from the element via a script.

Use hits Allows the use of all meta properties of a search result (“hit”),

such as quality, cause etc.If the search results are processed

further by a script, JavaScript object $k.SemanticElement or

$k.Hit is forwarded.

3.6.10.1. Menus in tables

Menus can be configured at different points of a table. The selection of the configuration location

determines whether a menu is available for the entire table, for the column of the table or for every

column element:

Configuration location Menu with actions for the element

Table: "Table" tab > “Menu” tab Actions for the entire table:

Technical Handbook 5.8 - 3.6. Viewconfig elements

408

Configuration location Menu with actions for the element

Column: “Menus” tab Actions are displayed in the column description

of a table:

Technical Handbook 5.8 - 3.6. Viewconfig elements

409

Configuration location Menu with actions for the element

Column: Menu as a subelement of a column Actions are output in every row in a column:

Menu in a separate column:

Menu element in the same column as the

column element to be displayed:

Technical Handbook 5.8 - 3.6. Viewconfig elements

410

Configuration location Menu with actions for the element

Column element: “Menus” tab The action is output after every value: Output

for one object per column element:

Output for several objects per column element,

e.g. in the display of target objects of a relation.

The target objects are comma-separated

(configuration as shown on the left). In this case,

you should preferably use icons to save space;

alternatively, the label can be replaced with a

tooltip (mouse-over display).

NOTE

For relation targets, the link to

the target object can be

suppressed by using the “no

link” style attribute.

3.6.11. Search

This section describes various views that can be used to implement a search - from the "all in one"

search to more complex scenarios with specialized views that are distributed across several panels.

Since version 5.8, the so called search compound has been available, which makes the search field

Technical Handbook 5.8 - 3.6. Viewconfig elements

411

view and the search results view no longer necessary.

3.6.11.1. Search view

A search view allows search pages to be created on which the search query and the search results

are displayed at the same time. If the search does not have any parameters, or only optional ones,

then the search is run immediately and the results displayed directly. If there are obligatory

parameters, then the search is only run following a user input.

A search view is created in the Knowledge Builder for a simple search page.

Technical Handbook 5.8 - 3.6. Viewconfig elements

412

The “Configuration” tab provides options for determining the general display of the search:

Query This is where you configure the query that is to be executed

when the query is executed.

Parameter name Name of a search parameter. All parameters that are configured

in the search must also be configured at this point to ensure no

errors occur in the search.

Script If the parameter value is to be determined via a script, this has to

be configured here.

Value determination Here you specify how the parameter value is to be determined. *

“Script” (value determined via script) * “Script, can be

overwritten” (the value is determined via script, but is

overwritten by user input on the front-end) * “User input

(optional)” (the parameter value is copied from the user input if

it is set. It is displayed to the user as optional in the front-end.

Please note that the search is then configured in such a way that

this parameter does not have to be set) * “User input

(obligatory)” (the user must enter a value in the front-end,

otherwise the search is not executed) * “User input (deactivated

if blank)” (the parameter is set for the search if there was no

user input. Otherwise the parameter is deactivated when the

search is executed)

Technical Handbook 5.8 - 3.6. Viewconfig elements

413

Type Data type of the parameter

Label (Parameter) Name of the parameter in the front-end

Order The order in which the parameters are displayed in the front-end

Label (Search View) The value entered here appears as the heading of the search

Configuration name The configuration name can be used to identify views and

panels.

Use Hits Determines whether topics or hits are generated.

Script for label As an alternative to the “Label,” the title of the group can be

determined in a script.

Script for visibility This script can be used to specify whether the group is supposed

to be displayed.

Script for table configuration As an alternative to “Table”, a script can be used to determine

the table displayed at this point.

Table The search results are displayed in the front-end in the table

configuration that is configured here.

Actions can be configured for the search in the “Menus” tab, while the “Styles” tab allows certain

display options to be selected. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure for

which object types the search view is to be used and in which application contexts.

3.6.11.2. Search compound

For synchronizing the state of multiple search related views use a so called Search compound. A

simple search compound consists of a query definition and a table view that is used as its output.

If input is required, one or multiple form input fields can be used, replacing the search field views

used in the past. For each input field, the corresponding parameter name that is used in the query

definition must be specified. By using the various types of input fields, the user input can be guided,

for example by providing a conveniant date input.

Technical Handbook 5.8 - 3.6. Viewconfig elements

414

f3db080f-afa9-4707-ad37-678e1fdb3098
02f508fe-5f5c-48f4-8ecd-e59b6ee49b9e

Filtering of search results is done by means of a facet view.

Any number of inputs, outputs and filters can be specified, even views that are not always visible.

New search compounds can be created from the context tab of any of the views involved.

3.6.11.3. Facet view

Display

Configuration

A facet view can be created as a sub configuration of a panel, but not within another view

configuration elements. The panel of the facet view needs to influence the search result panel.

Technical Handbook 5.8 - 3.6. Viewconfig elements

415

5cfd22d6-93e3-4814-85dd-6f52720f8855

Query Here a query must be configured when the facet view is not

linked with a search field view. If, for example, the facets are

intended for influencing a search result table containing

employees, the query must output the employees as source for

the facets. If the facet view is linked to the search field view, no

query needs to be defined.

Label The title to appear above the facet view in the front-end.

Configuration name Configuration names can be used to identify views and panels.

Script for label As an alternative to a permanent label, the title can also be set

via a script (to be found in the tab "Extended").

In order to configure facets, it is necessary to create facet views and attach them to the facets view.

These can be arranged in multiple hierarchical orders.

Technical Handbook 5.8 - 3.6. Viewconfig elements

416

Query for determining

the parent term

In case a term hierarchy is needed, the parent term must be configured

by this query. The child element is used as input element here fore. In the

query, the label "parentTerm" identifies the parent element.

NOTE

• For the facet hierarchy to be able of being built up,

the "query for term detection" needs to be

configured for comprising both terms and parent

terms. The herein contained parent terms are

subsequently used for building up the hierarchy by

means of the "query for parent term detection".

Therefore, testing the queries is advised.

• At the moment, only terms of the same type can

build a hierarchy.

• As usual in hierarchies, you can not display infinite

loops.

Query for determining

the term

Structured query that is used to form the facet. This query is obligatory

when the standard behaviour comes into account or when it is set

dynamically (which means that it keeps empty in case of static mode).

The query must be specified as follows: For narrowing down the search

results, facets can be defined for relation targets. The input element type

is equal to the type of the search results from the query of the query

view. The terms to be found must be identified by the label "term".

In principle, everything is possible like in all structured queries. It is also

possible that the label "term" is used several times within one structured

query. In this case, the behaviour of the terms specified by the values of

"Term operator".

Hide from number of

terms

The facet is hidden if the search results underlying the facet exceed this

number.

Label Ideally, a label is always specified. If not set, the name of the input

element of the query is used.

Technical Handbook 5.8 - 3.6. Viewconfig elements

417

Display child terms

initially

If the facet has a hierarchical structure, you can use this option to define

whether the sub-facets should be displayed initially. Per default, the child

elements are displayed after the parent element has been selected.

Configuration name Views and panels can be identified via a configuration name.

Display blank terms If no results are found for the facet, it is hidden by default. This option

ensures it is displayed nonetheless.

Maximum number of

terms

Describes the maximum number of terms the facet can have. per default,

all terms are displayed.

Do not display term

number

In the front-end, the number of found terms is displayed right behind the

facet title. This option deactivates this.

Term operator At this point it is possible to configure how the terms are linked to each

other. You can use the “And” or the “Or” logic that applies on the search

result regarding the selected facets.

Technical Handbook 5.8 - 3.6. Viewconfig elements

418

Term type If no term type is selected (default behaviour), the terms will be detected

by the query of the facet configuration. In the query, relation targets or

attribute values can be defined for terms. Additional to the default

behaviour following settings are available:

• Dynamic: The value range of the terms are detected automatically.

The values used for term detection must be identified by the label

"terrmValue" within the "Query for term detection".

• Static: All terms to be displayed must be configured indiviudally. For

every term a query needs to be configured that specifies the possible

hits of the main query.

Example of a static facet:

Each term of the facet needs a label for display:

The query within the tab "Extended" defines the applicable criteria for

the facet:

Sort terms in

descending order

By default, the terms found for a facet are sorted in ascending order. This

option reverses the sort order.

Technical Handbook 5.8 - 3.6. Viewconfig elements

419

Sort terms by number The facet terms are generally sorted in alphabetical order; with this

option, they are sorted by the number of results found.

Faceting for attribute values

Search results can be faceted concerning predetermined attribute values, for which the term type "

static " must be set. If the term type "static" is chosen, the terms must be added as a

subconfiguration within a facette by clicking on the button "link new". For this purpose, the

configuration is built up as follows:

1. As usual, the structured query of the facette contains the elements to be filtered, including the

identifier "term" at the property:

Example of a query for term identification with attribute values as terms

2. The facette itself has a subordinate term element with a query for a more detailed definition of

the terms. The structured query for the terms then only contains the conditions for the

properties of the elements. An identifier is not used at this point:

Example of a query of a static term (predetermined attribute value)

Notes:

◦ The labeling of the facet term sub-configutaion is obligatory. If no label is set, the facet

term will not be displayed.

◦ For the static term, a term element is needed. If a facet element is used, the facet term will

not be displayed either.

3.6.11.4. Search field view

NOTE
Search field views are deprecated in favour of Search compounds in combination

with Input fields.

Technical Handbook 5.8 - 3.6. Viewconfig elements

420

37617f13-ef07-44db-b6a8-12b7b0cb5799
02f508fe-5f5c-48f4-8ecd-e59b6ee49b9e

A search field element is used, if only a search slot and no search results is to be displayed in a

certain place. Configuration takes place as for the search view but without the configuration for

displaying the results.

The “Configuration” tab provides options for determining the general display of the search field:

Query This is where you configure the query that is to be executed

when the query is executed.

Parameter name Name of a search parameter. All parameters that are configured

in the search must also be configured at this point to ensure no

errors occur in the search.

Script If the parameter value is to be determined via a script, this has to

be configured here.

Technical Handbook 5.8 - 3.6. Viewconfig elements

421

Value determination Here you specify how the parameter value is to be determined.

• “Script” (value determined via script)

• “Script, can be overwritten” (the value is determined via

script, but is overwritten by user input on the front-end)

• “User input (optional)” (The parameter value is copied from

the user input if it is set. It is displayed to the user as

optional in the front-end. Please note that the search is then

configured in such a way that this parameter does not have

to be set)

• “User input (obligatory)” (The user must enter a value in the

front-end, otherwise the search is not executed)

• “User input (deactivated if blank)” (The parameter is set for

the search if there was no user input. Otherwise the

parameter is deactivated when the search is executed)

Query for proposed values,

script for proposed values

Proposed values are possible elements or strings that are offered

to users in a list at the search slot. These in turn can be selected

as search string input (also known as “type ahead”). For

configuration, a query or a script can be placed on the

parameter. If a structured query is used, the names of the

elements found are displayed as default values on the front-end.

In this example, only subjects belonging to "product class" would

be listed as proposals, represented by their primary name. In

detail, a query allows to define which attributes of the element

should be used (it doesn’t have to be the primary name in every

case). A search pipeline can be used to combine arbitrary

conditions (structured queries) with arbitrary attributes

(queries). A search pipeleine needs a 'searchString' parameter

for input. A script (see template in the Knowledge Graph) can

also be used to deliver labels/strings as fixed values only (that is,

without a mandatory reference to the Knowledge Graph). The

"elementId" and "iconLocator" keys are optional.

Type Data type of the parameter

Label Name of the parameter in the front-end

Order The order in which the parameters are displayed in the front-end

Label The value entered here appears as the heading of the search

Configuration name The configuration name can be used to identify views and

panels.

Script for label As an alternative to the “Label,” the title of the search field view

can be determined in a script.

Technical Handbook 5.8 - 3.6. Viewconfig elements

422

Search field elements can be combined with search result views and facet views. To ensure that the

results of a search from a search field element are shown in a search result or facet view, the

actions must be configured accordingly. The simplest option is to configure the panel that contains

the search field element so that the actions are executed in a panel that contains a facet view or a

search result view.

If you want to connect all three views to each other, you activate the actions of a search field

element in a panel that contains a search result or facet view as described above or you configure

this panel so that the other result view panel is influenced by this panel.

Technical Handbook 5.8 - 3.6. Viewconfig elements

423

3.6.11.5. Search result view

NOTE
Search result views are deprecated in favour of Search compounds with a

configured output.

A search result view is used if a view is supposed to display only the results of the search, and not

the search parameters. If the configured search has no parameters, it is enough to configure one

search result view. If there are parameters, the search result view should be linked to a search field

element.

It can be created in the Knowledge Builder.

Technical Handbook 5.8 - 3.6. Viewconfig elements

424

37617f13-ef07-44db-b6a8-12b7b0cb5799

The “Configuration” tab provides options for determining the general display of the search:

Query This is where you configure the query that is to be executed

when the query is executed.

Label The value entered here appears as the heading of the search

Configuration name The configuration name can be used to identify views and

panels.

Script for label As an alternative to the “Label,” the title of the search result

view can be determined in a script.

Table The search results are displayed in the front-end in the table

configuration that is configured here.

Script for table configuration As an alternative to “Table”, a script can be used to determine

the table displayed at this point.

3.6.12. Graph configuration

A graph configuration is used to display objects in a graph. A first introduction to the use of graphs

in the Knowledge Builder can be found under Knowledge Builder > Basics > Graph editor .

Details on the setting options for the different views that are required when embedding a graph in

the front-end are explained under Knowledge Builder > View configuration > View configuration

Technical Handbook 5.8 - 3.6. Viewconfig elements

425

elements > Graph .

A Graph view and a Graph configuration view are required for display. The panel in which the

graph is to be displayed contains a graph view (“V:Graph”). Up to version 5.1, the context element

(called start semantic element) was optional and displayed in the graph when the application

started. From version 5.2, it is obligatory to assign a context element in order to avoid triggering an

error message. The object itself is not important, it is not displayed by default.

The graph view only has to contain a link to the graph configuration. The setting for the size of the

graph field via the Width and Height fields is optional but usually available.

The Graph view ensures that the graph is displayed in full. The Graph configuration is used to

determine which nodes and relations are to be displayed.

Technical Handbook 5.8 - 3.6. Viewconfig elements

426

A node category must be created for every type whose objects (or types) are to be displayed. These

are displayed by default as a key in the graph.

The graph displays objects that are directly attached to the type or its subtype. Use Adapt to

concrete type to display subtypes separately in the key without having to create them individually as

node categories.

In order to display types instead of objects, a checkmark must be placed by the Apply to subtypes

box in the Context tab.

In the Nodes tab you can go to Menus and assign a satellite menu in order to continue working in

the graph (see Knowledge Builder > View configuration > Actions > Actions for the

ViewConfiguration Mapper > NN-Expand/NN-Hide/NN-Pin actions).

In order to display the relations between the nodes, a link is required under each node category .

Here the relations to be displayed for this type are specified. The relations can be specified via a

prompt, a script or via the direct specification of the relation. User relation can be assigned if all

relations (apart from system relations) are to be displayed.

Technical Handbook 5.8 - 3.6. Viewconfig elements

427

For more details see the vcm-plugin-net-navigator chapter

3.6.13. Text

The text view can be used to display text that is either statically specified or calculated via a script.

Text Static, multilingual text

Script for text Script for calculation of the text

Label Optional heading

Script for label Optional script for calculating the heading

Example of a text script:

function text(element)
{
 return "Through a script in the Knowledge Graph" + $k.volume() + "
generated text";
}

3.6.14. Image

Displays an image saved in the Knowledge Graph that is either statically specified or calculated by

means of a script.

Image Static image

Technical Handbook 5.8 - 3.6. Viewconfig elements

428

Script for image Script for calculation of the image. A blob attribute is expected as

the return value. Dynamic blobs (e.g. through download by

means of HTTP client) are not possible.

Label Optional heading

Script for label Optional script for calculating the heading

Width / height Fixed width / height of the image

3.6.15. Script generated HTML

This view generates HTML via a script. Both Knowledge Builder and ViewConfigMapper show this

unfiltered. Hence, the script developer is responsible for ensuring that user contents are not output

unfiltered. The display options in Knowledge Builder are very limited (e.g. no CSS).

For more complex HTML you should use a script-generated view instead.

The following arguments are transferred to the script as parameters:

element $k.SemanticElement The element in the context of which the view is

displayed

document $k.TextDocument Document on which HTML is output

There are two approaches for outputting HTML:

• Output the HTML source code using the print() function of the document

• Structured output using an MXL writer

The example below illustrates the use of an XML writer for outputting a heading:

/**
 * Render the semantic element on the document.
 * @function
 * @param {$k.SemanticElement} element The element to render
 * @param {$k.TextDocument} document Target document
**/
function render(element, document)
{
 var xmlWriter = document.xmlWriter();
 xmlWriter.startElement("h1");
 xmlWriter.characters(element.name());
 xmlWriter.endElement("h1");
}

Technical Handbook 5.8 - 3.6. Viewconfig elements

429

3.6.16. Script generated view

A script-generated view allows custom view components to be defined. The data are generated by a

script and passed on using JSON. Displaying this is the job of the front-end.

viewType Freely selectable identifier that is output in JSON. This is used for

assigning the custom components in the front-end.

Script Delivers the data that are output in the JSON.

Two parameters are passed to the script:

element $k.SemanticElement The element in the context of which the view is

displayed

view object Prefilled object with the view data.

Configuration elements such as styles are

already included in this.

The following script provides the data for a view that the plugin vcm-plugin-timeline contains:

/**
 * Get json object to modify.
 * @function
 * @this $k.View
 * @param {$k.SemanticElement} element
 * @param {object} json object
 * @returns {object} modified json object
 **/

function customizeView (element, view) {
 view.options = {
 layout: 'vertical'
 }
 view.events = $k.Registry.type('election').allInstances().map(function
(election) {
 return {
 elementId: election.idString(),
 name: election.name(),
 date: election.attributeValue('electionDate').toString()
 }
 })
 return view
}

Technical Handbook 5.8 - 3.6. Viewconfig elements

430

3.7. Bookmarks and history

Due to the fact of the ViewConfig-Mapper being a single-page application, the address of the

application keeps always the same (http://xxx/yyy/index.html) - irrespective which content is being

visualised or which panel is being displayed.

By means of defining bookmarks, the application designer in person is able to define a schema

which builds up specific addresses for the currently shown content. For the user, this in turn grants

direct access to a specific application state. Furthermore, bookmarking improves indexability of the

application by web search engines.

3.7.1. Bookmark Resource

The definition of bookmarks has its starting point at the bookmark ressource. The bookmark

ressource is situated within the REST service for the ViewConfig-Mapper. The bookmark ressource

automatically is co-created when the ViewConfig-Mapper component is being added. Keep in mind

that the herein described "Bookmark Resource" has to be configured to run without any

authentication. This is because the ressource creates redirects which must work prior the moment

of login (prior loading of the application) as well.

The ressource allows the definition of any desired amount of "path patterns" - thus address

patterns that can be used by the application from that point on. Path patterns must not overlap.

This means, a specific address must be relatable to exactly one specific path pattern. Furthermore,

overlap with other ressources must be avoided (e. g. "action" or static ressources as well).

A path pattern consists of static and variable parts. Dynamic parts are written in curly brackets (see

chapter concerning REST ressources):

Technical Handbook 5.8 - 3.7. Bookmarks and history

431

http://xxx/yyy/index.html

Further examples:

• help/{topic}

• performance/{company}/{year}

Following the definition of a path pattern, parameters have to be defined for the variable part.

Parameters are meta-attributes of the path pattern attributes. A parameter normally represents an

element of the Knowledge Graph and is shown in forms of the ID of the element when the address

is being created (e. g. ID1527_373749).

By defining a "parameter conversion" script the default behaviour can be modified. This comes into

account for following:

• representing elements in addresses in a more meaningful way

• using external IDs (e. g. part number) for addressing content

• using stable IDs that keep valid even if internal IDs change

A common use case is the indication of an object name instead of the objects' ID:

Technical Handbook 5.8 - 3.7. Bookmarks and history

432

Script "Parameter conversion"

The script for parameter conversion contains two functions:

• identifier(optionalElement): the panel is represented as a part of the bookmark URL. This

function determines in which way the semantic element of the panel will be converted into a

text identifier for the URL (= processing of the "bookmark output").

• element(parameterValue): this function determines how an input URL is going to be

interpreted to get the semantic element for being displayed in the panel (= processing of the

"bookmark input").

In this example, the variable (e. g. optionalElement.name()) is accessed in the function

"identifier()", in combination with assignment of the variable (e. g.

$k.Registry.elementAtValue('name', parameterValue)) in the function "element()":

/**
 * Returns an (element-) identifier for the parameter
 * @function
 * @param {$k.SemanticElement} optionalElement The element for which the
identifier shall be returned (optional)
 * @returns {string}
**/

function identifier(optionalElement) {
 if (optionalElement)
 return optionalElement.name()
 else
 return undefined
}

/**
 * Returns an element for the given parameter value
 * @function
 * @param {string} parameterValue The parameter value
 * @returns {$k.SemanticElement}
**/

function element(parameterValue) {
 return $k.Registry.elementAtValue('name', parameterValue)
}

Composite parameters allow addressing of elements by means of structured descriptions (e. g.

