Technical Handbook 5.8

Table of contents

1. Knowledge-Builder 1
1.1. Global actions and settings 1
1.1.1. Global context menu 1
1.1.2. Personal settings 5
1.1.3. System settings 17
1.1.4. Index configuration 33
1.1.5. Configuration file kb.ini 39
1.2. Access rights and triggers 41
1.2.1. Checking of access right 41
1.2.2. Trigger 55
1.2.3. Filter types 67
1.2.4. Operation parameters 76
1.2.5. Operations 86
1.2.6. Testbench 92
1.3. View Configuration 97
1.3.1. Concept 98
1.3.2. Menus 105
1.3.3. Actions 108
1.3.4. View configuration elements 136
1.3.5. Knowledge Builder configuration 187
1.3.6. Style 193
1.3.7. Detector system for determining the view configuration 196
1.4. JavaScript API 199
1.4.1. Introduction 199
1.4.2. Examples 203
1.4.3. Modules 221
1.4.4. Editor and debugger 223
1.4.5. API extensions 227
1.5. REST services 230
1.5.1. Configuration 230
1.5.2. Services 230
1.5.3. Resources 231
1.5.4. CORS 243
1.5.5. OpenAPIl documentation 244
1.6. Reports and printing 249
1.6.1. Create print templates 249

1.6.2. Create print templates for lists 257

1.6.3. Document format conversion with OpenOffice/LibreOffice
1.7. Tagging
1.7.1. Configuration
1.7.2. View configuration
1.7.3. Tagging by Script
1.7.4. Required software
1.8. Development support
1.8.1. Dev tools
1.8.2. Dev service
1.9. KB plugins and components
1.9.1. Units component
1.9.2. Custom components
1.10. External Index
1.10.1. Application Areas
2. Admin Tool
2.1. Admin tool configuration
2.2. Launch window
2.2.1. Server
2.2.2. Knowledge Graph
2.2.3. Administrate, New and Start
2.2.4. About
2.3. Create a new Knowledge Graph
2.3.1. Server
2.3.2. New Knowledge Graph
2.3.3. Server password
2.3.4. License
2.3.5. User name
2.3.6. Password (user)
2.3.7. Ok and Cancel
2.4. Server administration
2.4.1. Graph overview
2.4.2. Message area
2.4.3. Menu line
2.5. Individual Knowledge Graph administration
2.5.1. User authentication
2.5.2. Individual Knowledge Graph administration window
3. View Configuration Mapper
3.1. Introduction

3.2. Interaction patterns

259
261
261
268
270
270
271
271
271
272
272
273
299
299
300
300
302
302
302
302
303
305
305
305
306
306
306
306
306
307
307
308
308
312
312
312
343
343
344

3.2.1. Building blocks of dynamic behavior 344

3.2.2. Application state 350
3.2.3. Interaction patterns and recipes 351
3.3. Configuration 361
3.3.1. Frontend configuration 361
3.3.2. View configurations for the View Configuration Mapper 363
3.3.3. Login configuration 374
3.3.4. The View Configuration Mapper component 374
3.3.5. Create a project with the View Configuration Mapper 377
3.3.6. Modify templates 377
3.3.7. Operate the frontend 377
3.4. Actions 379
3.5. Panels 380
3.5.1. Activation of panels 382
3.5.2. Layout panels 382
3.5.3. View panels 383
3.5.4. Dialog panels 383
3.6. Viewconfig elements 387
3.6.1. General 387
3.6.2. Alternative 387
3.6.3. Layout 388
3.6.4. Flexible view 390
3.6.5. Hierarchy 390
3.6.6. Properties 392
3.6.7. Property 394
3.6.8. Edit 399
3.6.9. Form inputs 401
3.6.10. Table 404
3.6.11. Search 411
3.6.12. Graph configuration 425
3.6.13. Text 428
3.6.14. Image 428
3.6.15. Script generated HTML 429
3.6.16. Script generated view 430
3.7. Bookmarks and history 431
3.7.1. Bookmark Resource 431
3.7.2. Link to Panels 434
3.7.3. In-app navigation with bookmarks 437