{chapter}/{version}). For each parameter fragment of the composite parameter there must be a

corresponding Bookmark-Parameter object configured below the Composite-Parameter object. The

Composite-Parameter object requires a Parameter Conversion script, which handles the multiple

Technical Handbook 5.8 - 3.7. Bookmarks and history

433

parameters.

Hint: By using parameter conversion scripts, session varaibles can be transported as well. This

allows addressing an application state which itself is not defined solely by the displayed content.

Herefore the variable (e. g. $k.Session.current().getVariable("currentPersona")) can be accessed in

the function "identifier()", in combination with assignment of the variable (e. g.

$k.Session.current().setVariable("currentPersona", parameters.persona)) in the function

"element()".

3.7.2. Link to Panels

Path patterns, as explained in the preceding chapter, can be linked to a panel (via the relation "Path

pattern" of the respective panel). This means that the pattern is going to be used for construction of

the address, as soon as the panel is activated (= visible).

Caution: When designing the application, it is important to observe that at no time more than one

panel with path pattern can be active simultaneously. Otherwise, the ViewConfig-Mapper cannot

decide which address pattern has to be used.

Hint: If a more than one panel needs to be displayed when invoking a path pattern, this can be

solved by assigning a path pattern to one panel and by linking the first panel via the relation

"influences" to the second panel which has no path pattern (example: panel with navigation bar

and panel with content both need to be displayed at once).

The element, which is visible in the active panel, is going to be used for parameter construction of

the path pattern. It is necessary to ensure that the panel knows its element so that a parameter can

be constructed. A fixed view panel usually knows the element, so it should be preferred instead of

using a layout panel containing a fixed view panel.

A layout panel only knows the element if a context element is set.

Technical Handbook 5.8 - 3.7. Bookmarks and history

434

If the element of another panel is to be considered for constructing parameters, the concerning

panel has to be linked to the parameter via the relation "Path pattern parameter".By this, you can

for example address a comparison view of two products (compare/product_A/product_B):

For the comparison action of a menu within a view, a script needs to be added:

The action script for setting the session variable is shown in the following example:

/**
 * Performs a custom action. Can access the UI (open dialogs etc. with
context.ui)
 * @function

Technical Handbook 5.8 - 3.7. Bookmarks and history

435

 * @param {$k.SemanticElement} element
 * @param {object} context Parameters defined by the environment
**/

function onAction(element, context) {
 $k.Session.main().setVariable('comparison.left', element)

 return element
}

As soon as the panel with the related path pattern is activated, it shows the content which has been

stored as the session variable by means of the action script.

When accessing a bookmark link by typing it into the browser input line, the configuration principle

"vice versa" comes into account:

1. The apropriate path pattern is determined

2. The concerning panel is being activated and, if applicable, is being equipped with an element

for indication. The indication of element itself is defined by the parameter rules.

3. Panels, which are linked by parameters, are activated as well. If applicable, the element is

indicated additionally according the parameter rules.

4. The activation chains (see chapter about panel activation) are executed and the application is

visible in the desired state.

Technical Handbook 5.8 - 3.7. Bookmarks and history

436

Hint: Dialogs can be addressed by means of the previously described mechanism as well. When

defining the path pattern for dialogs, it is important that both the content of the dialog panel and

the content underneath the dialog panel is defined by the bookmark link. This can be done by

linking of a parameter with a panel of the main window panel.

3.7.3. In-app navigation with bookmarks

By means of the in-app navigation with bookmarks, an action-based navigation can be realized

alternatively by using web links (panels are activated by an action and/or by exchange of content

between panels).

In this case, functionalities of the browser like "open in new tab" / "open in new window" are

available for the user. Furthermore, search engines can follow and index these links.

The definition is simply done by linking the action to the desired path pattern. If the parameter

construction shall not (only) be executed by the element of the action, this can be adjusted by

means of the script "Parameter construction".

Technical Handbook 5.8 - 3.7. Bookmarks and history

437

3.8. Plugins

In order to make the following plugins applicable, they need to be activated for the options request

of the ViewConfiguration mapper. At the REST service configuration of the VCM, a detail editor

provides the options:

NOTE
After selection of the required plugins, both REST service and ViewConfiguration

must be updated/rebuilt.

3.8.1. vcm-plugin-calendar

The vcm-plugin-calendar can be used to display data in a calendar.

Technical Handbook 5.8 - 3.8. Plugins

438

In order to display the data as a calendar, it is necessary to add a style element containing the

calendar renderMode to the table configuration. The value under Number of rows (page size)

specifies the maximum number of calendar entries that can be shown per view (in this case per

month). The table must contain the following columns:

• start : A date with which the calendar entry begins.

• end: End date of the entry (optional)

• title: The title of the entry

• allDay: Boolean value that specifies whether the entry applies to the whole day (optional)

• Further options for columns can be found in the fullcalendar.io Event_Object documentation.

It is also possible to configure a select action for the columns of the table. This action is then

executed when a calendar entry is clicked.

In addition, the vcmPluginCalendarOptions style attribute can be used to make additional

configurations.

Further information on the plugin can be found at fullcalendar.io.

3.8.2. vcm-plugin-chart

The vcm-plugin-chart is used to display data from a table configuration on the web front-end in the

form of a chart. Various chart types are available: Line, bar, pie, ring and radar charts.

Example of a bar chart:

Technical Handbook 5.8 - 3.8. Plugins

439

http://fullcalendar.io/docs/event_data/Event_Object/
http://fullcalendar.io/

Example of a pie chart:

Configuration example for pie chart:

1. Create a script generated view .

2. Important: For viewType , enter "chart".

3. For the script generated view, create a new script.

The following script snippet shows a generic example for a pie chart with black border color. It

displays the attributes of an attribute array, using their value and type name for showing the

amount and a label:

function customizeView (element, view) {
 var dataEntries = [...] // Array of numerical values or
attribute values (float or integer)

Technical Handbook 5.8 - 3.8. Plugins

440

 view.chartData = {
 // static data
 datasets: [{
 data: [],
 backgroundColor: [], // array of hexadecimal color
strings if number of values is static
 borderColor: '#000' // hexadecimal string for border
color
 }],
 labels: []
 }

 dataEntries.forEach(function (entry) {
 view.chartData.datasets[0].data.push(entry.value()) // if
dataEntries is an array of attributes
 view.chartData.datasets[0].backgroundColor.push() //
entry-spcific color
 view.chartData.labels.push(entry.type().name() + ': ' +
entry.value())
 })
 view.type = 'pie'
 return view
}

4. Add a new style to the script generated view with renderMode "chart" and vcmPluginChartType

"pie". For vcmPluginChartWidth and vcmPluginChartHeight , specify width and height for the

chart (values in pixel).

5. Optional step: For the style, specify a vcmPluginChartOptions script for legend placement and

resizing behavior:

function additionalPropertyValue(element) {
 var value = {legend: {position: 'right'}, maintainAspectRatio:
false}
 return value
}

3.8.2.1. Configuration

To generate a chart, it is necessary to create in a table configuration a style with the “chart” option

as its renderMode .

If, for example, you add an action with the “Display graphically” option to the underlying table

configuration, you can then display the relevant data record additionally in the Net-Navigator by

clicking on parts of the chart.

Technical Handbook 5.8 - 3.8. Plugins

441

The plugin uses chart.js to generate the charts.

For vcm-plugin-chart there are multiple options for display adjustment that can be defined by

means of styles:

• **vcmPluginChartDataColumns:

◦ String with column numbers that are used as the data source. Default: columns 1-n

• **vcmPluginChartDataMode:

◦ 'rows' or 'columns'. Default: 'rows'

• vcmPluginChartHeight: Specification of chart height in pixels. Default: 'auto'

• vcmPluginChartWidth: Specification of chart width in pixels. Default: 'auto'

• vcmPluginChartLabelColumn: Column number for labels. Default: 0

• vcmPluginChartOptions: Options for adapting how keys are displayed and axes are scaled; they

are transferred to chart.js.

• vcmPluginChartType: Specification of the chart type: ‘line’, ‘bar’, ‘horizontalBar’, ‘radar’, ‘pie’

or ‘doughnut’. Default: 'line'

The following example shows how to use a script for vcmPluingChartOptions in order to disable the

chart legend while scaling the axis to units of the size 1 and setting the axis origin to 0 instead of 1:

function additionalPropertyValue(element, context) {

 return {

 legend: { display: false },

 scales: { yAxes: [{ ticks: { stepSize: 1, beginAtZero: true } }] }

 }

}

3.8.2.2. Configuration on basis of a scriptgenerated view

Charts can be display instead of tables using a script-generated view as well.

The prerequisite for this is that “chart” must be specified as the “viewType” in the configuration tab

of the script-generated view.

Furthermore, as is the case for the table configurations, a style must be assigned that uses the

property vcmPluginChartType to specify the preferred chartType (line', 'bar', 'radar', 'pie' or

‘doughnut.' Default: 'line').

Technical Handbook 5.8 - 3.8. Plugins

442

http://www.chartjs.org/

The following is an example script that counts jobs according to their status and shows the set in a

pie chart. Note that this script is an example of the “pie” chart type. Use the documentation for the

chart.js to define the differences in the data formats of the other chart types:

https://www.chartjs.org/docs/latest/

function customizeView(element, view) {
 var taskCount= $k.Registry.type(“job").allInstances().reduce(function
(result, job, index) {
 var status = job.attributeValueString(“statusJob");
 result[status]= (result[status]||0)+1
 return result;
 }, {})

 view.chartData = {
 datasets: [{
 data:Object.keys(jobsCount).map(function(key) {return jobsCount
[key]}),
 backgroundColor: ['red', 'green']
 }],
 labels: Object.keys(jobsCount)
 }

 view.type = 'pie'

 return view;
}

This pie chart was generated using a script that uses the chart.js plugin.

3.8.3. vcm-plugin-html-editor

Web front-end

The vcm-plugin-html-editor makes it possible to edit HTML-formatted text. For this purpose it uses

the summernote WYSIWYG editor.

Technical Handbook 5.8 - 3.8. Plugins

443

https://www.chartjs.org/docs/latest/
https://summernote.org/

Configuration

For the configuration, a property view for a string attribute is needed, which has a style

configuration with renderMode "htmleditor". To make the content editable in the web frontend,

the properties configuration needs to be embedded in an edit configuration. Otherwise, the

attribute text is rendered as HTML without editor.

Technical Handbook 5.8 - 3.8. Plugins

444

3.8.4. vcm-plugin-maps

The map plugin makes it possible to embed a map in the front-end. For this purpose the objects to

be displayed must have an attribute of the “geographical position” type.

The map can be configured as a script-generated view or as an object list. For use via object lists, a

style with the “maps” renderMode is applied to the “Table” tab in a table view.

Columns are used to further configure the map. The columns with the labels “mapsLabel” (contains

the name of the object) and “mapsCoordinates” (contains the attribute with the geographical

coordinates) are obligatory because they are used to determine the objects for display and its

coordinates. Please note that this exact label must be used.

Optional columns and functions:

Technical Handbook 5.8 - 3.8. Plugins

445

• “mapsPopup” – ensures that a pop-up with the contents of this column is called up when the

icon is clicked (accepts html). If a selection action is available, this column is deactivated.

• “mapsTooltip” – displays the configured property as a tooltip.

• “mapsColor” – determines the color of the marking element on the map.

• “mapsIconLocator” – by default the icon of the type is used to display the objects on the map.

Here adjustments are possible by specifying a different icon location in the form of the ID of the

corresponding file attribute.

A selection action can be applied to the table; this action is activated when the marking element is

clicked.

3.8.5. vcm-plugin-markdown

The HTML output enabled by the VCM Markdown plug-in makes it possible to output Markdown

texts.

It can be used by adding a style with the render mode markdown to one of the following

configuration elements:

• Static text : The Viewconfig property text of the configuration element is interpreted as

markdown.

To use the plug-in, the render mode called "markdown" must be entered on the “Style” tab:

Technical Handbook 5.8 - 3.8. Plugins

446

• Property : This has the effect that the value of the attribute is interpreted as markdown.

The view for the string attribute “Markdown” is configured using a property view:

Technical Handbook 5.8 - 3.8. Plugins

447

Like a text object, the property also receives the render mode “markdown.”

After rendering, the text has the following visual highlights in the web front-end:

Further configuration of the plug-in is possible via the style attribute vcmPluginMarkdownOptions .

The plug-in uses the module markdown-it

3.8.6. vcm-plugin-timeline

Events can be displayed chronologically on a timeline using the vcm-plugin-timeline plugin.

The timeline can be horizontal or vertical. The horizontal variant of the timeline provides two

additional buttons for scrolling when the timeline is wider than the space available. A scroll bar

should be provided by the browser for the vertical variant in this case.

Technical Handbook 5.8 - 3.8. Plugins

448

https://github.com/markdown-it/markdown-it

3.8.6.1. Configuration

First, a “script generated view” has to be created and its view type attribute must be set to

“timeline.” In addition, a script must be placed on the view which provides data for the timeline, for

example:

function customizeView (element, view) { //other content
 view.options = {
 layout: 'horizontal',
 // layout: 'vertical',
 itemHeight: 130
 }
 view.events = element.relationTargets('hasAlbum').map(function (album) {
 var obj = {}
 var name = album.name()
 var date = album.attributeValue('releaseDate')
 if (date) { date = date.toString() } else { date = '' }
 return obj = {name: name, date: date, elementId: album.idString()}
 })
 return view
}

This script can be used with the following parameters under ‘view.options’ in order to modify the

appearance of the timeline:

• 'layout': determines the direction of the timeline, either 'horizontal' or ‘vertical.'

• 'itemHeight': Height of the elements on the time bar in pixels. If this is not set, all elements

receive the height of the element that requires the most space.

Under 'view.events' an array has to be created which contain the results as objects. Each of these

requires the attributes ‘name,' 'date' and ‘elementId.’

3.8.6.2. Styling

CSS rules are used to modify the default style of the timeline.

Depending on the alignment configured for the timeline, the following class hierarchy is available

for this:

The text fields for the results can be modified using the following selectors:

.timelineVertical ul li

.timelineHorizontal ul li

The mark points for the results can be modified using the following selector:

Technical Handbook 5.8 - 3.8. Plugins

449

.timelineVertical ul li::after

.timelineHorizontal ul li::after

3.8.7. vcm-plugin-page

3.8.8. vcm-plugin-net-navigator

The vcm plugin Net-Navigator visualizes elements in a graph-like view.

3.8.8.1. Configuration

The plugin can be configured by means of styles.

Styles of the view

Style Description

vcmPluginNetNavigatorOptions A JSON object for the view options. See below for details

extra Alternative to vcmPluginNetNavigatorOptions

Options

Technical Handbook 5.8 - 3.8. Plugins

450

Option Description

vcmPluginNetNavigatorOptions

.categories.hideLabel

Show/hide category labels

vcmPluginNetNavigatorOptions

.categories.embeddedActions

Configure where actions are to be displayed. For true, they are

shown next to the categories

vcmPluginNetNavigatorOptions

.categories.compactActions

Combine actions in a menu

vcmPluginNetNavigatorOptions

.history.enabled

Activates/deactivates the navigation history

vcmPluginNetNavigatorOptions

.enableEditing

Activates/deactivates the option of creating new links between

elements in the graph

vcmPluginNetNavigatorOptions

.nnOptions

Options for the Net-Navigator component

vcmPluginNetNavigatorOptions

.nnOptions.overload.maxExpan

dNodes

Number of nodes that can be opened simultaneously before a

query dialog regarding the relations to be opened appears. The

default value is 5.

Styles of nodes

extra A JSON object for the node options. See below for details

Node options

color Overwrites the background color of the node

label Overwrites the label of the node

icon Overwrites the icon of the node

Styles of borders

extra A JSON object for the border options. See below for details

Border options

color Overwrites the background color of the border

label Overwrites the label of the border

3.8.8.2. Actions

Nodes and relations can be supplemented with actions. These are arranged in a circle around a

node or the relations.

Technical Handbook 5.8 - 3.8. Plugins

451

Actions are configured in the graph configuration within a node category or link.

Preconfigured actions

Action type Description

NN-Expand A small plus symbol can be used to display neighboring nodes

(for which a configuration exists)

NN-Hide Hide a node

NN-Pin Pin a node

Custom actions

A symbol image is always required for the display

3.8.8.3. Followups

The graph view reacts to the following follow-ups:

Follow-up Data Description

graph-show {elementId:

["ID123_456"]}

Displays the elements in the graph. Elements

already displayed are hidden

Technical Handbook 5.8 - 3.8. Plugins

452

Follow-up Data Description

graph-join {elementId:

["ID123_456"]}

Adds the elements to the graph. Elements

already displayed are retained

graph-hide {elementId:

["ID123_456"]}

Removes elements from the graph

graph-back Moves one step back in the graph history

graph-forward Moves one step forward in the graph history

graph-reload Updates the elements in the graph.

Example: ActionResponse script which adds the root term to the graph view:

function actionResponse (element, context, actionResult) {
 var actionResponse = new $k.ActionResponse()

 actionResponse.setFollowup('graph-join')
 actionResponse.setData({
 elementId: [$k.rootType().idString()]
 })
 return actionResponse
}

Technical Handbook 5.8 - 3.8. Plugins

453

3.9. Special configuration

This chapter covers specific application cases in the ViewConfiguration Mapper which require a

combination of viewconfig element, search and/or script.

3.9.1. Switching language of web frontend

NOTE This cuntionality is available for the VCM after Version 11.0.0.

For switching the UI language, there are two possibilities available:

1. By means of an action with a configured Script (ActionResponse) and a followup "switch-

language":

function actionResponse(element, context, resultModel) {
 var actionResponse = new $k.ActionResponse();

 actionResponse.setFollowup('switch-language')
 actionResponse.setData({
 language: 'en-US'
 })

 return actionResponse;
}

2. By means of the query parameter "lang". Examples:

◦ http://localhost:8815/viewconfig?lang=en

◦ http://localhost:8815/viewconfig/random/bookmark/path/?lang=en-US

◦ http://localhost:8815/viewconfig/bookmark/with/query?bookmarkParam1=value&lang=d

e_DE

In both cases, the "lang" parameter / "language" must be in the format of the Accept-

Language Language Directive.

3.9.2. Display change history in a web frontend

Prerequisite:

• Change history recording has been set up: For changes to elements to be recorded, it is

necessary to set up a meta-attribute with the internal name “changeLog” of the “string” value

type. See also the “ChangeLog Trigger” chapter.

• The table as described in the following needs to be placed within a panel which gets the

changeLog attribute in forms of a domain model (context element).

Technical Handbook 5.8 - 3.9. Special configuration

454

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language#directives

NOTE Using the table within a Query View or a Search result View will not work.

• If the table needs to be placed within a grouping view, the domain model needs to be changed

to the changeLog attribute. To do so, the table must be linked to the grouping view via the

relation "subconfiguration of" and the relation needs a "Script for domain model" which

returns the changeLog attribute (not its value).

View configuration

The view configuration of ChangeLog entries for the web front-end can be implemented in the form

of a table via ViewConfiguration Mapper:

From the change history it is possible to read out values such as date, change, affected element,

modified properties etc.

For each of these values, it is necessary to create a column configuration that contains a script as its

column element. The script processes the entries as per the $k.HistoryChangeLogEntry class and

returns the relevant value, filtered by value type, for the column element (for syntax, see JavaScript

API). For script examples see the sections below.

As only one attribute element is generated for each semantic element of the ChangeLog attribute

type to be logged, all entries in the change history are written to the string as an attribute value.

Therefore, the entries of the string must be read out individually by means of the script. To ensure

that the entries are even available, it is necessary to activate (tick) the “Use hits” option. For more

information, see the “’Hit’ content model” chapter.

NOTE In the view configuration, the ChangeLog entries can be handled like the “hits” for

Technical Handbook 5.8 - 3.9. Special configuration

455

https://documentation.i-views.com/documentation-staging/5.4/javascript-api/index.html
https://documentation.i-views.com/documentation-staging/5.4/javascript-api/index.html

a query. If the “Use hits” option is not activated, the semantic element is output

without properties and without the corresponding ChangeLog entry (result: as

many empty column elements as there are ChangeLog entries).

To ensure that the view configuration of the table is told for which attribute the

ChangeLog entries should be displayed, influence from another view is required,

on the basis of which the context element is forwarded to the table.

The output table in the web front-end looks like this:

In this example, an object called “Roadster” has been created, a relation has obtained the “has

equipment” relation for the “Folding top” object, and then the object has been renamed

“Cabriolet”. Due to the script, each row in the “Object” column displays the current name of the

object that was modified.

Script examples for the ChangeLog output

Change date

function cellValues (logEntry, queryParameters) {
 return [convertToLocal(logEntry.timestamp())]
}

function filter (elements, queryParameters, columnSearchValue) {
 return elements
}

function convertToLocal (date) {
 return new $k.DateTime(date.valueOf() + (date.getTimezoneOffset() * 60
* 1000))
}

Change

function cellValues (logEntry, queryParameters) {
 return [logEntry.eventTypeString()]

Technical Handbook 5.8 - 3.9. Special configuration

456

}

function filter (elements, queryParameters, columnSearchValue) {
 return elements
}

Object

function cellValues (logEntry, queryParameters) {
 return [logEntry.topic() && logEntry.topic().name()]
}

function filter (elements, queryParameters, columnSearchValue) {
 return elements
}

Property

function cellValues (logEntry, queryParameters) {
 if(logEntry.propertyType()) {
 return [logEntry.propertyType().name()]
 } else {
 return []
 }
}

function filter (elements, queryParameters, columnSearchValue) {
 return elements
}

Value

function cellValues (logEntry, queryParameters) {
 var oldValue = logEntry.oldValue()
 if (!oldValue) { oldValue = '' } else if (oldValue.length > 100) {
 oldValue = oldValue.substr(0, 100) + '...'
 }
 var newValue = logEntry.newValue()
 if (!newValue) { newValue = '' } else if (newValue.length > 100) {
 newValue = newValue.substr(0, 100) + '...'
 }
 return [oldValue + ' ' + newValue]

Technical Handbook 5.8 - 3.9. Special configuration

457

}

function filter (elements, queryParameters, columnSearchValue) {
 return elements
}

Technical Handbook 5.8 - 3.9. Special configuration

458

3.10. Installation

The ViewConfig Mapper is a web frontend application for the Knowledge Graph and it can be

provided for use as follows:

• Make ViewConfiguration Mapper available as a ZIP file via static REST resource

• Reference to VCM demo with sourcing option (link)

• Using (other) web server

• Productive operation/test operation

3.10.1. Configuration of web servers

The View Configuration Mapper (VCM) running in the browser internally requires knowledge of

parameters for its functionality. If you are connecting directly to a bridge delivering VCM contents

and its REST services, the VCM running in the browser is capable to derive the parameters from its

first invocation.

On the other hand, if you want to run the bridge oder bridges behind some reverse proxy

infrastructure (as it it common e.g. in cloud projects, with load-balancing or running multiple

services behind a single virtual hostname), the services very often are not located on the root path

of the URL used in the users browser.

The parameters are also relevant, if the installation is different from the defaults mentioned.

The parameters are:

Parameter name Description Default value

iv-root-url The entry point of the bridge. Either a URL with

schema, host and port or an absolute path.

Examples:

• http://localhost:8815

• https://localhost:8815

• https://i-views.com/myproject/x/y

• /myproject/x/y

/

iv-path-viewconfig Absolute or relative (to iv-root-url) path to the

viewconfig service for this frontend. Examples:

• viewconfig/

• my-service/

• /myproject/x/y/service

Path of the service

belonging to the

request

Technical Handbook 5.8 - 3.10. Installation

459

Parameter name Description Default value

iv-path-bookmarks Absolute or relative (to iv-root-url) path from

which the bookmark URLs are formed.

<iv-path-viewconfig >

iv-path-static Absolute or relative (to iv-root-url) path to the

static resources. Examples:

• viewconfig/viewconfigmapper

• viewconfig/my-statics

• my-service/viewconfigmapper

• /static/

<iv-path-

viewconfig>/viewconfi

gmapper

iv-cookie-path defines the path scope of the authzentication

cookie

<iv-path-viewconfig>

iv-secure-cookies Determines if the secure flag should be set for

cookies. Possible values: true or false

false

Usually some kind of frontend web-server with reverse proxy capabilities is used, like Apache, nginx,

Traefik, etc. In that servers configuration you can add directives to send the parameters as headers

to the bridge, which will deliver them back to the VCM.

Technical Handbook 5.8 - 3.10. Installation

460

3.11. Extension project

3.11.1. Development environment

• Node.js/Webpack/etc.

3.11.2. Technical details

• Diagram showing information flow in the case of actions

• Component state

Technical Handbook 5.8 - 3.11. Extension project

461

4. i-views services

4.1. General

The i-views services can be configured by command line parameters or by a configuration file.

The command line parameters have precedence over the configuration file settings.

4.1.1. Configuration file

Some settings can be specified by means of a configuration file (extension .ini). The structure of the

file is as follows:

[Section]
parameterName1=parameterValue1
parameterName2=parameterValue2
...

The name of the default ini-file depends on the tool-type, e.g. a standard KnowledgeBuilder will be

named "kb.exe" (or "kb.im" respectively), so by default it will search for "kb.ini" as ini-file. Please

keep in mind, that renaming the file will not change the name of the default ini-file a tool is looking

for.

The name of the ini file can be specified via the command-line option "inifile":

-inifile <File name>, -ini <File name>

Below is a list of configurations that can be used for any service. For service-specific settings, see

the “configuration file” section of the relevant service.

4.1.1.1. Macros

Within ini files, further ini files can be included:

$(include:Dateiname).

This allows information from several files (e.g. host name) being stored into one common file.

• in one and the same line, the include instruction mustn’t be surrounded by further content;

otherwise, the include instruction will not be recognized

• include corresponds to a textual replacement

Technical Handbook 5.8 - 4. i-views services

462

• include can be nested: the included file turn may include further files

• the file name may consist of path specifications; within Windows, slashes / will be replaced by

backslashes \ automatically

Including environment variables is possible as well:

$(env:Variablenname)

"$(env:USERDNSDOMAIN)" is translated into "I-VIEWS.COM" for example.

NOTE
This macro only can be used in key values, for categories / key names it will not be

replaced.

Example:

jobclient.ini

$(include:../shared/ivcontent-host.ini)
$(include:../shared/ivcontent-volume.ini)
jobPools=lucene, KLuceneAdminJob
[JNI]
classPath=...

bridge.ini

$(include:ivcontent-host.ini)
[KHTTPRestBridge]
$(include:ivcontent-volume.ini)
port=8815

../shared/ivcontent-host.ini

host=$(env:COMPUTERNAME).$(env:USERDNSDOMAIN)

../shared/ivcontent-volume.ini

volume=ivcontent-master

Technical Handbook 5.8 - 4.1. General

463

4.1.1.2. Logging settings

loglevel = <LogLevel>

Configures the messages that should appear in the log:

FATAL ERROR Critical error messages only

ERROR Error messages only

WARNING Warnings and error messages only

NORMAL (default value) All messages excluding debug outputs.

NOTIFY All messages including several debug outputs

DEBUG All messages including all debug outputs

debug = true/false

Obsolete. Sets the log level to DEBUG for true, and to NORMAL for false. Only evaluated if logLevel

is not set

nolog = true/false

Obsolete. If true, logTargets=null. Only evaluated if logTargets is not set

channels = <Channel1> [,<Channel2>,...]

Names of channel filters. Channel filters are used to output only the log messages belonging to the

specified channel filters. The name of a channel filter indicates the topic area to which the log

outputs belong. To find out which channel filters are possible, use the -availableChannels parameter

in the command line.

channelLevels = <Channel1>:<Level1> [,<Channel2>:<Level2>,...]

Targeted configuration of the log level for the respective channel.

logTargets = <Name1> [,<Name2>,...]

Names of log targets. For the configuration, see the “Log targets” section.

Technical Handbook 5.8 - 4.1. General

464

logprefix = <Prefix1> [, <Prefix2>,...]

Additional prefixes that are added for each log output.

Prefix Description

pid Process ID of the application

$proc$ ID of the current Smalltalk thread

$alloc$ allocated memory on the VM (in megabyte)

$free$ Free memory on the VM (in megabyte)

$incGC$ Status of incremental GCs

os Information about the OS

cmd Command line

$build$ Build version

$coast$ COAST version

If the prefix is not contained in this list the prefix is output without change.

logTimestampFormat = <FormatString>

Formatting specification for the timestamp of the log entry, e.g. “hh:mm:ss”.

exceptionLogSize = <Integer>

Sets the maximum size for the StackTrace supplied with an error message.

4.1.1.2.1. Log targets

Log targets can be used to specify different targets for logging; it is possible to configure the log

level, channels, formatting and more for each of them. For each specified name from the log targets

list, a configuration must be specified in section [<configuration name>]

[Default]
logTargets=erroroutput

[erroroutput]
type=stderr
format=json

Technical Handbook 5.8 - 4.1. General

465

loglevel= ERROR

is an example that configures the output of all error messages in the JSON format in the standard

error stream.

The null log target is an exception: if logTargets=null is configured, no configuration section needs to

be created. If this section is missing, this has the same significance as the following configuration

[Default]
logTargets=null

[null]
type=null

It is however possible to use null as the identifier for any log target configuration.

Generally it is possible, just as in the general configuration, to specify loglevel, debug, channels,

channelLevels, logprefix and logTimestampFormat (see above). The configuration of the log target

always takes precedence; if none is specified, the general configuration is used.

In addition there are several other configuration options:

format = <Format>

Specifies the output format. Possible values:

• plain : Standard formatting in machine-readable form if possible

• json : Single-line output as JSON string, above all for machine processing

type = <Target type>

Specifies the type of the output. This configuration MUST be specified, otherwise the log target is

ignored. The following section contains the description and other configuration options for the

different types:

file

Output in a log file.

file = <File name>

Technical Handbook 5.8 - 4.1. General

466

Specifies the file name of the target file.

maxLogSize = <size>

The maximum size of the log file before the old log file is archived and a new one is written. For

values below 1,024, the output is to be understood in MB.

maxBacklogFiles = <amount>

The maximum amount of archived log files. When a new one begins the oldest one is deleted.

transcript

Output to the transcript, can also be redirected to a log file and therefore accepts the same

configuration as "file".

stdout

Output to the standard out stream.

stderr

Output to the standard error stream.

mail

Sends the log output via email.

[errorMail]
type = mail
loglevel = ERROR
;Sender address:
sender = mail@example.org
;Recipient address:
recipient = rec@example.org
;Mail server:
smtpHost = stmp.example.org
;Port of the mail server:
smptPort = 465
;If true, activates the secured connection (TLS/SSL).
;If true, the username and password must have been set.
tls = true
username = mail@example.org
password = 12345abc

Technical Handbook 5.8 - 4.1. General

467

;Amount of attempts to resend the email in case of failure:
retries = 3
;Waiting time between the attempts in seconds:
retryDelay = 5

mailfile

Like mail, however the outputs with a low log level are first collected and only sent via email when

an entry with a high level is logged.

mailSendLevel = <LogLevel>

Sets the log level from which the email is sent.

syslog

Output as UDP datagram to a syslog client.

format = <Format>

Unlike with other log targets, json and plain are not supported as format; instead, the syslog version

can be specified here:

• rfc5424 : Formats the message as per RFC 5424. Most data are placed in the structured data

field in structured form. Only the actual log message is transmitted in the message field .

• rfc3164 : Formats the message as per RFC 3164. As this standard has no structured data field,

the corresponding data are placed at the beginning of the message field in the same

formatting.

NOTE
The timestamp is specified in the local time of the sending computer as per

the standard.

facility = <Integer>

The facility as an integer. For detailed information see https://tools.ietf.org/html/rfc5424#section-

6.2.1

targetHostname = <Hostname>

The host name of the target system. If not specified, localhost is used.

Technical Handbook 5.8 - 4.1. General

468

https://tools.ietf.org/html/rfc5424#section-6.2.1
https://tools.ietf.org/html/rfc5424#section-6.2.1

targetPort = <Integer>

The target port. If none is specified, the syslog standard port 514 is used.

hostname = <Hostname>

The host name of the sender. If none is specified, the host name of the system is read out.

appname = <Name>

Name of the sending application. If none is specified, the name of the EXE is used.

maxMessageSize = <Integer>

The maximum message size in bytes. If none is specified, the maximum size for UDP is used. To

shorten the message, structured data is removed incrementally at first, and the message is cut off if

necessary. The message remains in the valid syslog format even after shortening.

null

For suppressing the log outputs. No options are read out.

4.1.1.3. Text extraction

To extract texts and meta-data from file contents, use of Apache Tika must be set up:

• Download the current Tika app (e.g. app-1.18.jar) from the website http://tika.apache.org/ and

copy it into the directory of the Job-Client.

• Add the following entry to the configuration file (e.g. jobclient.ini or bridge.ini):

[text-extraction]
tikaJavaParams=-Xmx1024M
tikaJarPath=tika-app-1.18.jar
; Optional: Maximum size of the binary files,
; for which text is extracted
; extractedTextSizeLimit=100000
;
; Optional: Java path, the default value is 'java'
; extractorPath=C:\Program Files\Java\jdk-9\bin\java.exe

Technical Handbook 5.8 - 4.1. General

469

http://tika.apache.org/

4.1.1.4. HTTP Proxy configuration

Depending on the network infrastructure HTTP connections from machines are not directly

possible, but need to use the existing HTTP proxy infrastructure in the network. By default i-views

components do not try to use such infrastructure but they can be configured to do so.

The most simple configuration attempts to use the operating systems configured HTTP proxy

infrastructure. To use this, add the following section to the tools ini-file:

[NetClient]
HttpClient.useProxy=true

With this configuration i-views will try to read and interpret the operating systems proxy

configuration at the next start of the tool.

In case this does not work, i-views can also be configured to explicitely use a specific proxy setting

with the following ini-snippet:

[NetClient]
HttpClient.proxyHost=HOSTNAME
HttpClient.proxyPort=PORT

The values for HOSTNAME and PORT can be obtained either by the network administration team or

users can try to read the configuration from the operating system or installed browsers. Here some

known sources are documented:

• Windows: in a PowerShell window execute

[System.Net.WebProxy]::GetDefaultProxy()

In the field "Address" you should find a hostname and port-number separated by a colon

character.

• on Windows Google Chrome and Microsoft Edge/Internet Explorer use the above Windows

setting.

• Firefox: Menu "Tools, Options", on page "General", item "Network Settings", entry "HTTP

Proxy"

4.1.1.5. TLS configuration

If a service provides a HTTPS interface, then a certicate for TLS must be specified in the category

[tls] . The configuration depends on the operating system.

Windows

Technical Handbook 5.8 - 4.1. General

470

[tls]
certificateName=MyCert

certificateName specifies the "friendly name" property of the certificate in the Windows certificate

store. Note that this property is not a part of the certificate itself.

The certificate must be put in the personal certificate store of the user. This means that the service

must be run under a user account, not with the local system account.

The private key must be stored, too.

A self-signed certificate for testing can be generated with Powershell:

New-SelfSignedCertificate -CertStoreLocation Cert:\CurrentUser\My -DnsName
"mycomputer.mydomain.org" -FriendlyName "MyCert" -NotAfter (Get-Date)
.AddYears(10)

Linux

[tls]
certificatePath=myCert.cert
privateKeyPath=myCert.key

certificatePath is the path to the certificate file. It must be stored in PEM format. privateKeyPath is

the path to the private key file. It must be stored in PEM format, without password protection.

Technical Handbook 5.8 - 4.1. General

471

4.2. Mediator

4.2.1. General

The i-views server provides consistent and persistent data storage, and ensures that the data on the

i-views clients that are connected are up-to-date.

Data is managed in an object-oriented database that uses an optimistic transaction system to allow

cooperative work on the Knowledge Graph.

Functioning as a communication center, the i-views server ensures clients and services are

synchronized. As a basic mechanism, it makes a shared object space and active updates available

for this.

The i-views server can be operated in three modes:

1. Classic/Compact: The server starts as an individual process in this mode – the so-called

“mediator”.

2. Multiprocess: The server starts at least two processes in this mode. This results in higher

memory usage than in compact mode, however many jobs can be executed in parallel.

3. Distributed: The server components “stock” and “dispatcher” can be configured and operated

separately in this mode. This makes it possible to distribute the server components across

different computer nodes.

4.2.2. System requirements

The i-views server is platform-independent and runs on all popular operating systems, e.g.

Windows and Linux. Other systems on request.

OS Version Processor Supported 64 Bit VM

Windows Windows 11, 10 22H2; Windows Server

2022, 2025

x86 Yes Yes

Linux Kernel >= 3.10, glibc >= 2.17 x86 Yes Yes

Kernel >= 5.4, glibc >= 2.27 ARM No No

Mac macOS >= 12.x x86, Apple

Silicon

Yes Yes

4.2.3. Operating modes

The following command line arguments generally determine the mode in which the server is

started. Without these arguments, the server starts in the compact “mediator” mode.

Technical Handbook 5.8 - 4.2. Mediator

472

-stock

Starts the “Stock” server component, which is responsible for persistent data storage.

-dispatcher

Starts the “Dispatcher” server component, which is responsible for the synchronization of the

clients and for the distribution of “active updates”.

-server

Starts the complete server in the multiprocess mode.

4.2.3.1. Multi process mode (-server)

The start parameter -server automatically starts a stock and a dispatcher. The dispatcher opens a

server on the default port (30068). The port of the stock is selected automatically. Authentication

tokens between the two processes are generated automatically and do not have to be configured.

NOTE
It is important that all clients (Knowledge Builder, bridge, batch tool etc.) have

access to stock and dispatcher.

If this is only possible for certain ports, stock and dispatcher must be configured explicitly. The local

directory uses the same configuration files as the actual distributed mode

• dispatcher.ini configures the dispatcher process

• stock.ini configures the stock process

Other configuration files cannot be used at present.

4.2.3.2. Configuration of the Stock

The stock is responsible for storing the data on the hard drive. A simple is example of this is the

configuration file stock.ini

[Default]
interfaces=cnp://0.0.0.0:4998

This configuration ensures that the stock listens on port 4998 and communicates via the native

Coast protocol.

The following parameters can be used:

Technical Handbook 5.8 - 4.2. Mediator

473

port=<port number>

Starts the stock with port number <num>. Without this entry, port 30068 is used.

This parameter is obsolete. It is replaced by the “interfaces” parameter. The entry “port=1234”

corresponds to the entry “interfaces=cnp://0.0.0.0:1234.” In contrast to the start parameter,

multiple values are possible here, which can be listed consecutively in comma-separated form.

interfaces=<interface-1>,<interface-2>,...<interface-n>

This parameter determines the addresses and protocols used to access the server. Several values

are permissible and are separated by a comma.

Possible protocols are:

• http

• https

• cnp

• cnps

The abbreviation “cnp” stands for “Coast Native Protocol” or “Coast Native Protocol Secure.” The

syntactic structure of an interface definition is equivalent to a URL with schema, host and port.

The host component is used to manage which network address(es) is/are used to access the server.

For example:

• 0.0.0.0 binds to all IPv4 interfaces

• [::1] binds to the IPv6 loopback only

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be accessed

using an IIS running on port 443, for example.

baseDirectory=<Directory>

Sets the directory in which the “volumes” directory is located. If this value is supposed to end on

volumes, this directory is used directly without creating an additional “volumes” directory below it.

volumesDirectory=<Directory>

The Knowledge Graphs are stored in this directory. Here, “volumes” is entered as the default value.

Technical Handbook 5.8 - 4.2. Mediator

474

backupDirectory=<Directory>

Specifies the directory to which the Knowledge Graph backups are written and also read for

restoring. Only complete directory names are allowed, no relative paths.

networkBufferSize=<Size in bytes>

This specifies the size of the buffer that is used for sending/receiving data. The default value is

20480. In some infrastructures you can specify

networkBufferSize=4096

to achieve a higher throughput.

flushJournalThreshold=<Number of clusters>

Specifies the maximum value that “changed cluster" + “index cluster" may reach in a saving process.

If the value for “changed clusters” has already been exceeded, no “index clusters” are saved; these

are kept with the journal instead.

A low value (e.g. 50) guarantees fast saving time but can potentially generate a large journal.

A value of “0” deactivates journaling. The default value is “2000.”

A “flush” of the journal is executed after complete saving at the latest. This in turn is triggered if:

• The mediator is closed

• The last client of the corresponding volume is logged off

• Saving is triggered by a full-save job (see jobs.ini)

autoSaveTimeInterval=<Wait interval in seconds>

Specifies the maximum wait time in seconds until automatic saving takes place again after the last

cluster was saved. The default value is 15.

clientTimeout=<Timeout in seconds>

Specifies the time in seconds that a connected client may not have sent an Alive message before

the mediator regards it as inactive and excludes it.

Technical Handbook 5.8 - 4.2. Mediator

475

password.flavour=190133293071522928001864719805591376361
password.hash=111995451824586607054955998020526241717349657914270806386949
54247035513239844

The mediator password is calculated together with a random flavor to produce a (SHA256) hash

value. These two pieces of information then suffice for the mediator to check an authentication

request. During authentication on the server, the user name must be specified as “Server.admin.” To

determine these values, you can use

password.update=new_password

Trigger the server to compute a new flavor and suitable hash value and write these to the ini file.

The “password.update” entry is removed in this process.

password=<String>

The obsolete but still supported way of setting the mediator password. This variant must not be

used at the same time as the SHA256 hash variant.

Changed

skipVolumesCheck=<true|false>

Specifies whether the check of the existing volume that is normally performed after starting the

mediator is skipped

Changed

4.2.3.2.1. Memory settings

The following three parameters are used to configure the memory allocation and usage. You may

specify values either in megabytes or actual bytes, whereby it is assumed that values under

1048576 refer to megabytes.

maxMemory=<Integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base memory

available (under Windows) or 512 MB by default.

Technical Handbook 5.8 - 4.2. Mediator

476

baseMemory=<Integer, in MB>

Base memory usage after which efforts to free up memory increase. By default 0.6 * maxMemory.

(alias: “growthRegimeUpperBound”)

freeMemoryBound=<Integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use again.

4.2.3.2.2. Blob service configuration

If the mediator is supposed to be started with an integrated BLOB service so that the BLOBs are

stored separately from the database on the hard drive, the following setting must be entered in the

“mediator.ini” file:

startBlobService=true

For more information on this, refer to the documentation of the BLOB service.