3.8. Plugins 438

3.8.1. vem-plugin-calendar
3.8.2. vem-plugin-chart
3.8.3. vem-plugin-html-editor
3.8.4. vem-plugin-maps
3.8.5. vem-plugin-markdown
3.8.6. vem-plugin-timeline
3.8.7. vem-plugin-page
3.8.8. vcm-plugin-net-navigator
3.9. Special configuration
3.9.1. Switching language of web frontend
3.9.2. Display change history in a web frontend
3.10. Installation
3.10.1. Configuration of web servers
3.11. Extension project
3.11.1. Development environment
3.11.2. Technical details
4. i-views services
4.1. General
4.1.1. Configuration file
4.2. Mediator
4.2.1. General
4.2.2. System requirements
4.2.3. Operating modes
4.2.4. Installation
4.2.5. Operation
4.3. Bridge
4.3.1. General
4.3.2. Common command line parameters
4.3.3. Configuration file "bridge.ini"
4.3.4. REST bridge
4.3.5. KEM bridge
4.3.6. KLoadBalancer
4.4. Job-Client
4.4.1. General
4.4.2. Configuration of the Jobclient
4.5. Batch tool
4.5.1. Common command line parameters
4.5.2. Configuration file options

4.5.3. Commands

438
439
443
445
446
448
450
450
454
454
454
459
459
461
461
461
462
462
462
472
472
472
472
478
485
490
490
490
491
492
497
498
502
502
502
513
513
513
514

4.5.4. Running scripts
4.5.5. Importing or exporting schema
4.5.6. Importing licenses
4.5.7. Upgrading components
4.5.8. Executing a series of commands
4.5.9. Example: Importing per batch tool
4.6. Blob service
4.6.1. Introduction
4.6.2. Configuration
4.6.3. SSL certificates
4.7. Login with OAuth 2.0
4.7.1. Limitations
4.7.2. Authorization flow
4.7.3. Configuration
4.8. Installation of i-views
4.8.1. General information
4.8.2. Operating Systems
4.8.3. Service configuration
4.8.4. Typical Requirements
5. Appendix
5.1. docker-compose configuration

5.2. kubernetes configuration

520
521
522
522
523
524
526
526
526
528
529
529
529
529
534
534
536
542
546
552
552
553

Technical Handbook 5.8 - 1. Knowledge-Builder

1. Knowledge-Builder

This technical handbook comprises all advanced configuration of the i-views Knowledge-Builder,
Admin-Tool, View Configuration Mapper and services as well. Basic fundamentals about how to use
the Knowledge-Builder are described in the User’s Manual.

1.1. Global actions and settings

All actions and settings, which are independant from the Knowledge Graph context, are so-called
"global actions" or "global settings". They are available in the upper right corner of the Knowledge-
Builder as long as the start screen is visible or when an element in the organizer is chosen on the
left side of the Knowledge-Builder:

Global context menu

Global settings

E -ﬁ- D New window

¢ Global context menu: Provides actions for administrative purposes

¢ Global settings: Contains user-changeable settings or overall settings that can be changed by
the administrator only

¢ New window: Useful for opening a selected item (e. g. import mapping, view configuration...) in
a new dialog window.

Advantages:

o View doesn’t get lost when another item is chosen in the main window of the Knowledge
Builder

o View is opened without organizer, thus offering more display space

1.1.1. Global context menu

Change password

For the logged in account (non-administrative and administrative), this option provides changing
the backend password for accessing the Knowledge Graph by means of the Knowledge Builder.

Technical Handbook 5.8 - 1.1. Global actions and settings

-—
Change password — ﬁ
Recently Closed Windows >

Tools H]
Administrator L]

About

Exit

Recently closed windows

Since i-views 5.4, this feature is included as standard in this menu. Recently closed windows can be
reopened again without the need to search for the respective element view.

-—
»
Change password ~ ﬁ
Knowledge Graph Recently Closed Windows >
=]
L) ;
% Knowledge Graph Tools 2
- Administrator >
) Knewedas Greph Properties of the type £ About
': b L Harr = K walge Craph -
o tenzer N Exit
B aEesract Ihpe) o = -
...... = ™
= i elear
Tyl E ot sururine e
oz et = Keatizns Facer suane dome
Lt F saotyy I:kiz
Definltlon
Intera Name ra 4

Axtributes of objects

FInner s StrEutes

Tools
The tools actions provide several functionalities:

¢ Volume information: Shows a dialog window with detailed information about the amount of
types and instances of the Knowledge Graph and the size of the volume in which the
Knowledge Graph is stored.

e Script messages: When using or debugging JavaScript, the script messages dialog can be used
for displaying feedback returned by the Sk.log() method in the script itself.

NOTE The visibility of script messages depends on the configuration of the bridge.

e RDF: Provides the options "RDF import" and "RDF export". For more information, see Chapter
1.5.4 "RDF-import and -export".

e Exports: Provides export options concerning JavaScript-API, viewconfig JSON-schema, REST-API
as OpenAPI 2.0 and KScript XML Schema.