4.2.3.3. Configuration of the Dispatcher

The dispatcher is responsible for transaction control and coordination of several clients. A simple

configuration file is

[Default]

interfaces=cnp://0.0.0.0:5000

stockAddress=cnp://localhost:4998
stockAuthentication=dsfkhvqw3n9485z432504

This configuration opens a server on port 5000 to which clients can connect. The dispatcher looks

for the stock under localhost:4998. This address is also the address that clients use to fetch data

from stock

If dispatcher and stock are running on the same server, the dispatcher tells its clients its own host

name to ensure connections via the network work.

Token dsfkhvqw3n9485z432504 is used to authenticate the dispatcher on the stock. This token

must be set in the stock configuration using the "password.*” keys .

Technical Handbook 5.8 - 4.2. Mediator

477

../../blob-service/blob-service-en.adoc

4.2.4. Installation

By principle, the i-views server does not require a specific installation, i.e. it can be started ad-hoc

from any directory.

However, it must be ensured that the necessary access rights (read/write/generate) have been set

for the server’s working directory and all subdirectories.

4.2.4.1. Start parameter

A range of parameters can also be transferred to the mediator process when starting. Most

parameters can, however, also be specified in the mediator.ini, allowing the mediator to be started

using a simple command line. When doing so, the rule is that the parameters specified on the

command line take precedence over any parameters specified twice in the .ini file.

The complete list of possible start parameters is output by the mediator when called up using the

parameter “-?”.

-interface <interface-1>

This parameter determines the addresses and protocols used to access the server. Possible

protocols are: http, https, cnp, cnps. The abbreviation “cnp” stands for “Coast Native Protocol” or

“Coast Native Protocol Secure.” The syntactic structure of an interface definition is equivalent to a

URL with schema, host and port. The host component is used to manage which network address(es)

is/are used to access the server. For example: “0.0.0.0”=IPv4 all interfaces, “[::1]”=IPv6 loopback

only.

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be accessed

using an IIS running on port 443, for example.

-clientTimeout <sec>

Sets the time within which a client must automatically answer to <sec> seconds. The value should

be set to a minimum of 600 (which is also the default value).

-baseDirectory <directory>

Sets the directory in which the “Volumes” directory is located. Along with the “Volumes”

subdirectory, the directories for backups and downloads are created. This parameter used to be

called “-volumes”.

The following parameters give commands to the mediator executable to run specific jobs, without

functioning as a server for Knowledge Graph afterwards.

Technical Handbook 5.8 - 4.2. Mediator

478

-quickRecover <volume> -recover <volume>

In the event that the mediator was not shut down properly (e.g. computer crash), lock files in

volumes that were in use stop running. The volume will then not be able to be entered. In order to

disable the lock, remove the lock by calling -quickRecover <volume>. It cannot be called when

(possible) inconsistencies were found. In this case, the start parameter -recover must be used.

NOTE
The working directory called must be the directory that contains the “volumes”

directory. The “volumes” parameter therefore does not function in this case.

-bfscommand <volume> <command>

Executes commands that are identified by the BlockFileSystem.

Command line parameter for logging:

-nolog

Disables logging

-loglevel <integer>

Configures the messages that should appear in the log:

• 0: All messages including debug outputs

• 10 (default value): All messages excluding debug outputs

• 20: Warnings and error messages only

• 30: Error messages only

-logfile <file name>, -log <file name>

Name of the log file that is used instead of the standard log file. It is important to change this

parameter when several clients are being started in the same working directory.

-debug

Switches logging to debug mode

Technical Handbook 5.8 - 4.2. Mediator

479

-log <logname>

Sets the log file to <logname>.

4.2.4.2. Configuration file "mediator.ini"

A number of mediator settings can also be defined in the configuration file mediator.ini. The

structure of the file is as follows:

[Default]
parameterName1=parameterValue1
parameterName2=parameterValue2
...

The following parameters can be used at this point:

Network communication

port=<port number>

Starts the server with port number <num>. Without this entry, port 30068 is used.

This parameter is obsolete. It is replaced by the “interfaces” parameter. The entry “port=1234”

corresponds to the entry “interfaces=cnp://0.0.0.0:1234.” In contrast to the start parameter,

multiple values are possible here, which can be listed consecutively in comma-separated form.

interfaces=<interface-1>,<interface-2>,...<interface-n>

This parameter determines the addresses and protocols used to access the server. Several values

are permissible and are separated by a comma. Possible protocols are: http, https, cnp, cnps. The

abbreviation “cnp” stands for “Coast Native Protocol” or “Coast Native Protocol Secure.” The

syntactic structure of an interface definition is equivalent to a URL with schema, host and port. The

host component is used to manage which network address(es) is/are used to access the server. For

example: “0.0.0.0”=IPv4 all interfaces, “[::1]”=IPv6 loopback only.

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be accessed

using an IIS running on port 443, for example.

For SSL communication (cnps:// or https://), the file paths for certification and private key must also

be specified in the configuration file:

certificate=name of the .crt file

Technical Handbook 5.8 - 4.2. Mediator

480

privateKey=name of the .key file

Directories

baseDirectory=<Directory>

Sets the directory in which the “volumes” directory is located. If this value is supposed to end on

volumes, this directory is used directly without creating an additional “volumes” directory below it.

volumesDirectory=<Directory>

The Knowledge Graphs are in this directory. ‘volumes’ is entered as the default value at this

position.

backupDirectory=<Directory>

Specifies the directory to which the Knowledge Graph backups are written and also read for

restoring. Only complete directory names are allowed, no relative paths.

networkBufferSize=<Size in bytes>

This specifies the size of the buffer that is used for sending/receiving data. The default value is

20480. In some infrastructures, you can specify

networkBufferSize=4096

to achieve a higher throughput.

journalMaxSize=<Maximum size of the journal>

journalMaxSize=0 can be used to deactivate journaling, which is normally active. The default value

is 5242880 (5 MB).

autoSaveTimeInterval=< Wait interval in seconds>

Specifies the maximum wait time in seconds until automatic saving takes place again after the last

cluster was saved. The default value is 15.

clientTimeout=<Timeout in seconds>

Technical Handbook 5.8 - 4.2. Mediator

481

Specifies the time in seconds that a connected client may not have sent an Alive message before

the mediator regards it as inactive and excludes it.

password.flavour=190133293071522928001864719805591376361
password.hash=111995451824586607054955998020526241717349657914270806386949
54247035513239844

The mediator password is calculated together with a random flavor to produce a (SHA256) hash

value. These two pieces of information then suffice for the mediator to check an authentication

request. During authentication on the server, the user name must be specified as “Server.admin.” To

determine these values, you can use

password.update=new_password

Trigger the server to compute a new flavor and suitable hash value and write these to the ini file.

The “password.update” entry is removed in this process.

password=<String>

The obsolete but still supported way of setting the mediator password. This variant must not be

used at the same time as the SHA256 hash variant.

Changed

skipVolumesCheck=<true|false>

Specifies whether the check of the existing volume that is normally performed after starting the

mediator is skipped

Logging

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configuration

file.

Working memory

The following three parameters are used to configure the memory allocation and usage. You may

specify values either in megabytes or actual bytes, whereby it is assumed that values under

1048576 refer to megabytes.

maxMemory=<integer, in MB>

Technical Handbook 5.8 - 4.2. Mediator

482

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base memory

available (under Windows) or 512 MB by default.

baseMemory=<integer, in MB>

Base memory usage after which efforts to free up memory increase. By default 0.6 * maxMemory.

(alias: “growthRegimeUpperBound”)

freeMemoryBound=<integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use again.

BLOB service configuration

If the mediator is supposed to be started with an integrated BLOB service so that the BLOBs are

stored separately from the database on the hard drive, the following setting must be entered in the

“mediator.ini” file:

startBlobService=true

For more information on this, refer to the documentation of the BLOB service (see link below).

4.2.4.3. Security concept of the Mediator

The i-views server is a generic component that can be used for more than i-views. Along with the

restrictions due to authentications on the server or in the database, the user can also control which

applications may connect to it.

Each application (client and server) receives a pair of RSA keys that is unique for each application

delivered. The public key can be obtained by using the information (KB: “Tools” menu,

“Information”, then the “Copy RSA key” button) or be called up using the parameter -showBuildID

for console applications. The build information exported this way includes the public RSA exponents

(rsa.e_1) and RSA module (distributed across several rsa.n_X) and an MD5 checksum for this

information (buildID).

Example of build information:

[buildID.90A1203EFB957A58C2268AD8FE3CC5A3]
build=Build 00010101
rsa.n_1=93D516DF61395258AA21A91B33E8EE67
rsa.n_2=B07C6FC5023DBB18F2201CF723C8F5DD
rsa.n_3=78941FB7C10D20988FEDFC6BD02CF3B7
rsa.n_4=E4567751843C38F055ED791AA7505278

Technical Handbook 5.8 - 4.2. Mediator

483

rsa.n_5=23D94BB9EAB2E23F21DBEAA3DD2D2776
rsa.n_6=CE8B81564645DA85C85E9A78BB6E6B41
rsa.n_7=28A646D4868C38E00AE4810601B1EE9F
rsa.n_8=4FF5C35F873E6ED4F65F0FE8B4B45307
rsa.e_1=010001

If you would now like only a specific set of client applications to be able to connect to the server,

then you must transfer the respective sections into the mediator.ini in the server. The client

transfers its buildID when it connects. When the mediator receives a suitable entry, it authenticates

the client. In other cases, it will only connect when there are no entries on build information in its

ini file. This, for example, prevents outdated client applications or modified client applications from

being able to connect to the mediator.

Conversely, corresponding buildIDs for the mediators can be entered in the respective ini file in the

client application in order to prevent a compromised or outdated server from establishing a

connection.

This allows an environment to be configured in which only the latest software can be used to access

productive data, but also allows access to the server with the test data from a development

environment. The user software, in turn, can only access the productive server or the test server.

If neither the server nor the client is configured, then the installation performs the same way as the

predecessor version: Each application can connect to any server (as long as the protocol version is

correct).

Server version 5.4 or higher requires the server password as a parameter in order to run

administrative commands (by means of the Rest interface or by means of the administration using

an administration tool). An authentication as the administrator in the volume has been sufficient

since version 6.2 for actions that relate to an existing database (backup, download, garbage

collection, etc.).

Conversely, it is possible to log into a volume using the server password. Details of this can be found

in the Admin tool.

If no password has been configured on the server, then any password can be used to log onto the

server. However, logging in on the volume is then not possible.

4.2.4.4. Audit log configuration

In a number of application scenarios, it may be necessary to log all accesses to a Knowledge Graph

in an access or audit log. This audit log contains entries for all log-in and log-out processes, write

and read access to Knowledge Graph contents, search requests made, printouts, exports, etc.

The log must be activated in the ‘System configuration / Audit log’ category in the Admin tool. The

activation or deactivation of the log, in turn, results in a entry in the audit log.

An analysis tool can be opened in the administrator menu of the Knowledge Builder to view and

Technical Handbook 5.8 - 4.2. Mediator

484

search within the access log.

The log can be configured by creating a file named 'log.ini' in the data directory of the volume. This

configuration file is only read when the volume is opened. If the configuration was changed while

the volume was opened, then the Mediator has to be restarted.

[Default]
; A comma-separated list of log names. The log is configured in the
section with the same name.
applicationLog=audit

[audit]
; Create a compressed backup every 28 days and start with a new empty log
backupInterval=28
; Max size of a JSON file, in MB
maxLogSize=5
; Do not flush the log immediately, for better performance
writeBackImmediately=false

4.2.5. Operation

4.2.5.1. Shut down the server

The i-views server can be shut down locally by means of the Ctrl-C abort signal.

In case of installation as a Windows service, the server must be stopped using the service

management.

Under UNIX and if operated as a Windows service, the server is shut down properly when the

operating system is shut down.

4.2.5.2. Storage and backup of Knowledge Graphs

Directory structure

The basic directory of the i-views server has the following structure:

volumes/
 knowledgegraphName/
 knowledgegraphName.cbf
 knowledgegraphName.cdr
 knowledgegraphName.cfl
 knowledgegraphName.lock (if the Knowledge Graph is open)

backup/

Technical Handbook 5.8 - 4.2. Mediator

485

 knowledgegraphName/
 <ten-digit number>/
 knowledgegraphName.cbf
 knowledgegraphName.cdr
 knowledgegraphName.cfl

Storage of Knowledge Graphs

Knowledge Graphs are stored in the file system in the “volumes” subdirectory of the basic directory

of the i-views server. In this directory, a subdirectory with a corresponding name is created for each

Knowledge Graph. A file with the ‘.lock’ file extension indicates that a Knowledge Graph is currently

in use.

Backup of Knowledge Graphs

The Knowledge Graph directories must never by copied while the server is running. For this purpose

the server has a backup service, which copies a consistent state of the Knowledge Graph to a

backup area. This backup area must be backed up at regular intervals (e.g. as part of an overall

backup strategy).

The location where backups are created can be specified using the entry

backupDirectory=<directory>

in the “ mediator.ini “ file. Without this information, the “backup” subdirectory of the basic

directory is used.

The backup service of the K-Infinity server can be initiated in two ways:

1. With a direct request to the server process (e.g. from the administrator tool)

2. With entries in the jobs.ini file in the working directory of the server. For each Knowledge

Graph, this file can contain a category [name_of_graph] with the following entries:

Example jobs.ini

[volume1]
;Backup of Knowledge Graph “volume1”

;Time the backup starts
backupTime=00:45

;Interval in days – daily in this case
backupInterval=1

Technical Handbook 5.8 - 4.2. Mediator

486

;Keep the last 5 backups of this Knowledge Graph
backupsToKeep=5

‘backupsToKeep’ specifies the number of backups to be kept. This also includes backups that were

created manually. The default value is 3.

When specifying the graph names in square brackets, you can use the wildcards “*” and “?”; the

names are not case-sensitive.

4.2.5.3. Garbage Collection

Without Garbage Collection, the Knowledge Graph continues to grow through use. Hence, it makes

sense to perform a cleanup (Garbage Collection) from time to time. Like a data backup, you can

start the Garbage Collection manually at any time (e.g. with a special administrator tool) or it can be

started automatically.

Depending on the size of the Knowledge Graph, the Garbage Collection might require a lot of time

and memory. When running the Garbage Collection in large Knowledge Graphs, we recommend

starting it without connected clients (e.g. Knowledge Builder and Job-Clients) and without other

active processes (e.g. backup).

Automatic Garbage Collection: Structure of the jobs.ini file

Automatic Garbage Collection is configured through an entry in the ' jobs.ini ' file, e.g.

[volume1]
garbageCollectTime=00:55
garbageCollectInterval=7

This entry in jobs.ini ensures that a garbage collection in the Knowledge Graph called “volume1” is

performed at “00:55” a.m. every “7” days. The default value for the interval is “1” (i.e. daily); the

time of day must be specified.

When specifying the Knowledge Graph names in square brackets, you can use the wildcards “*” and

“?”; the names are not case-sensitive.

Manual start of Garbage Collection

Alternatively, garbage collection can also be controlled via the Admin tool or by using the mediator

REST api.

4.2.5.4. Operation in Unix

In UNIX the server reacts to the following signals:

Technical Handbook 5.8 - 4.2. Mediator

487

SIGTERM/SIGHUP

Shuts down the server

SIGUSR2

The server immediately begins to back up all Knowledge Graphs that are specified for backup in the

jobs.ini file (see also the section on backups).

4.2.5.5. Operation in Cluster

The mediator can be operated in a cluster. A cluster environment usually mirrors the directories and

therefore the Knowledge Graph constantly. If the part of the cluster on which the mediator is

running fails, a new mediator that then manages access to the Knowledge Graph is started

automatically

If the first mediator fails, it is possible that the mediator no longer has time to make the Knowledge

Graph consistent and that the graph thus has an inconsistency and the “lock” file of the old

mediator remains in the corresponding directory. To ensure that the new mediator is able to delete

the “lock” file, the following parameter must be added to the mediator.ini file.

host=NameOfCluster

In this case, all mediators with this ini entry can also unlock locked volumes of other mediators that

read the same value in the mediator.ini when started. “NameOfCluster" can be selected freely but

must comply with the rules that apply to host names (no spaces, colon, or the like)

A consistency check of the volume is executed automatically when the mediator is started. To the

extent possible, the Knowledge Graph is made consistent and operation continues as normal.

4.2.5.6. Troubleshooting

If the i-views server was not shut down properly during operation (e.g. computer crash), then the

locks remain in opened Knowledge Graphs. When a locked Knowledge Graph is opened, this lock is

detected and removed, if possible.

If the mediator detects an inconsistency, then the Knowledge Graph can be checked and

inconsistencies can be repaired to the extent possible by calling the mediator in the command line

using the parameters -quickRecover / -recover.

If resolving the inconsistencies is, contrary to expectation, not possible, then a backup copy will

need to be used.

Technical Handbook 5.8 - 4.2. Mediator

488

4.2.5.7. Commands of the BlockFileSystem

The commands behind -bfscommand enable operations on the BlockFileSystem and are designed

for support cases. Such a command could look as follows, for example:

-bfscommand quickCheck {target volume}

The database addressed with {target volume} is subjected to a quick structural analysis. Similarly,

deepCheck can be used to perform a complete analysis.

Technical Handbook 5.8 - 4.2. Mediator

489

4.3. Bridge

4.3.1. General

The bridge enables access to Knowledge Graphs with four modes:

• REST: Provides a REST interface via HTTP or HTTPS protocol

• KEM (deprecated): Provides a propietary binary RPC-API.

◦ KEM streaming (deprecated): Blob streaming support for KEM

• Load balancer (deprecated): Launches other bridges and provides load balancing functionality

for KEM-RPCs.

NOTE
KLoadBalancer and KEMBridge/KHTTPRestBridge may not be activated in one

bridge at the same time because they interfere with each other.

To specify / configure the desired mode, the following identifiers are used:

Identifier Legacy identifier Description

rest KHTTPRestBridge REST interface

kem KEMBridge KEM API

kem-streaming KEMStreamingBridge KEM streaming API

launcher KLoadBalancer Load balancer

4.3.2. Common command line parameters

If the bridge is started without any parameters, the required parameters are read from the ini file

bridge.ini and the error messages are written to the file bridge.log.

If there is also an entry in the ini file for a call parameter, then the call parameter has a higher

priority.

-inifile <File name>, -ini <File name>

Name of the ini file that is used instead of the standard ini file. The default is bridge.ini

-host <hostname:port>, -hostname <hostname:port>

Name of the mediator that acts as the data server. This applies to all activated bridge clients

Technical Handbook 5.8 - 4.3. Bridge

490

http://de.wikipedia.org/wiki/Representational_State_Transfer

-port <ClientName> <portnumber>

Parameter –port should usually be set for every client in the ini file. However, if you want to already

do this in the command line, you can specify different clients by specifying the client name in front

of the port number. The line above applies to one client; hence, the –port parameter must be

repeated until several clients are configured.

Example: Start a KEM-Bridge on port 4713 and a streaming bridge on port 4714: bridge –host
server01:30000 –port kem 4713 –port kem-streaming 4714

-stop <hostname>

(KEM only) If you call the bridge with the parameter above, the current bridge running on the

specified host is terminated.

4.3.3. Configuration file "bridge.ini"

All of the following entries are found below the ini file section [Default]. The entries for the

individual clients follow these. Adding client-specific configuration sections also defines which

clients are activated in the bridge to be configured and started.

4.3.3.1. Memory settings

The following three parameters are used to configure the memory allocation and usage. You may

specify values either in megabytes or actual bytes, whereby it is assumed that values under

1048576 refer to megabytes.

maxMemory=<integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base memory

available (under Windows) or 512 MB by default.

baseMemory=<integer, in MB>

Base memory usage after which efforts to free up memory increase. By default 0.6 * maxMemory

(alias: “growthRegimeUpperBound”)

freeMemoryBound=<integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use again.

Technical Handbook 5.8 - 4.3. Bridge

491

minAge=<integer> [30]

Minimum duration (in seconds) in which a cluster remains in the memory. A cluster is a set of

objects that are always loaded together as one (e.g. an individual with all its (meta) properties.

Clusters that have not been used for an extended period are unloaded when necessary.

unloadInterval=<integer> [10]

Minimum duration (in seconds) between two clusters being unloaded

unloadSize=<integer> [4000]

Minimum number of loaded clusters after which unloading occurs

keepSize=<integer> [3500]

Number of clusters that are kept when unloading

useProxyValueHolder=true/false

The option useProxyValueHolder=false can be used to reduce the mediator workload during

searches. The client then loads indexes in the base memory instead of querying the mediator by

means of RPCs. The drawback of this option is that only read access is permitted.

loadIndexes=true/false

This option is also used to load indexes to the memory. However, it continues to allow write access.

The option can be activated for all clients, including Knowledge Builder.

4.3.4. REST bridge

4.3.4.1. Introduction

The REST-Bridge application enables read and write access to i-views via a RESTful services

architecture. The interface is available via HTTP or HTTPS.

The REST bridge runs inside the standard bridge of i-views.

The interface is fully configured by configuration individuals in the Knowledge Graph. The return

Technical Handbook 5.8 - 4.3. Bridge

492

http://de.wikipedia.org/wiki/Representational_State_Transfer
http://de.wikipedia.org/wiki/Representational_State_Transfer

value of a REST call is any string, usually in a format that the calling client can process easily (e.g.

XML or JSON).

4.3.4.2. Installation

4.3.4.2.1. Prepare volume

1. Creating a system account for the bridge service

To allow a Bridge service to access a Knowledge-Graph database that is managed by a Mediator

service, a system account must be created for the Bridge service in the database. This can be done

with the Admin-Tool (under System configuration > System accounts) or with the Knowledge-

Builder (Settings/Cogwheel > ‘System’ tab > System accounts). The example shows how a system

account can be created using the Admin-Tool:

Step 1:

Step 2:

Step 3:

Technical Handbook 5.8 - 4.3. Bridge

493

NOTE

The login token (‘rest-bridge_…’) displayed in the last step is required again when

configuring the bridge (next chapter). The ‘Enter token’ window should therefore

remain open or the token should be saved in a safe place.

2. Activating the REST component in the Knowledge Graph

By adding the software component “REST” in the Admin tool, the required schema is created in the

Knowledge Graph.

Technical Handbook 5.8 - 4.3. Bridge

494

The schema is created as a subgraph of the Knowledge Graph called “REST,” which can only be

edited by an administrator in the Technical section:

Technical Handbook 5.8 - 4.3. Bridge

495

4.3.4.2.2. Configure bridge

The REST interface is provided by the standard bridge component of i-views, provided the

corresponding configuration file contains an entry for the category rest:

[rest]
;Name of the Knowledge Graph
volume=example-graph
;Optional List of network interfaces
;Default value is http://0.0.0.0:8815
interfaces=http://0.0.0.0:8080
;Optional List of REST Service IDs
services=public

If an interface with the HTTPS protocol was defined, then the file paths
for the certificate and private key must also be specified in the
configuration file. These files must be stored in PEM format and must not
be password protected.

[source,ini]

volume=example-graph

Technical Handbook 5.8 - 4.3. Bridge

496

interfaces=https://0.0.0.0:8443
;Name of the certificate file
certificate=bridge.crt
;Name of the private key
privateKey=bridge.key

NOTE

The legacy section names KHTTPRestBridge or KHTTPSRestBridge can be used

instead of the section name rest. KHTTPRestBridge uses the HTTPS protocol by

default, if no interfaces were configured.

In the configuration section of the REST bridge you can also enter the following special

configuration options:

Name Description

realm Name that is returned to the client as the realm name if authentication is

active. Web browsers typically display the realm name as the application

name in dialog boxes for authentication to ensure the user knows who is

requesting the authentication. Default value: REST

4.3.5. KEM bridge

The KEM-API uses the section name kem (legacy name: KEMBridge).

Configuration options:

port = <portnumber>

Specifies the port under which the KEMBridge reacts. If no entry is made, the default value of 4713

applies.

ldapHost = <hostname:portnumber>

Specifies the LDAP host to be contacted if authentication is to be performed via LDAP. If this

parameter is specified, authentication must be handled via LDAP.

maxLoginCount = <number>

Maximum number of failed attempts to log in before the relevant user is locked out of the

Knowledge Graph. After that, login is only possible after they have been unlocked via the

Knowledge Builder. If the value is not set, a user can make as many failed attempts to log in as they

wish.

Technical Handbook 5.8 - 4.3. Bridge

497

In order to allow a user to be locked out of the Knowledge Graph, a Boolean attribute with the

internal name ‘userlock’ and the default value ‘false’ must have been defined for individuals of the

person concept.

KEMrestrictToIPAddress = <IP address>

If this parameter is set, connections are only accepted from the host specified here.

trustedLoginEnabled = <true/false>

Makes it possible to log in without a password by means of the request

“newAuthenticatedUser(username).”

Default: false

preventSessionReplay=true/false

This parameter specifies that each writing session receives its own protected Knowledge Graph

access, so that there is no longer any need for the usual mechanism of executing the actions of a

deactivated session again during reactivation in order to restore the most recent editor state.

Default: false

4.3.5.1. KEMStreamingBridge

Section name: kem-streaming (legacy name: KEMStreamingBridge)

port = <portnumber>

Specifies the port under which the KEMStreamingBridge reacts. If no entry is made, the default

value of 4714 applies.

4.3.6. KLoadBalancer

The KLoadBalancer can be used to scale the services and availability of the KEMBridge and

KEMStreamingBridge.

The following specification must be entered in the [KLoadBalancer] section in order to obtain the

required operating mode:

• configNames (required value, not optional)

• allowRemoteShutdown (default value false)

Technical Handbook 5.8 - 4.3. Bridge

498

• autoRestart (default value true)

• directory (default value current working directory in which the KLoadBalancer was started)

• executable (default value 'bridge.exe')

• image (default value 'bridge.im')

• vm (default value 'visual')

• hostname (default value Localhost)

• parameters (default value blank)

The parameter #configNames is used for continuing the configuration of the KEMBridges and

KEMStreamingBridges to be started, with one bridge type controlled by each individual

configuration. The configuration names must be separated by a comma.

Here is an example of a KLoadBalancer ini file:

[Default]

[KLoadBalancer]
hostname=ws01
port=30003
directory=C:\3.2\balancing
executable=bridge.exe
;vm=visual
;image=bridge.im
configNames=KEM,Streaming

[KEM]
bridgeClientClassName=KInfinity.KEMBridge
inifile=kembridge.ini
bridgeLogfile=kem-<id>.log
maxBridges=2

[Streaming]
bridgeClientClassName=KInfinity.KEMStreamingBridge
inifile=streaming.ini
bridgeLogfile=streaming-<id>.log
maxBridges=2

Upon starting, KEMBridges and KEMStreamingBridges are started in accordance with both the

configurations. Because the same software is used for operation as is used for operation of the

KLoadBalancer, specifying the parameters #executable, #image and #vm (for operation in Linux),

#hostname, #directory and #parameters are required.

executable / image, vm; directory: Specifications for how the individual bridges can be started.

Technical Handbook 5.8 - 4.3. Bridge

499

Specifying #executable and #directory is required under Windows, while specifying #image, #vm

and #directory is required under Linux.

hostname / port: The host name which is used to refer to the bridges to be started, and the

KLoadBalancer to be contacted for administration purposes. If nothing is specified here, then the

name of the computer is determined and used. The port indicates the port used by the bridges to

address the balancer, the default value is 4715.

NOTE

The name of the respective mediator that the bridges contact to retrieve data

must be entered in the respective ini files in accordance with the configuration

section.

parameters: A field that is used to add additional specifications in the command line of the bridges

to be started, and is the same for all bridges to be started.

allowRemoteShutdown: A parameter that specifies whether the KLoadBalancer can be ended by

means of a shutdown request using remote access.

autoRestart: Parameter that specifies whether a stopped KEMBridge should be restarted after the

shutdown, with a new ID.

Additional specifications must be entered in each configuration section:

• bridgeClientClassName (not optional, only one specification possible per section. Please

observe the syntax described above!)

• inifile (ini file with settings for this type of bridge to be started)

• bridgeLogfile (sample of a log file name in which a placeholder is added, <id>, which is used to

distinguish the log files for the individual bridges, and is replaced with the consecutive number

of the bridge that was started)

• maxBridges (maximum number of bridges of the specified type to be started, not optional)

• sslEnabled (specifies whether the bridges of this type should use SSL to establish a connection,

default value false)

NOTE

The parameter "directory" specifies the working directory in which the files

specified in the configuration sections are searched for and, when applicable,

created. Software and ini file for starting the KLoadBalancer may be located

elsewhere.

The ini files for the respective bridges must have the usual structure. An example of the KEM-

referenced ini file in the configuration section above is provided here:

[Default]
host=ws01

[KEMBridge]

Technical Handbook 5.8 - 4.3. Bridge

500

trustedLoginEnabled=true
preventSessionReplay=true
sslEnabled=true
timeout=10

For details, please refer to chapter 5, “Configuration file bridge.ini”.

Technical Handbook 5.8 - 4.3. Bridge

501

4.4. Job-Client

4.4.1. General

On the one hand, the Job-Client provides services for other i-views clients to relieve them of time-

consuming and data-hungry tasks. On the other hand, it is used as the bridge between i-views

clients and external systems.

Normally, the client waits until a job is complete (synchronous operation).

To execute complex searches, generate statistics, batch reconciliations, data formatting, data

clearing etc. the client does not have to wait for completion (asynchronous operation). The result is

made available by the server and the client is notified. The result can be viewed some time later.

Since the result is also made persistent, it is still available if the system is restarted or in case of a

fail-over.

4.4.1.1. Operation

In the shared object space provided by the i-views mediator, the jobs of the clients are stored in

pools. All i-views Job-Clients are notified of new jobs. If a jobclient is not processing a job currently,

it will process the next available job. The oldest job will be processed first.

Once the job has been processed, the result is made available in the shared object space, the

requesting client is informed and the result can be retrieved and displayed.

To the client it is transparent which Job-Client is executing its job. For the Job-Client it is

transparent, how many parallel Job-Clients are currently active. Hence installation and maintenance

of Job-Clients is very easy and flexible for administrators. Job-Clients can be scaled as designed,

distributed across different computers and be connected and disconnected dynamically. External

clustering or other orchestration is not necessary.

4.4.2. Configuration of the Jobclient

4.4.2.1. Configuration file "jobclient.ini"

The Job-Client is configured directly in the ini file. If this file is not specified by the call parameter “-

inifile” when the Job-Client is started, "jobclient.ini” is used as the configuration file.

4.4.2.1.1. General parameters

The following parameters can be configured:

Parameter Description Syntax

host Name / IP address and port of the server.
host=<host name:port
number>

Technical Handbook 5.8 - 4.4. Job-Client

502

Parameter Description Syntax

volume The name of the Knowledge Graph for working

on. volume=<volume name>

jobPools Specifies which jobs the Job-Client is supposed

to process. The names of the job pools to be

started are to be specified in comma-separated

form.

The job pools should be specified by category

(e.g. “index”). Alternatively, it is possible to

specify indiviual pool names (e.g. ”KScriptJob”).

See Job pool types for the complete list of

possible types.

jobPools=<job name1>
[,<job name2>, ...]

Example:

jobPools=script,
query

cacheDir The description of the location at which the

cache for the Job-Client is stored. cacheDir=<directory>

maxCacheSize Target size of the cache
maxCacheSize=<size in
MB>

shutDownTime

out

Wait period for termination of the active job

when shutting down the Job-Client. The jobs are

terminated at the end of this period. The default

value is 10 seconds.

shutDownTimeout=<seco
nds>

enableLowSpa

ceHandler

This option activates the LowSpaceHandler. This

should always be activated for large Knowledge

Graphs.

enableLowSpaceHandler
=true/false

useProxyValue

Holder

This option can be used to control whether the

Job-Client executes index access via RPC (true)

or loads indexes to memory (false). This option

should be deactivated to ease the mediator

load.

In doing so, however, you should ensure that

the Job-Client has enough memory.

If the Job-Client has been configured for write

jobs, this option has no effect as index access is

always executed via RPC then. If you set the

value to false, a message is output in the log on

start-up.

useProxyValueHolder=t
rue/false

Technical Handbook 5.8 - 4.4. Job-Client

503

Parameter Description Syntax

loadIndexes Indexes are also always loaded to memory. In

contrast to the useProxyValueHolder option, it

continues to allow write access. The option can

be activated for all clients, including Knowledge

Builder.

loadIndexes=true/fals
e

name This name is used to identify the Job-Client in

the Admin tool in the overview list of all Job-

Clients.

name=<Job-Client
name>

scheduledJobs A comma-separated list of jobs that are to be

scheduled. scheduledJobs=<Job
name 1>
[, <Job name 2>, ...]

4.4.2.1.2. Memory settings

The following three parameters are used to configure the memory allocation and usage. You may

specify values either in megabytes or actual bytes, whereby it is assumed that values under

1048576 refer to megabytes.

Parameter Description Syntax

maxMemory Maximum base memory usage permitted. A

minimum of 50 MB, the total physical base

memory available (under Windows) or 512 MB

by default.

maxMemory=<integer,
in MB>

baseMemory Base memory usage after which efforts to free

up memory increase. By default 0.6 *

maxMemory. (alias:

“growthRegimeUpperBound”)

baseMemory=<integer,
in MB>

freeMemoryB

ound

If memory that is being used, but is no longer

needed, exceeds this limit, it is freed up for use

again.

freeMemoryBound=<inte
ger, in MB> [10]

minAge Minimum duration (in seconds) in which a

cluster remains in the memory. A cluster is a set

of objects that are always loaded together as

one (e.g. an individual with all its (meta)

properties. Clusters that have not been used for

an extended period are unloaded when

necessary.

minAge=<Integer> [30]

Technical Handbook 5.8 - 4.4. Job-Client

504

Parameter Description Syntax

unloadInterval Minimum duration (in seconds) between two

clusters being unloaded unloadInterval=<Integ
er> [10]

unloadSize Minimum number of loaded clusters after which

unloading occurs unloadSize=<Integer>
[4000]

keepSize Number of clusters that are kept when

unloading. keepSize=<Integer>
[3500]

4.4.2.1.3. Lucene server configuration

Lucene is integrated via a Job-Client whose jobclient.ini file has to be configured accordingly. Below

is an exemplary configuration:

[lucene]
directory=lucene-index
port=5100
pageSize=100
; Wildcards at the start of a word are prohibited by default as they are
very slow
; Allow in this configuration
allowLeadingWildcards=true

[JNI]
classPath=lucene-6.4.1\core\lucene-core-6.4.1.jar;lucene-6.4.1\analysis
\common\lucene-analyzers-common-6.4.1.jar;lucene-6.4.1\analysis\queries
\lucene-queries-6.4.1.jar;lucene-6.4.1\analysis\queries\lucene-queries-
6.4.1.jar

The directory lucene-6.4.1 contains the Lucene binary files. The index is stored in the directory

lucene-index .

4.4.2.1.4. Scheduled jobs

Jobs can be scheduled by the Job-Client. The Job-Client then creates jobs at the specified time.

NOTE
Usually, only one Job-Client should schedule jobs. Scheduled jobs are treated as

regular jobs and can also be performed by other Job-Clients.

To configure individual jobs in the configuration file, a new section has to be created for each one.

Technical Handbook 5.8 - 4.4. Job-Client

505

These are each started with the name of the job in a pair of square brackets. This is followed by the

respective parameters of the job.

The job names must be listed at the parameter scheduledJobs.

Example:

scheduledJobs=Job-Name1,Job-Name2

[Job-Name1]
<Parameter>=<value>
...

[Job-Name2]
...

Scheduled job parameters

Parameter Description Syntax

jobPool The pool where the job should be inserted.

Defines the type of job that is scheduled. jobPool=<Job-Pool-
Name>

time Time at which the job should be executed for

the first time. time=<Time>

Example:

time=22:15

interval Specifies how frequently the job should be

executed. (d=days, h= hours, m=minutes,

s=seconds)

interval=<Exact time>

command For KExternalCommandJob only: Name of an

external batch file that should be executed by

the job.

command=<File
name.cmd>

scriptName For KScriptJob only: Registration key of an

internal script that should be executed by the

job.

command=<Script
resource>

Technical Handbook 5.8 - 4.4. Job-Client

506

Parameter Description Syntax

unique If a job of this type is already queued, then no

additional job is scheduled unique=true/false

user Name of a user account, under which the job

should be executed user=<User name>

arguments For KExternalCommandJob only: Arguments

that are transferred when the script is called. arguments=<Argument1
[Argument2 ...]>

4.4.2.1.5. Job pool types

The following types of job pools are available:

Category Pool Description

blob KBlobGCJob Performans a BLOB garbage collection

blob KSwitchBlobStoreJob Transfers BLOBs between stores

index KAddAllToIndexJob Add all properties of a property type to the

index

index KLightweightIndexJob Updates the index of a property

index KRemoveIndexJob Removes all properties of a property type from

the index

index KSyncIndexJob Updates all properties of a property type

index KExternalIndexUpdateJ

ob

Updates an external index (e.g. IAS,

Elasticsearch)

lucene, luceneAdmin KLuceneAdminJob Manages Lucene indexes

lucene, luceneQuery KLuceneQueryJob Performs Lucene queries

script KScriptJob Performs a script of the Knowledge Graph

script KScriptTriggerJob Performs a trigger script

print KPrintJob Creates a document BLOB by applying a print

configuration to semantic elements

query KQueryJob Performs a query and stores the result

- KExternalCommandJob Performs an external command (executable,

shell script)

- KExtractBlobTextJob Extracts the text from a BLOB

Technical Handbook 5.8 - 4.4. Job-Client

507

Index jobs

The indexing jobs should be performed by a single Job-Client only.

KExternalCommandJob

Using the KExternalCommandJobs it is possible to activate executable programs that are

concerned with processing or changing files, or that are simply to be called. No configuration is

necessary in the ini file of the Job-Client. The job is also inserted by a script call.

The main element of the script call is the element ExternalCommandJob . The attribute Execution

allows the user to set whether the job should be executed locally without Job-Client (value: local)

or with Job-Client (value: remote). The default value is remote .

Note about remote execution:

Access to local programs is checked by calling a batch file. Before the Job-Client takes a

KExternalCommandJob to execute, it checks whether it can execute this job. This is the case if the

batch file, which is specified in the element command , exists in the current directory of the Job-

Client. If the currently pending job is not accepted for processing by any Job-Client, then the job

queue is blocked for the user who inserted the job. This job must be deleted manually.

The necessary first subelement in the script:

• Command : specifies which batch file should be called

<Command>convert.bat</Command>

The name of the batch file is specified in the command element. The directory and the actual

program to be executed are specified in the batch file. Important: The batch file must be located on

the same level as the program (e.g. Job-Client or KB). Directory specifications in the command

element are ignored.

The other subelements are worked through from top to bottom. If the order of parameters plays a

role in the external program, this should be factored in.

Script elements that form the parameters for the call:

• OptionString : can be used multiple times. Parameters of the external program to be called are

specified as strings. The parameters entries must be specified in full.

<OptionString>-size 100x100</OptionString>

• OptionPath : the path expression specified is evaluated and built up in the command call as a

string

Technical Handbook 5.8 - 4.4. Job-Client

508

<OptionPath path="./topic()/concept()/@$size$"/>

Script elements that are concerned with the handling of attributes

• SourceBlob : This specifies the blob attribute that is used as a data source

<SourceBlob><Path path=“$image$"/></SourceBlob>
<SourceBlob path=“$image$"/>

• ResultAttribute : This specifies the parameter for the generation of a new, or the change of an

existing, blob attribute with the content of the file, or the file itself, that is the result of the

program called externally. Attribute values: name : Name or internal name of the attribute

Topic to be created: Target individual of the attribute modifyExisting to be created: change (

true) or create new (false, default value) filename : File name of the blob attribute to be

created

<ResultAttribute
 name=“$image2$"
 topic="./topic()"
 modifyExisting="true"
 filename="convert_ +./valueString()"/>
<ResultAttribute
 name=“$image2$"
 topic="./topic()"
 modifyExisting="true"
 filename="convert_ +./valueString()">
 <Path path=“$image2$">
</ResultAttribute>

Example 01:

Script:

<Script>
 <ExternalCommandJob execution="local">
 <Command>convert.bat</Command>
 <OptionString>-size 100x100</OptionString>
 <SourceBlob>
 <Path path="."/>
 </SourceBlob>
 <OptionString>-geometry +5+10</OptionString>
 <SourceBlob>

Technical Handbook 5.8 - 4.4. Job-Client

509

 <Path path="."/>
 </SourceBlob>
 <OptionString>-geometry +35+30</OptionString>
 <OptionString>-composite</OptionString>
 <ResultAttribute
 name="$image2$"
 topic="./topic()"
 modifyExisting="true"
 filename="convert_ +./valueString()"/>
 </ExternalCommandJob>
</Script>

Content of the batch file under Windows:

"C:\Program Files\ImageMagick-6.2.6-Q16\convert.exe" %*
exit /B %ERRORLEVEL%

Content of the batch file under Linux:

#!/bin/bash
convert $*

Example 02:

Script:

<Script>
 <ExternalCommandJob execution="local">
 <Command>convert2.bat</Command>
 <SourceBlob path="."/>
 <SourceBlob path="."/>
 <ResultAttribute
 name="$image3$"
 topic="./topic()"
 modifyExisting="true"
 filename="convert2_ + ./valueString()"/>
 </ExternalCommandJob>
</Script>

Content of the batch file under Windows:

Technical Handbook 5.8 - 4.4. Job-Client

510

"C:\Program Files\ImageMagick-6.2.6-Q16\convert" -size 100x100 %1
-geometry +5+10 %2 -geometry +35+30 -composite %3
exit /B %ERRORLEVEL%

Content of the batch file under Linux:

#!/bin/bash

convert -size 100x100 $1 -geometry +5+10 $2 -geometry +35+30 -composite $3

NOTE
The two examples deliver the same file as the result. The exit command is used in

the Windows batch files to return the exit code of “convert” to the call.

Here is another example of an advanced conversion script that can be called using the parameters

“Source file”, “Image width” and “Target file” and that only minimizes wider images to the specified

width. The script also writes a log file for the conversion, whereby error messages from Image

Magick are also written to the log file:

set MONTH_YEAR=%DATE:~-8%
echo Converting %1 to %3 (width: %2) >> convert%MONTH_YEAR%.log
convert.exe %1 -resize "%~2>" %3 2>> convert%MONTH_YEAR%.log
echo Conversion finished with exit code %ERRORLEVEL% >>
convert%MONTH_YEAR%.log
exit /B %ERRORLEVEL%

And here is the version for Linux (Bash):

#!/bin/bash
FULLDATE=`date +%c`
MONTH_YEAR=`date +%m.%Y`
LOGFILE="convert.$MONTH_YEAR.log"
echo "$FULLDATE: Converting $1 to $3 (width: $2)">>$LOGFILE
convert "$1" -resize "$2>" "$3" 2>>$LOGFILE
EXITCODE="$?"
echo $FULLDATE: Conversion finished with exit code $EXITCODE>>$LOGFILE
exit $EXITCODE

4.4.2.2. Performance optimizations

Technical Handbook 5.8 - 4.4. Job-Client

511

4.4.2.2.1. Pre-load

When starting up, Job-Clients can pre-load selectable structures if configured accordingly. This

operation increases the amount of memory that the Job-Client requires, but it also enables the Job-

Client to run more quickly.

The entry keepClusterIDs must be specified in the ini file of the Job-Client. Possible values for this

entry are:

• index - In the settings for pluggable indexers, there is an option to set the check-mark for Job-

Client to load index into base memory . For activated indexers, a part of their index structure is

loaded.

NOTE
Only used when useProxyValueHolder is set to false . Otherwise, the Job-

Client will send RPCs instead of loading the index into memory.

• protoOfSizes - The number of individuals for each concept is already determined at the start.

• accessRights - The root object of the rights system is loaded into the memory.

To improve performance, it also helps to activate the Knowledge Graph cache for the Job-Client.

Example of entries in the ini file:

[Default]
...
useProxyValueHolder=false
keepClusterIDs=index,protoOfSizes,accessRights
cacheDir=jobcache
maxCacheSize=1000
...

Technical Handbook 5.8 - 4.4. Job-Client

512

4.5. Batch tool

The batch tool allows to perform administrative commands and data import/export commands

from the command line. The desired command needs to be passed as a command-line parameter,

followed by command-specific parameters. It is also possible to perform a series of commands.

4.5.1. Common command line parameters

All commands share some common parameters:

-host

URL or host name and port of the server

-volume

Name of the volume

-user

Deprecated. Name of a user account that should be activated when running the command-line. Use

an authentication token instead (see configuration file options), to avoid leaking user/password

information to other processes.

-password

Password of the user

4.5.2. Configuration file options

host

URL or host name and port of the server

volume

Name of the volume

Technical Handbook 5.8 - 4.5. Batch tool

513

authentication

System account authentication token

4.5.3. Commands

4.5.3.1. Importing or exporting mapped data

These commands allow to import or to export data based on a mapping defined in the volume.

The following example exports data mapped by the mapping registered as example.export to the

file data.csv:

batchtool -volume example -exportMapping example.export -file data.csv
-errorLogFile export-errors.log

4.5.3.1.1. Command line parameter

Either

-exportMapping

Export mapped data

or

-importMapping

Import mapped data

4.5.3.1.2. Additional command line parameters

-encoding {name}

Name of a character encoding, e.g. utf-8. Determines the connection encoding for database

mappings, and the text encoding for text files (e.g. CSV files).

-errorLogFile {logfile}

Technical Handbook 5.8 - 4.5. Batch tool

514

Filename of the error log

-mapping {ID}

Registered ID of the data mappings

-triggers {true/false}

Enable/disable triggers during import

4.5.3.1.3. Command line parameters for file mapping only

-caption {true/false}

True if the table file contains/should contain captions

-file {filename}

Possible values: Name of the file to be imported/exported

-separator {separator string}

Cell separator string

4.5.3.1.4. Command line parameters for database mappings only

-binding {name value}

Name-value pair for database bindings. Only used by database mappings that contain a named

binding in the query

-dbEnvironment {string}

Database connection string

-dbHostname {string}

Technical Handbook 5.8 - 4.5. Batch tool

515

Database host. For MySQL only.

-dbPassword {string}

Database password

-dbUsername {string}

Database user name

4.5.3.2. Importing or exporting RDF files

These commands allow to import or export RDF(S) or OWL files.

4.5.3.2.1. Command line parameter

Either

-exportRDF {filename}

Export an RDFS or OWL file

or

-importRDF {filename}

Import an RDF, RDFS or OWL file

NOTE The export always uses RDFS or OWL, it is not possible to export „pure“ RDF.

4.5.3.2.2. Additional command line parameters

-parameter {name} {value}

Set a parameter controlling the RDF import/export

-query {ID}

Set the query that returns the elements that should be exported

Technical Handbook 5.8 - 4.5. Batch tool

516

-queryParameter {name} {value}

Set a query parameter

4.5.3.2.3. Export parameters

The following export parameters can be set with -parameter {name} {value}

abbreviateURIs

Abbreviate URIs using rdf:ID and xml:base

baseURI

Base URI

blobHash

True if additional comments should be exported

exportFrameIDs

Export object frame IDs

exportLabels

Export name as rdfs:label

exportMeta

True if meta properties should be exported. They will be exported as reifications.

exportPropertyIDs

Export IDs of properties

Technical Handbook 5.8 - 4.5. Batch tool

517

exportReferencedTopics

True if external relation targets should be exported as stubs

ignoreStoredIdentifier

If true, the RDF locator will always be generated. If false, the rdf:about/rdf ID attribute will be used

if present

qualifier

XML qualifier bound to the base URI

schemaNameSpace

Default schema XML namespace

schemaOnly

True if only types should be exported

updatePersistentIdentifier

True if the generated values for rdf:ID / rdf:about should be materialized as attribute values

useFrameURIs

True if URIs constructed from the object ID should be used to identify objects

useKRDF

True if KRDF properties (e.g. krdf:internalName) should be exported

useOWL

Technical Handbook 5.8 - 4.5. Batch tool

518

True if OWL vocabulary should be used

4.5.3.2.4. Import parameters

activateTriggers

True if triggers should be enabled

allowExtensiveRestructurings

Perform schema changes even if they impact a lot of objects

avoidDuplicateProperties

True if duplicate properties should be skipped

baseURI

Base URI

changeCompatibleInstanceTypes

Change instance types even if the current type is compatible with the defined type

enableCreateSchema

True if schema may be created / modified

enforceInverseRelationConcepts

true: Create inverse relation types if not defined.

false: Relations without inverse will be symmetric.

importCommentsAsAttributes

Import rdfs:comment as attribute (must be defined in the schema)

Technical Handbook 5.8 - 4.5. Batch tool

519

importReferencedResources

Import referenced external RDF resources

importValuesAsAttributes

Import rdf:value as attribute (must be defined in the schema)

4.5.4. Running scripts

This command allows to run arbitrary scripts written in JavaScript.

4.5.4.1. Command line parameter

-script {registered script ID}

Runs a registered script

-scriptfile {filename}

Runs a script read from the file

4.5.4.2. Additional command line parameters

-argument {argument name} {argument value}

Set the global script variable named {argument name} with value {argument value}

-encoding {encoding name}

Set the output encoding to {encoding name}

-errorLogFile {filename}

Filename of the error log

Technical Handbook 5.8 - 4.5. Batch tool

520

-output {file name}

Print all output to {file name}

-stdout

Print all output to stdout and errors to stderr. Log entries will only be written to the log file.

4.5.5. Importing or exporting schema

These commands allow to import or export the schema the Knowledge Graph. This includes

• Types

• View configurations

• REST service definitions

• Registered queries, scripts, mappings, folders

• Triggers

• Access rights

• Index configurations and filters

4.5.5.1. Common command line parameters

Either

-exportSchema {schema file}

Export the schema as a file

or

-importSchema {schema file}

Import the schema from a file

4.5.5.2. Additional command line parameters

-filter {filter file}

Technical Handbook 5.8 - 4.5. Batch tool

521

Specifies a filter file (see next chapter)

4.5.5.3. Export filter

The filter file defines which registered objects are exported. Each line defines a positive (starts with

"+") or negative (starts with "-") flag, a category, and a pattern matched against the registered ID.

The category and the ID pattern may contain the wildcards "*" for a partial string or "#" for a single

character. A line beginning with ";" is ignored.

Objects without ID are only matched if the ID pattern is "*".

Objects that do not match any filter are exported

Schema sub nets are matched against the value of "RDF:about" of the top type (e.g.

"http://www.intelligent-views.de/kinfinity/component/rest/4.0/type/rest-ConfigTopConcept").

Possible categories:

accessRights, dataConnections, editorDetection, indexers, indexFilter, ldap, license, mappings,

organizingFolder, printConfigurations, queries, schema, scripts, topicCollection, triggers, unknown.

Example:

+ queries custom.*
- * *

This will export all queries whose ID match the pattern "custom.*".

4.5.6. Importing licenses

This command allows to import a license file. This might be necessary for bootstrapping, because

other commands will fail if a volume has an invalid license.

Command line parameters

-importLicense {license file}

Imports the license from the file.

4.5.7. Upgrading components

This command allows to upgrade the software / model components of the volume. It is also

possible to reinitialize the schema.

Technical Handbook 5.8 - 4.5. Batch tool

522

4.5.7.1. Command line parameter

-upgradeComponents {optional component names}

Upgrades the specified components, or all components if none are specified

Possible component names:

iviewsProducts, kem, kintelligence, knowledgeBuilder, knowledgePortal, mqtt, netNavigator,

printing, rest, tagging, translator, viewConfigMapper

4.5.7.2. Additional command line parameters

-updateSchema

Reinitializes the schema of components

4.5.8. Executing a series of commands

This command allows to perform a series of commands. This is more efficient than running the

batch tool for each command separately, because data that has already been loaded by a previous

command does not need to be reloaded.

4.5.8.1. Command line parameter

-batchFile {file}

Perform all commands listed in the batch file. Must be UTF-8 encoded. The batch file must not

contain command line parameters (host, volume etc.)

Example:

batchtool -volume example -batchFile commands.txt

With commands.txt containing the following lines:

-exportMapping example.export1 -file data1.csv -errorLogFile export1-
errors.log
-exportMapping example.export2 -file data2.csv -errorLogFile export2-
errors.log

Technical Handbook 5.8 - 4.5. Batch tool

523

This will perform two exports.

4.5.9. Example: Importing per batch tool

For importing data using the batch tool, access to the import data is needed as well as a network

connection to the mediator. If the batch tool is going to be executed on a different server as the

mediator for import is locate on, the following entries of the batchtool.ini file must be adjusted:

• Address/URL of the server ("host=")

• Port number of the server ("port=")

• Name of the volume ("volume=")

• Token for authentication, to be created using the admin tool ("authentication=")

For a one-time call of the batch tool by means of a control file (e. g. "import.data"), the command

line will be as follows:

batchtool -batchFile import.data

If the batch tool is not situated in the same directory as the working directory of the command line

(or of the scheduled task), at least the ini file needs to be in the same directory as the working

directory or the ini file needs to be passed on in forms of a parameter:

D:\PATH\batchtool\batchtool -ini D:\PATH\batchtool\batchtool.ini
-batchFile import.data

"PATH" relates to the machine from which the command line call is invoked.

The control file can be created easily as follows:

-importMapping MAPPING1 -file EXCELFILE1 -errorLogFile MAPPING1-errors.log
-importMapping MAPPING2 -file EXCELFILE2 -errorLogFile MAPPING2-errors.log
-importMapping MAPPING3 -file EXCELFILE3 -errorLogFile MAPPING3-errors.log

• MAPPINGx = registered name of the import mapping in i-views

• EXCELFILEx = file name, where necessary incl. file path

For the regular execution of the import, a "scheduled task" containing the procedure call can be

configured on the operating system (known as "Task Scheduler" within Windows or as "cron" within

Linux).

If the import needs to be done as a subsequent process after a previous export from another

system, the calls can be encapsulated within a batch file (*.bat, *.cmd or *.ps1) to ensure that the

Technical Handbook 5.8 - 4.5. Batch tool

524

import only starts when the export has been processed successfully.

Technical Handbook 5.8 - 4.5. Batch tool

525

4.6. Blob service

4.6.1. Introduction

The blob service is used to store the data of large files outside the Knowledge Graph but links to the

file attributes in which these file contents are supposed to be stored. This has several advantages:

• It has the effect that the Knowledge Graph only receives the semantic information that is based

on files and remains easy to backup and transfer.

• Storage locations of the Knowledge Graph and file contents can be configured differently.

• Several blob services can be connected to one Knowledge Graph, so that one storage location

can be provided for each attribute definition.

The following chapter explains how to set up and operate blob services.

4.6.2. Configuration

To specify under which network address (host and port) the blob service is supposed to be

reachable, the “interfaces” option must be entered in the file “blobservice.ini.” There are two

options here:

1. The blob service is supposed to be reachable only from the computer on which the blob service

is installed.

2. The blob service is supposed to be reachable also by other computers via the network.

Here is an a configuration example for variant 1, whereby the blob service port (30000) can be

selected freely.

interfaces=http://localhost:30000

To configure variant 2, you need to enter the IP address of the network adapter via which the blob

service is supposed to be reachable from the network instead of “localhost.” If you want the blob

service to be reachable via all network adapters that are active on the computer, you have to enter

“0.0.0.0” as the IP address. Example:

interfaces=http://0.0.0.0:30000

If the blob service is address via the network, communication should be encrypted. Encrypted

communication using HTTPS can also be configured in the “interfaces” option by replacing “http://"

with “https://.” Example:

interfaces=https://0.0.0.0:30000

Technical Handbook 5.8 - 4.6. Blob service

526

In relation to encrypted communication, see also the next chapter called SSL certificates.

To ensure operation, the DLL of the SQLite framework "sqlite3.dll" must also be available in the

working directory. Without this DLL, the internally required administration structure cannot be

generated and maintained.

Following that, the blob service can be started to make it available immediately.

To link the blob service with a blob store in the Knowledge Graph, the Admin tool offers the

required tools under “System configuration - Blob storage:”

Clicking on “Create” (1) creates a new logical store. After that, enter the URL (2) of the blob service

specified in the ini file and then click on “Add” (3). The newly created blob store for external storage

of file attributes is then linked to the blob service, which you can check by clicking on “Update” (4)

in the lower display area.

You can also specify a comma-separated list of alternative URLs in the “URLs” area (2). For

alternative URLs, i-views prefers a connection via a loop-back device where possible.

The “Deletable files” area (7) displays the number of files that are no longer required from the

Knowledge Graph perspective. Use “Delete" (8) to de-reference them in the blob service and

remove them if appropriate.

The indicator “Internal” (9) shows that this is a store that is integrated into a mediator. Internal

stores are automatically transferred with the volume during a volume transfer (upload, download,

Technical Handbook 5.8 - 4.6. Blob service

527

copy, backup, recover).

If you want to remove the link between a blob store and a blob service, select the desired blob

store in the list “External stores in the blob service” and click “Remove” (5). Following that, you can

select the blob store in the top section “External storage for file attributes” and then click “Delete”

(6) to remove it completely. Alternatively, you can specify a new URL to link the blob store to

another blob service.

NOTE By removing a blob store’s link to a blob service, all files stored therein are lost.

4.6.3. SSL certificates

To configure the HTTPS connection, the certificate and the private key must be stored.

The certificate must be stored under certificates/server.crt .

The private key must be stored under private/server.key . Make sure that server.key is available as

an RSA key, i.e. the first line of the file must be

 -----BEGIN RSA PRIVATE KEY-----

If the key is in a different format, it has to be converted, e.g. with OpenSSL:

openssl rsa -in input.key -out private/server.key -outform PEM

Technical Handbook 5.8 - 4.6. Blob service

528

4.7. Login with OAuth 2.0

Users of the Knowledge-Builder and the Admin-Tool can be authorized with the OAuth 2.0

framework. This requires an external authorization server that provides the tokens to access the

Knowledge Graph. It is also necessary to install a bridge service that provides a REST interface for

handling user data

4.7.1. Limitations

• The only supported grant type is the authorization code flow

• Server administration tasks (e.g. upload Knowledge Graphs) cannot be authorized with OAuth

• When creating Knowledge Graphs, the initial graph administrator account is created with

username and password. The administrator can be authorized either with OAuth or username

and password.

4.7.2. Authorization flow

When a user opens a Knowledge Graph that has been configured to use OAuth 2, a web browser

will be opened and directed to the login URI. There, the user performs the necessary steps to login,

e.g. confirm the login or enter credentials.

Afterwards, a request containg a grant is sent to a redirect URI which must point to the endpoint

/oauth/redirect

of the Knowledge graph server. This endpoint then requests a token from the authorization server.

The token is validated using the public keys (JWKS). The token then allows access to the Knowledge

Graph.

Once a user has been authorized, then the server sends a POST request containing the data to an

endpoint of the REST interface provided by the bridge service. This allows to perform additional,

customizable steps to create user objects in the Knowledge Graph.

4.7.3. Configuration

The OAuth framework can either be configured for the entire server, which affects all Knowledge

Graphs, or for a single Knowledge Graph.

4.7.3.1. Configuring the authorization server

The authorization server must be prepared for an authorization code flow. This usually requires

registering a new application and generating a client ID and secret. It is also necessary to register a

redirect URI that points to the OAuth redirect endpoint of the server.

Technical Handbook 5.8 - 4.7. Login with OAuth 2.0

529

4.7.3.2. Configuring OAuth for the entire server

The OAuth configuration for all Knowledge Graphs of a server is part of the server configuration file

(mediator.ini). It can (but must not) be put in a separate file by using an include directive.

The server must provide an HTTP or HTTPS interface. The redirect endpoint is available at the path

/oauth/redirect

File mediator.ini

interfaces=http://0.0.0.0:30080,https://0.0.0.0:30443
$(include:oauth2.ini)

File oauth2.ini

[auth-oauth2]
clientID=12345-abcd-6789-1234-123456789
clientSecret=qwertzuioplkjhgfdsayxcvbnm
configURI=https://login.microsoftonline.com/c4cc84aa-3413-47c6-bd6e-
c38019596fbf/v2.0/.well-known/openid-configuration
redirectURI=https://exampleserver:30443/oauth/redirect
loginFinishedURI=https://exampleserver:8815/oauth/userAccount
userNameKey=preferred_username
createAccounts=true

The configuration is contained in the category [auth-oauth2]. The values are

Configuration Required Description

clientID yes OAuth Client ID

clientSecret yes OAuth Client secret

configURI yes (*) URI of an OpenID connect configuration endpoint.This URI

is used by the mediator to get information about the

openid configuration.

Technical Handbook 5.8 - 4.7. Login with OAuth 2.0

530

Configuration Required Description

redirectURI yes Public redirect endpoint of the mediator server. This is

usually

http(s)://SERVERNAME:SERVER_PORT/oauth/redirect

(SERVERNAME and SERVER_PORT must be replaced with

actual values).This is invoked from the authentication

service and adresses the mediator. Pay attention to

possible sub-pathing, e.g. if the mediator is reachable at

https://server/mediator

loginFinishedURI no URI of the graphs REST endpoint for handling the user

data. This is usually

http(s)://SERVERNAME:REST_PORT/oauth/login-finished

(SERVERNAME and REST_PORT must be replaced with

actual values).It is possible to use the macro {volume},

which is replace by the name of the accessed Knowledge

Graph.This URI is invoked by the mediator and targets a

REST endpoint of the graph the user is logging on to. This

is only required, if - after login - data from the

authentication token should be used to fill a user topic.

userNameKey no Name of the token property that contains the user name,

e.g. preferred_username (which is also the default value)

createAccounts no Boolean value that defines if new accounts should be

created in the Knowledge Graph for authorized users.If

false, then users can only login if an account has already

been created for them. The default value is false.

scopes no Comma separated list of additional requested scopes. The

following scopes will always be requested and do not

need to be configued: openid, email, profile,

offline_access

If no OpenID connect configuration endpoint (configURI) is given, then the following settings must

be configured:

Configuration Description

jwksEndpoint URI of an endpoint that returns the public keys (JSON Web Key Sets), e.g.

https://login.microsoftonline.com/c4cc84aa-3413-47c6-
bd6e-c38019596fbf/discovery/v2.0/keys

Technical Handbook 5.8 - 4.7. Login with OAuth 2.0

531

Configuration Description

tokenEndpoint URI of the token endpoint, e.g.

https://login.microsoftonline.com/c4cc84aa-3413-47c6-
bd6e-c38019596fbf/oauth2/v2.0/token

authorizationEndpoint URI of the authorization endpoint, e.g.

https://login.microsoftonline.com/c4cc84aa-3413-47c6-
bd6e-c38019596fbf/oauth2/v2.0/authorize

4.7.3.2.1. Configuring HTML pages

By default a login attempt will finally redirect the browser to a HTML page showing a success oder

failure message. Without further configuration standard plain text messages will be presented. If

required, this can be customized by defining templates in the auth-oauth2 section:

[auth-oauth2]
htmlTemplates=oauth2-html-authorized-de,oauth2-html-authorized-en,oauth2-
html-unauthorized-de,oauth2-html-unauthorized-en
; Addition configuration ommitted

[oauth2-html-authorized-de]
state=authorized
languages=de
file=html\authorized-de.html

[oauth2-html-authorized-en]
state=authorized
languages=*
file=html\authorized-en.html

[oauth2-html-unauthorized-de]
state=unauthorized
file=html\unauthorized-de.html

[oauth2-html-unauthorized-en]
state=unauthorized
file=html\unauthorized-en.html

htmlTemplates is a comma-separated list of unique section names. Each section can have the

following entries:

Technical Handbook 5.8 - 4.7. Login with OAuth 2.0

532

Section Description

state must be authorized or unauthorized. Default value: authorized

languages comma-separated list of languages, * can be used to match any

language.Default value: *

file HTML file. The file must self-contained, no additional files are included.

redirect URI that is opened via a redirect (307) instead of showing a built-in HTML

file. Only used when file is not specified.

4.7.3.3. Configuring OAuth for a Knowledge Graph

OAuth can be configured for a single Knowledge Graph in the Knowledge-Builder. This can be done

by administrators only. To configure OAuth, open the settings, and select OAuth on the System

tab. The settings are equal to the server configuration described above.

If a configuration is present, it has precedence over the configuration of the server.

4.7.3.4. Configuring the OAuth REST endpoint

The server only creates basic user accounts when registering new users. All additional steps must be

performed by a REST endpoint provided by a bridge service. To simplyfiy the setup, add the

software component OAuth login in the Admin-Tool. This will create a basic setup:

• A mapping rest.oauth.userMapping that maps the user data to objects of the Knowledge

Graph

• A script rest.oauth.postUserAccount that uses the mapping to create user objects.

• An endpoint /oauth/userAccount which calls the script

• An OAuth configuration skeleton. This is incomplete and must be adjusted to the server setup

(e.g. set host names)

Technical Handbook 5.8 - 4.7. Login with OAuth 2.0

533

4.8. Installation of i-views

4.8.1. General information

For the operation of i-views components, it is not relevant if processes run in physical hardware

(servers, workstation, notebook, …) or in virtual environments (VMWare, VirtualBox, docker, …).

The operation of i-views does not require any special access rights or account permissions of the

underlying operating system. Processes can run as any operating system account considered

reasonable. Nonetheless, running the processes as system accounts is possible; i-views will only

work in configured data areas and its product parts only communicate via TCP/IP.

Without further configuration, i-views processes read and write data and log-files in or below the

working directory assigned at process startup. That means that the account the process is running

as requires write access to the areas the process is running in.

There are also no special requirements for install locations. i-views can be installed in any directory

matching your operating guidelines. Operating any process in a non-locally attached directory (e.g.

a network share) is not recommended. Next to reduced I/O performance this can lead to problems

in specific situations.

All i-views product parts are run as a combination of virtual machine (VM) and so called image. The

image files contain the code of the respective product part and are independent of the operating

system, therefore these are interchangeable between operating systems. The distributed virtual

machines perform the abstraction of the underlying operating system. For Windows, i-views offers

executables which are a pre-packaged combination of VM and image.

Above mentioned virtual machines are available as 32-bit and 64-bit variants. The images "bitness"

by default can be recognized by the (missing) "-64" ending in the file name. The "bitness" of image

and virtual machine must match.

Currently we recommend - whenever possible - to use the 32-bit version of the software. Operating

systems in 64-bit mode sometimes require the installation of additional variants of software

packages (see below). The 64-bit images should only be used, if the 2GB address space of 32-bit

processes will not be sufficient to perform the tasks of the respective process (usually even large

datasets can be handled by 32-bit processes). Mixing of 32-bit and 64-bit processes in a single

installation is possible and supported.

All product parts communicate via TCP/IP, so in principle they can be distributed across networked

machines. The distribution is not described in this document, please refer to the individual tools

documentation for that. If the selected TCP/IP ports are to be used from outside the local machine,

the respective operating systems firewall mechanisms might need to be configured to allow such

communication.

The configuration of product parts depending on the local installation is performed in ini-files. Some

products parts even require such an ini-file and will issue error messages when started without one.

When on the processes command line no explicit ini-file is given, the product part searches for a

Technical Handbook 5.8 - 4.8. Installation of i-views

534

default ini-file in its working directory. The file name of this ini-file depends of the image’s role, e.g.

a mediator image will search for a mediator.ini file. The filename of the image file is not relevant for

its role, so renaming an image file will not make it look for a differently named configuration file.

All product parts can be started via command line or from file manager in foreground. Closing a

window or pressing ctrl-c/cmd-c will end the processes. Also, the processes react to standard OS

signals. All headless processes can also be started as services, for Windows they support this by

built-in command line parameters.

Component / Feature Description Required for …

Core 32 Bit 32-bit-environment required for Core

Core (de-)compression Tools for compression required for Core

Core with graphical interface i-views-tools with graphical

interface

required for Core with UI

Mediator-checksums Accelerates the calculation of

checksums for graph contents

optional for mediator

TLS connections Use of operating system based

TLS features (5.5 an up)

required for the feature

Image scaling Accelerated scaling of pixel-

based images

optional for Core with UI

Graph-editor alpha-channel Prettier display of icons with

transparent areas in the graph

editor

optional for Core with UI

JNI Java Native Interface to

connect to Java based software

(e.g. Lucene)

required for the feature

Encryption Cryptographically protected

connections (e.g. HTTPS)

required for the feature

Enhanced text display Display texts with better anti-

aliasing and kerning in UI tools

optional for Core with UI

MySQL-connection Connect to MySQL databases required for the feature

ODBC-connection Connect to ODBC data sources required for the feature

Oracle-connection Connect to Oracle databases required for the feature

SQLite-connection Connection to SQLite databases required for the feature and

BlobService/Mediator

Extended regular expressions Extension of the available

regular expressions

required for the feature

Keep in mind, that the above mentioned "bitness" of the running i-views virtual machine and image

require external libraries of matching "bitness". A library of non-matching bitness will not be

Technical Handbook 5.8 - 4.8. Installation of i-views

535

activated. This is also the case if one the library’s prerequisite libraries is not present with the same

"bitness".

4.8.2. Operating Systems

i-views supports several operating systems. This chapter describes the installation on supported

operating systems. At the end of the chapter, some hints to further possible operating systems are

given; nevertheless those are not officially supported.

If required all data managed in i-views can be migrated to a different system environment

(hardware, operating system, …) without any required conversion. When distributing the product

parts across different machines, these also can run different operating systems (e.g. a mix of

Windows and Linux). Also, for clients accessing the server components there are no restrictions on

the used clients operating system with regards to the servers operating system.

4.8.2.1. Microsoft Windows

For Windows the product parts usually are delivered as EXE-files. These combine internally a virtual

machine and image. If required, instead of EXE-files also separated virtual machines and images can

be used.

All product parts, that support the operation as a service, can be installed as a service by issuing the

following command line in an administrative shell:

PRODUCTPART.exe –installAsService SERVICENAME [SERVICE1 ...]
[SERVICEPARAMETER ...]

This invocation only creates the service configuration in the Windows environment and stops after

that. If a service should depend on the state different services SERVICE1 to SERVICEn, this can be

added directly on the command line. Parameters, which should be passed to the process started by

the Windows service manager can be added at the end of the command line.

In the Windows service configuration (usually invoked by services.msc) the service then shows up in

the list of services with the name SERVICENAME. Here it also can also be modified, e.g. to change

the account, the start-type or description of the service. Usual command line tools (like sc.exe) can

also be used to modify the service.

To deregister the service, you can use Windows tools like "sc delete SERVICENAME" or:

PRODUCTPART.exe –deinstallService SERVICENAME

Alternatively, the installation as service can also be performed by Windows service control utilities.

Technical Handbook 5.8 - 4.8. Installation of i-views

536

Feature Library To install

Core 32 Bit - Integrated into Windows

Core (de-)compression - Integrated into Windows

Core with graphical interface - Integrated into Windows

Mediator-checksums coastbinary coastbinary.dll: supplied, next

to mediator.exe

TLS connections tlsPlugin tlsPlugin.dll: supplied, next to

all executables

Image scaling GDIPlus Integrated into Windows

Graph-editor alpha-channel Cairo libcairo-2.dll from gtk.org

JNI Java Virtual Machine libjvm.dll is installed with a Java

Runtime (jre) or Java

Development Kit (jdk), e.g.

from java.com

Encryption Windows-native OpenSSL bcrypt.dll: Integrated into

Windows, libeay32.dll: via

openssl.org (sometimes

required because of bcrypt

problems)

Enhanced text display - Integrated into Windows

MySQL-connection MySQL client libraries libmysql.dll: via mysql.com

ODBC-connection ODBC Integrated into Windows or

installable as Windows feature

Oracle-connection Windows Advanced

ServicesOracle client libraries

advapi32.dll: Windows Feature

Advanced Services, usually

available. oci.dll: from

oracle.com in the version

matching the target database

servers version

SQLite-connection SQLite sqlite3.dll: from sqlite.org

Extended regular expressions Boost-Regex boost_regex.dll, msvcp140.dll,

vcruntime140.dll: from

boost.org

When running on Windows, sometimes the libraries of the Microsoft Visual C++ Runtime need to

be installed. This depends on version and type of the OS installation. If they are not present in the

current setup, they need to be installed.

The recommended way to do this, is to use the redistributables offered from Microsofts official

page of the Visual C++ Redistributable. Please select the correct runtime release, the language

Technical Handbook 5.8 - 4.8. Installation of i-views

537

https://www.gtk.org/
https://www.java.com/
https://wiki.openssl.org/index.php/Binaries
https://dev.mysql.com/downloads/connector/c/
https://www.oracle.com/
https://www.sqlite.org/download.html
https://www.boost.org/users/download/
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

matching the operating systems language and the "bitness" matching the used i-views software.

Using this approach not only Microsoft’s update mechanisms provide new security fixes and

patches for the libraries but also there is only a single copy of the libraries present on your system.

Alternatively you can copy the required msvcpXXX.dll and/or vcruntimeXXX.dll files to the same

directory as the executables requiring them.

4.8.2.1.1. macOS

Some components are already included with macOS, other can be added from the standard code

source, via MacPorts or from the respective project websites.

Feature OS part Filename

Core 32 Bit LibC 32 Bit libc.dylib, included in macOS as

libSystem.dylib

Core (de-)compression LibZ Included in macOS

Core with graphical interface X11 environment Included in macOS

Mediator-checksums coastbinary not available for macOS,

checksums are calculated

without library support

TLS connections tlsPlugin tlsPlugins.dylib: supplied with

the client app

Image scaling FreeImage Available at the FreeImage

Project

Graph-editor alpha-channel Cairo libcairo.2.dylib: via Cairo

Project or MacPorts

JNI Java Virtual Machine

Encryption OpenSSL libcrypto.1.0.dylib

Enhanced text display - Included in macOS

MySQL-connection MySQL libmysqlclient.dylib: from the

MySQL website

ODBC-connection diverse, z.B. iODBC libiodbc.dylib: e.g. from

iodbc.org

Oracle-connection Oracle libclntsh.dylib: from Oracles

website in the version matching

the target database server’s

version

SQLite-connection SQLite libsqlite3.dylib: via sqlite.org

Extended regular expressions Boost-Regex libboost_regex.dylib: via

boost.org

Technical Handbook 5.8 - 4.8. Installation of i-views

538

https://www.macports.org/
http://freeimage.sourceforge.net/
http://freeimage.sourceforge.net/
https://www.cairographics.org
https://www.cairographics.org
https://www.macports.org
https://mysql.com/
http://www.iodbc.org/
https://www.oracle.com/
https://sqlite.org/
http://www.boost.org/

4.8.2.2. Linux / Unix

i-views runs on several Unix operating systems, most installations are miscellaneous Linux variants.

Currently there are no repositories available to the public, that provide installation packages for the

different package management tools. The software usually will be delivered as an archive, which

can be installed in the location preferred by organisational policies or just personal taste. Most

installations are placed in the /opt/-tree to signify the non-packaged nature of the installation.

The virtual machines require a small set of libraries to be present for operation. On most systems,

these libraries will be installed out-of-the-box; on some mininalistic installs they might be missing.

Optional i-views features often make use of external libraries, which are only required when a

feature is actively used. If required libraries are not found, it will be noted in the tools log file. For

specific libraries there might be log entries indicating the library as "not loadable" while the library

file is present. This usually happens, when a second library the noted one depends on is missing on

the system. Usually a "ldd LIBRARYFILE" can help identifying the missing prerequisite library.

On most servers nowadays by default a 64-bit environment will be installed. If you want to run 32-

bit processes on these servers, the 32-bit runtime needs to be installed. Keep the "bitness" of the

deployed i-views software in mind, when installing required libraries.

4.8.2.2.1. Debian/Ubuntu (x86/amd64)

Debian/Ubuntu uses apt as package manager. It is recommended to use standard package sources

wherever possible. Packages are installed by issuing "apt install PACKAGENAME". If you prefer

extended package managers like aptitude or synaptic, feel free to use those.

The table below lists package names for the standard architecture. If you run 32-bit i-views software

on top of a 64-bit operating system, you need to add the suffix ":i386" to the package name to

install the 32-bit variant. Some distributions even offer cross-architecture libraries in the main

installed architecture, e.g. libc6-i386 in amd64 architecture of Ubuntu version "distro".

Feature OS part package name / library

Core 32 Bit GLibC 32 Bit libc:i386 / libc.so

Core (de-)compression Utilities for compression zlib1g / libz.so

Core with graphical interface X11 environment libx11-6 / libX11.so

Mediator- checksums coastbinary.so coastbinary.so: supplied, next

to the mediator.im

TLS connections tlsPlugin tlsPlugin.so: supplied for all

executables

Image scaling FreeImage libfreeimage3 / libfreeimage.so

Graph-editor alpha-channel Cairo libcairo2 / libcairo.so

Technical Handbook 5.8 - 4.8. Installation of i-views

539

Feature OS part package name / library

JNI Java Virtual Machine libjvm.so: is installed with a

Java Runtime (jre) or Java

Development Kit (jdk), e.g.

from java.com

Encryption OpenSSL libssl1.X.Y / libssl.so

Enhanced text display XFT libxft2 / libXft.so

MySQL-connection MySQL or MariaDB libmysqlclient20 or libmariadb3

/ libmysqlclient.so

ODBC-connection iODBC libiodbc2 / libiodbc.so

Oracle-connection Oracle libclntsh.so: from oracle.com in

the version matching the target

database server’s version

SQLite-connection SQLite libsqlite3-0 / libsqlite3.so

Extended regular expressions Boost-Regex libboost-regex1.XY.Z /

libboost_regex.so

Running Debian or one of its descendants you can find packages providing a specific feature using

"apt-cache search 'NAME'".

If a package really provides the desired files, you can verify with "apt-file list 'PACKAGE'" (from the

package apt-file). The package-name for a file can be determined with "apt-file search 'FILE'".

As an alternative you can use the search functionality of your distributions web-site e.g.

https://www.debian.org/distrib/packages#search_contents or http://packages.ubuntu.com/.

4.8.2.2.2. RedHat/Fedora/CentOS (x86/amd64)

RedHat-based distributions use yum or dnf as package manager. It is recommended to use the

standard package sources wherever possible, since they deliver security fixes and patches. Package

are installed with "yum install PACKAGENAME" or "dnf install PACKAGENAME".

The table below lists package names for the standard architectures. If 32-bit i-views applications are

run on a 64-bit distribution, use the suffix ".i686" for the package name of required 32-bit libraries.

Please keep in mind, that depending on the distribution some packages might not be available from

the base/core repositories but only from extended community driven repositories.

Feature OS part package name / library

Core 32 Bit GLibC 32 Bit glibc.i686 / libc.so

Core (de-)compression LibZ zlib / libz.so

Core with graphical interface X11 environment libX11 / libX11.so

Technical Handbook 5.8 - 4.8. Installation of i-views

540

https://www.java.com/
http://www.oracle.com/
https://www.debian.org/distrib/packages#search_contents
http://packages.ubuntu.com/

Feature OS part package name / library

Mediator-checksums coastbinary.so • / coastbinary.so supplied,

next to the mediator.im

TLS connections tlsPlugin tlsPlugin.so: supplied next to all

images

Image scaling FreeImage freeimage / libfreeimage.so

Graph-Editor alpha-channel Cairo cairo / libcairo.so

JNI Java Virtual Machine • / libjvm.so is installed with

a Java Runtime (jre) or a

Java Development Kit (jdk),

e.g. from java.com

Encryption OpenSSL openssl-libs / libssl.so

Enhanced text display XFT libXft / libXft.so

MySQL-connection MariaDB mysql-libs or mariadb-libs /

libmysqlclient.so

ODBC-connection iODBC libiodbc / libiodbc.so

Oracle-connection Oracle • / libclntsh.so from

oracle.com in the version

matching the target

database server’s version

SQLite-connection SQLite sqlite / libsqlite3.so

Extended regular expressions Boost-Regex boost-regex / libboost_regex.so

In RPM-based distributions you can find packages containing a specific feature with the search

function of yum/dnf "yum search STRING". To list all files in a package you can issue "yum

repoquery -l PACKAGENAME". To find which package provides a specific file use "yum provides

FILENAME". All commands allow to use glob-patterns.

As an online alternative you can use services like https://rpmfind.net/linux/rpm2html/search.php

or https://pkgs.org/ to search for files and packages for your distribution.

4.8.2.2.3. SUSE Linux Enterprise (SLES)

SUSE distributions are RPM based but use zypper as package manager. It is recommended to use

the standard package sources wherever possible. Packages are installed using "zypper install

PACKAGENAME".

The table below lists package names from the standard architecture. If a 32-bit i-views installation is

run in a 64-bit environment, for library installation add the suffix "-32bit" to the package name.

Some packages for 32-bit are also available in the 64-bit architecture.

Technical Handbook 5.8 - 4.8. Installation of i-views

541

https://www.java.com/
https://www.oracle.com/
https://rpmfind.net/linux/rpm2html/search.php
https://pkgs.org/

Feature OS part package name / library

Core 32 Bit GLibC 32 Bit glibc-32bit / libc.so

Core (de-)compression LibZ libz1 / libz.so

Core with graphical interface X11 environment libX11-6 / libX11.so

Mediator- checksums coastbinary.so • / coastbinary.so: supplied,

next to the mediator.im

Image scaling FreeImage libfreeimage3 / libfreeimage.so

Graph-editor alpha-channel Cairo libcairo2 / libcairo.so

JNI Java Virtual Machine • / libjvm.so: is installed with

a Java Runtime (jre) or a

Java Development Kits

(jdk), e.g. from java.com

Encryption OpenSSL libopenssl1_0_0 / libssl.so

Enhanced text display XFT libXft2 / libXft.so

MySQL-connection MariaDB libmysqlclient18 /

libmiysqlclient.so

ODBC-connection iODBC ? / libiodbc.so

Oracle-connection Oracle libclntsh.so: from Oracle in the

version matching the target

database server’s version

SQLite-connection SQLite libsqlite3-0 / libsqlite3.so

Extended regular expressions Boost-Regex libboost_regex1.XY.Z /

libboost_regex.so

4.8.3. Service configuration

Running of i-views product parts depends on the distributions "init"-system. Here we currently offer

sample files for systemd-based systems.

Other init-systems like e.g. upstart (CentOS 6.5) or LaunchDaemon (Mac OS X) are currently not

offered here, as we do only have incomplete or not-generic files for those. Since i-views does not

depend on any special operating system support, running i-views on those platforms should be

easily possible.

For container based environments the build system creates standard container images, which can

be easily used. Example configurations provided are:

• docker-compose

• kubernetes

Technical Handbook 5.8 - 4.8. Installation of i-views

542

https://www.java.com/
https://www.oracle.com/

Other container runtime variants like docker, podman or openshift can be derived from these

templates.

4.8.3.1. systemd

For regular operation in distributions using systemd as init-system, the following configuration files

can be used as a blueprint:

/etc/systemd/system/iviews-mediator.service:

[Unit]
Description=iviews mediator
After=network.target nss-lookup.target

[Service]
User=iviews
WorkingDirectory=/opt/iviews/mediator
ExecStart=/opt/iviews/vm/vwlinux86 -noherald
-=/opt/iviews/mediator/mediator.im
Restart=on-failure

[Install]
WantedBy=default.target

/etc/systemd/system/iviews-bridge-rest.service:

[Unit]
Description=iviews bridge rest
After=network.target nss-lookup.target iviews-mediator.service
Wants=iviews-mediator.service

[Service]
User=iviews
WorkingDirectory=/opt/iviews/bridge
ExecStart=/opt/iviews/vm/vwlinux86 -noherald
-=/opt/iviews/bridge/bridge.im -ini bridge-rest.ini
Restart=on-failure

[Install]
WantedBy=default.target

/etc/systemd/system/iviews-jobclient.service:

Technical Handbook 5.8 - 4.8. Installation of i-views

543

[Unit]
Description=iviews jobclient
After=network.target nss-lookup.target iviews-mediator.service
Wants=iviews-mediator.service

[Service]
User=iviews
WorkingDirectory=/opt/iviews/jobclient
ExecStart=/opt/iviews/vm/vwlinux86 -noherald
-=/opt/iviews/jobclient/jobclient.im
Restart=on-failure

[Install]
WantedBy=default.target

If services are to be combined to a single installation, e.g. if you want to run multiple projects in

parallel on the same machine and want to be able to control whole projects with single command

lines, it might be useful to create a project-specific systemd-target:

/etc/systemd/system/iviews.target:

[Unit]
Description=iviews
After=network.target nss-lookup.target
Wants=iviews-mediator.service iviews-bridge-rest.service iviews-
jobclient.service

[Install]
WantedBy=default.target

In this case you can remove the [Install] sections from the individual service files and add an entry

to each [Unit] section:

PartOf=iviews.target

When starting or stopping a iviews.target unit, all parts will be started or stopped. You also can

control individual services without affecting the iviews.target.

Names of the services and paths need to be adapted to your environment. The above service

definitions can be used as a blueprint for services with further i-views product parts. After

modification of these files, systemd needs to be informed about the changed services via systemctl.

If required, dependencies of services can be expressed differently. Please see the systemd

Technical Handbook 5.8 - 4.8. Installation of i-views

544

https://www.freedesktop.org/wiki/Software/systemd/

homepage or your distributions man-pages.

Short cheat-sheet for controlling systemd services:

Tasks Command

Register a service
systemctl enable SERVICE

Deregister a service
systemctl disable SERVICE

Start a service
systemctl start SERVICE

Stop a service
systemctl stop SERVICE

Status of a service
systemctl status SERVICE

Edit a service file
systemctl edit --full SERVICE

After manual changes to a

service file systemctl daemon-reload

4.8.3.2. docker-compose

The presented example provides a configuration file for docker-compose starting a mediator bridge

and jobclient for a project. There is also an example env-file containing the secrets required in the

installation. The compose-file can safely be stored in a versioning system like git. The env-file in the

repository should not contain actual secrets.

In the files values enclosed in angular brackets (like "<knowledge-graph-name>") are placeholders

to be filled with your projects values. Identical placeholders indicate the same value to be inserted.

These are intentionally not part of the env-file in this configuration variant to enable only having a

single env-file and being able to keep all relevant configuration information in a repository.

Please note that the installations does not use any INI-files, but relies on IV_ prefixed variables. The

i-views tools assist in converting from ini to environment variables by using the commandline

parameter -iniToEnv.

Please refer to the appendix for the configuration files.

Technical Handbook 5.8 - 4.8. Installation of i-views

545

https://www.freedesktop.org/wiki/Software/systemd/

4.8.3.3. kubernetes

Running i-views in kubernetes environments is possible. For the mediator a reliable storage driver is

required, since it only supports filesystem storage.

In the files values in angular brackets (like "<knowledge-graph-name>") are placeholders to be filled

with your projects values. Identical placeholder names in the files indicate the same value to be

inserted. The single-file configuration below can be separated into multiple yaml files if you prefer

to manage the setup in one file per resource.

Please note:

• Nearly all values mentioned here are depending on the project, the kubernetes environment

and policies relevant to the environment.

• Providing storage via NFS shares is strongly discouraged due to its history of failures.

• Also avoid transferring process with permanent storage (especially the mediator) to different

nodes (see PodDisruptionBudget, maxUnavailable: 0).

• Not all k8s object types are included to make services accessible, e.g. missing is an Ingress

config, since these depend heavily on the infrastructure running the k8s cluster.

Please refer to the appendix for the configuration file.

4.8.4. Typical Requirements

4.8.4.1. Proxy and Load Balancing

4.8.4.1.1. Load-Balancing of multiple REST services

i-views REST-services are provided by the bridge component. They are built to scale by running

multiple processes in parallel. You can start an i-views bridge in a load-balancer mode, where it

starts and monitors a set of worker bridges. For that the configuration file of the bridge needs to

look like the following:

[KLoadBalancer]
hostname=localhost
port=5001
vm=/opt/iviews/vm/vwlinux86
directory=.
image=bridge.im
configNames=REST
autoRestart=true

[REST]
bridgeClientClassName=KWeb.KHTTPRestBridge
inifile=bridge_rest.ini
bridgeLogfile=bridge_rest_<id>.log

Technical Handbook 5.8 - 4.8. Installation of i-views

546

ports=5002-5005

This configuration will start four REST-bridges on ports 5002 to 5005 and use the port 5001 as

controlling port the workers and the controller use for communication.

The load-balancing bridge itself will not perform the HTTP load-balancing. For this, i-views

installations usually make use of load-balancing features of nginx, apache with mod_proxy or

haproxy. Since the started bridges will use the standard HTTP protocol, any standard compliant

load-balancer can be used.

Nginx

In nginx, you can use proxy_pass directives to forward incoming requests on a specific subpath to a

set of backend bridges. To achive this, extend the nginx configuration with the following lines:

upstream iviews-rest-bridges {
 server 127.0.0.1:5002;
 server 127.0.0.1:5003;
 server 127.0.0.1:5004;
 server 127.0.0.1:5005;
}

server {
 ...

 location ^ ~ /myRestPath/ {
 proxy_pass http://iviews-rest-bridges/;
 }
}

Apache HTTPD

The Apache HTTPD project offers several proxy modules, which can be activated in typical

installations. To balance to the above scaled bridges, an apache configuration would look like this:

ProxyRequests off
<Proxy balancer://iviews>
 BalancerMember http://127.0.0.1:5002 disablereuse=On
 BalancerMember http://127.0.0.1:5003 disablereuse=On
 BalancerMember http://127.0.0.1:5004 disablereuse=On
 BalancerMember http://127.0.0.1:5005 disablereuse=On
</Proxy>
ProxyPass /myRestPath/ balancer://iviews/ lbmethod=bybusyness

Technical Handbook 5.8 - 4.8. Installation of i-views

547

ProxyPassReverse /myRestPath/ balancer://iviews/ lbmethod=bybusyness

(this uses the modules mod_proxy, mod_proxy_balancer, mod_lbmethod_bybusyness)

haproxy

haproxy is a pure proxy service and does not offer web-server features like nginx or apache. The

haproxy service usually is configured in

/etc/haproxy/haproxy.cfg:

frontend main *:5000
default_backend rest_bridge

backend rest_bridge
 balance first
 server rest_bridge1 127.0.0.1:5002 check maxconn 1 weight 100
 server rest_bridge2 127.0.0.1:5003 check maxconn 1 weight 99
 server rest_bridge3 127.0.0.1:5004 check maxconn 1 weight 98
 server rest_bridge4 127.0.0.1:5005 check maxconn 1 weight 97

4.8.4.1.2. Microsoft Windows Server

Using the Internet information Services (IIS) i-views services can be offered on a standard single

port. This has the advantages to not require special ports to be opened in firewalls, that IIS can add

the HTTPS wrapping using the integrated certificate management and that redirection features can

be administrated centrally in IIS.

The following modules need to be installed:

• ApplicationRequestRouting (remember to activate the module)

• RewriteModule (the display name is: "Url Rewrite")

• WebSocketModule (if the mediator needs to be accessible in WebSocket mode)

With above modules, a set of redirections can be defined:

1. Ensure acitivation of Application Request Routing. (select the server in the tree on the left,

double-click the icon for "Application Request Routing")

Technical Handbook 5.8 - 4.8. Installation of i-views

548

2. Add an URL-Rewrite rule (Blank rule) (select the server in the tree on the left, double-click the

icon for "URL Rewrite")

Technical Handbook 5.8 - 4.8. Installation of i-views

549

3. Add rules (in the screenshot you see a sample mediator rule)

Please note: On the server itself, communication should be done over HTTP even when the external

traffic is HTTPS encrypted. Else you would need to handle certificates between the installed services

and the IIS. Also, the encryption would bind computing resources and there is no security benefit

for server-local communication.

Debugging

If requests do not flow like expected, you can use the IIS debugging functionality to investigate:

1. Select the server in the tree on the left

2. Double-click the icon "Failed Request Tracing Rules"

3. Create a rule (e.g. log all request with return codes 400-999)

4. Select the web-site in the tree

5. Click on "Configure Failed Request Tracing"

6. Select "enable" in the new dialog

The logs will be written to the folder "C:\inetpub\logs\FailedReqLogFiles".

Technical Handbook 5.8 - 4.8. Installation of i-views

550

4.8.4.2. Firewall configuration

i-views processes communicate exclusively via TCP/IP. The ports used by default depend on

software version used, but these defaults can be changed via local config.

Depending on the operating system and distribution, the firewall configuration needs to be

performed with different tools. Therefore, here only a subset of firewall utilities can be covered. E.g.

in Linux there are serveral frontends and configuration styles, all of them control the underlying

iptables- or nftables-implementation in the kernel.

4.8.4.2.1. firewalld

firewalld, as it is used in newer CentOS, mainly uses services and zones in the configuration.

You can use the command line utility firewall-cmd to change the firewalls behaviour. Or you can use

the XML configuration files in /etc/firewalld/services/NAME.xml.

/etc/firewalld/services/iviews.xml:

<?xml version="1.0" encoding="utf-8"?>
<service>
 <short>iviews-example</short>
 <description>i-views example installation</description>
 <!-- mediator -->
 <port protocol="tcp" port="30063"/>
 <!-- rest-bridge -->
 <port protocol="tcp" port="8815"/>
</service>

A new configuration can be activated for a session or permanently for the public zone by these

commands:

firewall-cmd --permanent --zone=public --add-service=iviews
firewall-cmd --reload

As filewall-cmd "only" edits the zone-file you can also manually edit the file to include the service:

/etc/firewalld/zones/public.xml:

<service name="iviews"/>

Technical Handbook 5.8 - 4.8. Installation of i-views

551

5. Appendix

5.1. docker-compose configuration

env

MEDIATOR_PASSWORD=<mediator-password>
AUTH_TOKEN=<system-account>

docker-compose.yaml

version: '3'
services:
 mediator:
 image: container-registry.example.com/iviews-mediator:<image-tag-1>
 environment:
 IV_PASSWORD: "${MEDIATOR_PASSWORD:?MEDIATOR_PASSWORD not
configured}"
 IV_SCHEDULED_JOBS: "job-bu,job-gc"
 IV_JOB_BU_VOLUME_PATTERN: "<knowledge-graph-name>"
 IV_JOB_BU_BACKUP_INTERVAL: "1"
 IV_JOB_BU_BACKUP_TIME: "22:22"
 IV_JOB_BU_BACKUPS_TO_KEEP: "5"
 IV_JOB_GC_VOLUME_PATTERN: "<knowledge-graph-name>"
 IV_JOB_GC_GARBAGE_COLLECT_INTERVAL: "1"
 IV_JOB_GC_GARBAGE_COLLECT_TIME: "22:33"
 volumes:
 - "mediator-volumes:/mediator/volumes"
 - "mediator-backup:/mediator/backup"
 ports:
 - "30000:30000"
 - "30001:30001"
 restart: unless-stopped
 jobclient:
 image: container-registry.example.com/iviews-jobclient:<image-tag-2>
 environment:
 IV_HOST: "mediator:30001"
 IV_VOLUME: "<knowledge-graph-name"
 IV_AUTHENTICATION: "${AUTH_TOKEN:?AUTH_TOKEN not configured}"
 IV_JOB_POOLS: "script,index"
 depends_on:
 - mediator
 deploy:
 replicas: 1

Technical Handbook 5.8 - 5. Appendix

552

 restart: unless-stopped
 bridge:
 image: container-registry.example.com/iviews-bridge:<image-tag-3>
 environment:
 IV_HOST: "mediator:30001"
 IV_VOLUME: "<knowledge-graph-name>"
 IV_AUTHENTICATION: "${AUTH_TOKEN:?AUTH_TOKEN not configured}"
 depends_on:
 - mediator
 - jobclient
 ports:
 - "8815:8815"
 deploy:
 replicas: 1
 restart: unless-stopped
volumes:
 mediator-volumes:
 mediator-backup:

5.2. kubernetes configuration

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mediator
 labels:
 app: mediator
spec:
 selector:
 matchLabels:
 app: mediator
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: mediator
 spec:
 containers:
 - name: mediator
 image: container-registry.example.com/iviews-mediator:<image-tag-
1>
 ports:
 - containerPort: 30000

Technical Handbook 5.8 - 5.2. kubernetes configuration

553

 - containerPort: 30001
 env:
 - name: IV_PASSWORD
 valueFrom:
 secretKeyRef:
 name: iviews-secret
 key: MEDIATOR_PASSWORD
 - name: IV_INTERFACES
 value: "http://0.0.0.0:30000,cnp://0.0.0.0:30001"
 - name: IV_SCHEDULED_JOBS
 value: "job-bu,job-gc"
 - name: IV_JOB_BU_VOLUME_PATTERN
 valueFrom:
 configMapKeyRef:
 name: iviews-config
 key: VOLUME
 - name: IV_JOB_BU_BACKUP_INTERVAL
 value: "1"
 - name: IV_JOB_BU_BACKUP_TIME
 value: "22:22"
 - name: IV_JOB_BU_BACKUPS_TO_KEEP
 value: "1"
 - name: IV_JOB_GC_VOLUME_PATTERN
 valueFrom:
 configMapKeyRef:
 name: iviews-config
 key: VOLUME
 - name: IV_JOB_GC_GARBAGE_COLLECT_INTERVAL
 value: "1"
 - name: IV_JOB_GC_GARBAGE_COLLECT_TIME
 value: "22:33"
 volumeMounts:
 - mountPath: /mediator/volumes
 name: mediator-volumes
 - mountPath: /mediator/backup
 name: mediator-backup
 volumes:
 - name: mediator-volumes
 persistentVolumeClaim:
 claimName: mediator-volumes
 - name: mediator-backup
 persistentVolumeClaim:
 claimName: mediator-backup
 securityContext:
 runAsUser: 10000
 runAsGroup: 10000

Technical Handbook 5.8 - 5.2. kubernetes configuration

554

 fsGroup: 10000

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mediator-volumes
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mediator-backup
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Gi

apiVersion: v1
kind: Service
metadata:
 name: mediator
 labels:
 app: mediator
spec:
 selector:
 app: mediator
 ports:
 - name: mediator-http
 port: 30000
 - name: mediator-cnp
 port: 30001

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: mediator
spec:
 policyTypes:
 - Ingress

Technical Handbook 5.8 - 5.2. kubernetes configuration

555

 podSelector:
 matchLabels:
 app: mediator
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: jobclient
 - podSelector:
 matchLabels:
 app: bridge

apiVersion: apps/v1
kind: Deployment
metadata:
 name: jobclient
 labels:
 app: jobclient
spec:
 selector:
 matchLabels:
 app: jobclient
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: jobclient
 spec:
 containers:
 - name: jobclient
 image: container-registry.example.com/iviews-mediator:<image-tag-
2>
 imagePullPolicy: IfNotPresent
 env:
 - name: IV_HOST
 value: "mediator:30001"
 - name: IV_VOLUME
 valueFrom:
 configMapKeyRef:
 name: iviews-config
 key: VOLUME
 - name: IV_AUTHENTICATION
 valueFrom:
 secretKeyRef:
 name: iviews-secret

Technical Handbook 5.8 - 5.2. kubernetes configuration

556

 key: AUTHENTICATION
 - name: IV_JOB_POOLS
 value: script,index,query
 securityContext:
 runAsUser: 10000
 runAsGroup: 10000

apiVersion: apps/v1
kind: Deployment
metadata:
 name: bridge
 labels:
 app: bridge
spec:
 selector:
 matchLabels:
 app: bridge
 strategy:
 type: Recreate
 replicas: 1
 template:
 metadata:
 labels:
 app: bridge
 spec:
 containers:
 - name: bridge
 image: container-registry.example.com/iviews-bridge:<image-tag-3>
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 8815
 env:
 - name: IV_HOST
 value: "mediator:30001"
 - name: IV_VOLUME
 valueFrom:
 configMapKeyRef:
 name: iviews-config
 key: VOLUME
 - name: IV_AUTHENTICATION
 valueFrom:
 secretKeyRef:
 name: iviews-secret
 key: AUTHENTICATION
 securityContext:
 runAsUser: 10000

Technical Handbook 5.8 - 5.2. kubernetes configuration

557

 runAsGroup: 10000

apiVersion: v1
kind: Service
metadata:
 name: bridge
 labels:
 app: bridge
spec:
 selector:
 app: bridge
 ports:
 - name: bridge
 port: 8815

apiVersion: v1
kind: Secret
metadata:
 name: iviews-secret
type: Opaque
data:
 MEDIATOR_PASSWORD: <encoded-mediator-password>
 AUTHENTICATION: <encoded-system-account>

apiVersion: v1
kind: ConfigMap
metadata:
 name: iviews-config
data:
 VOLUME: <knowledge-graph-name>

Technical Handbook 5.8 - 5.2. kubernetes configuration

558

	Technical Handbook 5.8
	Table of contents
	1. Knowledge-Builder
	1.1. Global actions and settings
	1.1.1. Global context menu
	1.1.2. Personal settings
	1.1.3. System settings
	1.1.4. Index configuration
	1.1.5. Configuration file kb.ini

	1.2. Access rights and triggers
	1.2.1. Checking of access right
	1.2.2. Trigger
	1.2.3. Filter types
	1.2.4. Operation parameters
	1.2.5. Operations
	1.2.6. Testbench

	1.3. View Configuration
	1.3.1. Concept
	1.3.2. Menus
	1.3.3. Actions
	1.3.4. View configuration elements
	1.3.5. Knowledge Builder configuration
	1.3.6. Style
	1.3.7. Detector system for determining the view configuration

	1.4. JavaScript API
	1.4.1. Introduction
	1.4.2. Examples
	1.4.3. Modules
	1.4.4. Editor and debugger
	1.4.5. API extensions

	1.5. REST services
	1.5.1. Configuration
	1.5.2. Services
	1.5.3. Resources
	1.5.4. CORS
	1.5.5. OpenAPI documentation

	1.6. Reports and printing
	1.6.1. Create print templates
	1.6.2. Create print templates for lists
	1.6.3. Document format conversion with OpenOffice/LibreOffice

	1.7. Tagging
	1.7.1. Configuration
	1.7.2. View configuration
	1.7.3. Tagging by Script
	1.7.4. Required software

	1.8. Development support
	1.8.1. Dev tools
	1.8.2. Dev service

	1.9. KB plugins and components
	1.9.1. Units component
	1.9.2. Custom components

	1.10. External Index
	1.10.1. Application Areas

	2. Admin Tool
	2.1. Admin tool configuration
	2.2. Launch window
	2.2.1. Server
	2.2.2. Knowledge Graph
	2.2.3. Administrate, New and Start
	2.2.4. About

	2.3. Create a new Knowledge Graph
	2.3.1. Server
	2.3.2. New Knowledge Graph
	2.3.3. Server password
	2.3.4. License
	2.3.5. User name
	2.3.6. Password (user)
	2.3.7. Ok and Cancel

	2.4. Server administration
	2.4.1. Graph overview
	2.4.2. Message area
	2.4.3. Menu line

	2.5. Individual Knowledge Graph administration
	2.5.1. User authentication
	2.5.2. Individual Knowledge Graph administration window

	3. View Configuration Mapper
	3.1. Introduction
	3.2. Interaction patterns
	3.2.1. Building blocks of dynamic behavior
	3.2.2. Application state
	3.2.3. Interaction patterns and recipes

	3.3. Configuration
	3.3.1. Frontend configuration
	3.3.2. View configurations for the View Configuration Mapper
	3.3.3. Login configuration
	3.3.4. The View Configuration Mapper component
	3.3.5. Create a project with the View Configuration Mapper
	3.3.6. Modify templates
	3.3.7. Operate the frontend

	3.4. Actions
	3.5. Panels
	3.5.1. Activation of panels
	3.5.2. Layout panels
	3.5.3. View panels
	3.5.4. Dialog panels

	3.6. Viewconfig elements
	3.6.1. General
	3.6.2. Alternative
	3.6.3. Layout
	3.6.4. Flexible view
	3.6.5. Hierarchy
	3.6.6. Properties
	3.6.7. Property
	3.6.8. Edit
	3.6.9. Form inputs
	3.6.10. Table
	3.6.11. Search
	3.6.12. Graph configuration
	3.6.13. Text
	3.6.14. Image
	3.6.15. Script generated HTML
	3.6.16. Script generated view

	3.7. Bookmarks and history
	3.7.1. Bookmark Resource
	3.7.2. Link to Panels
	3.7.3. In-app navigation with bookmarks

	3.8. Plugins
	3.8.1. vcm-plugin-calendar
	3.8.2. vcm-plugin-chart
	3.8.3. vcm-plugin-html-editor
	3.8.4. vcm-plugin-maps
	3.8.5. vcm-plugin-markdown
	3.8.6. vcm-plugin-timeline
	3.8.7. vcm-plugin-page
	3.8.8. vcm-plugin-net-navigator

	3.9. Special configuration
	3.9.1. Switching language of web frontend
	3.9.2. Display change history in a web frontend

	3.10. Installation
	3.10.1. Configuration of web servers

	3.11. Extension project
	3.11.1. Development environment
	3.11.2. Technical details

	4. i-views services
	4.1. General
	4.1.1. Configuration file

	4.2. Mediator
	4.2.1. General
	4.2.2. System requirements
	4.2.3. Operating modes
	4.2.4. Installation
	4.2.5. Operation

	4.3. Bridge
	4.3.1. General
	4.3.2. Common command line parameters
	4.3.3. Configuration file "bridge.ini"
	4.3.4. REST bridge
	4.3.5. KEM bridge
	4.3.6. KLoadBalancer

	4.4. Job-Client
	4.4.1. General
	4.4.2. Configuration of the Jobclient

	4.5. Batch tool
	4.5.1. Common command line parameters
	4.5.2. Configuration file options
	4.5.3. Commands
	4.5.4. Running scripts
	4.5.5. Importing or exporting schema
	4.5.6. Importing licenses
	4.5.7. Upgrading components
	4.5.8. Executing a series of commands
	4.5.9. Example: Importing per batch tool

	4.6. Blob service
	4.6.1. Introduction
	4.6.2. Configuration
	4.6.3. SSL certificates

	4.7. Login with OAuth 2.0
	4.7.1. Limitations
	4.7.2. Authorization flow
	4.7.3. Configuration

	4.8. Installation of i-views
	4.8.1. General information
	4.8.2. Operating Systems
	4.8.3. Service configuration
	4.8.4. Typical Requirements

	5. Appendix
	5.1. docker-compose configuration
	5.2. kubernetes configuration