Technical Handbook 5.8 - 1.1. Global actions and settings

¢ Dev Service: By means of the DEV Service, the i-views browser extension tool can be used to
open the respective element/view/panel of the viewconfiguration in the Knowledge Builder by
right-clicking onto the relevant part in the browser. The i-views browser extension is an extra
which is available upon request. Pay attention that several Knowledge-Builders cannot use the
DEV Service at the same time if they use the same DEV Service port as specified in the global

settings.
—-—
—
Change password — ﬁ
Recently Closed Windows >
Veolume informaticn Tools »
Script Messages Administrator »
RDF ¥ About
Exports b Exit
Meod) »
Dev Service ¥

Administrator

Tt

Change password

Recently Closed Windows »

Tools »
Flush client caches Adrninistrator]
Revoke admin rights About
Lockup semantic elerment with (D Exit

Loockup registry key

Audit log analysis

Update REST interface
Rebuild view configurations
Edit configured editors

Tool window

¢ Flush client caches: This action triggers in all tools connected to this graph the invalidation of
caches. In normal operation caches should be invalidated automatically. In rare cases the
invalidation fails, this action can trigger it manually.

e Revoke admin rights: This option allows an administrative user to revoke the own
administrative access in order to test rights management configuration in the Knowledge
Builder. The administrative access can be restored again by deactivating the option.

¢ Lookup semantic element with ID: For analyzing messages returning a semantic element ID (=

3

Technical Handbook 5.8 - 1.1. Global actions and settings

"frame ID"), the ID can be input here to determine the corresponding semantic element.

¢ Lookup registry key: Offers search for registered objects within the Knowledge-Builder (e. g.
registered queries, scripts or types).

¢ Audit log analysis

e Update REST interface: Global available action for updating the REST interface, serves as

substitute when local REST update button @' is not present (visible) at the moment.

¢ Rebuild view configurations: Global available action for updating the viewconfiguration, serves
as substitute when the local viewconfiguration update button G is not present at the
moment.

¢ Edit configured editors: If detail editors are configured as a view for elements of the Knowledge
Graph, they can be administered here in one space.

¢ Tool window: Provides an overall avalilable tools menu for often needed actions. This comes in
handy when many windows are opened at the same time:

Rebuild view configurations

Update REST interface
Flush client caches
Lockup semantic element with 1D
Lockup registry key

Script Messages

About

Recalls information about configuration, licensing and components of the Knowledge Graph as
available in the login window.

Change password E ﬁ
Recently Closed Windows >

Tools »
Administrator ¥

About

Exit

Exit

Exits the Knowledge Builder.

Technical Handbook 5.8 - 1.1. Global actions and settings

nl
T

Change password

Recently Closed Windows >

Tools »
Adrninistrator >
About

Exit

1.1.2. Personal settings

Personal settings are available and adjustable for the logged in Knowledge Builder user exclusively.
The options are described in the following subchapters in detail.

1.1.2.1. Folder

Personal Systemn Index configuration

Folder Show folder elements in the tree
Windows [Folders Hide Siblings
Editors Size of the query result folder:

Structured query 1| Query results

Continue query when navigating to another folder

Graph
O Yes O No @ Ask
Search field
Font size Folder for registered objects
View configuration Show folders also on upper level that are sorted inte subfolders
Keyboard shortcuts [] Show registered objects without public ID
Timeline
Dev tools

oK

¢ Show folder elements in the tree: Determines whether the content of the folder is displayed as
subnode in the folder tree. This option can be useful to improve clarity of the tree in case of
many folder sub elements.

Technical Handbook 5.8 - 1.1. Global actions and settings

¢ Folders hide siblings Should all siblings folders become invisible while a folder is opened.

¢ Size of the query result folder: Number of search result sets of the structured queries that have
been recently executed within the KB. The search result set will then be listed within FOLDER >
Query results. A search result set entry consists of the timestamped search result list,
containing the found semantic elements which can be display in the graph, including their
causes. Reducing the size will take effect when executing the next query.

¢ Continue query when navigating to another folder
¢ Show folders also on upper level that are sorted into subfolders

¢ Show registered objects without public ID

1.1.2.2. Windows

The windows settings determines the behaviour of the Knowledge Builder itself and its dialog
windows.

¢ Center windows: New windows will always be opened in a centered position.

¢ Keep window positions: Reopens the same view in a window with the same window position.

e Cascade windows: Stacks all windows of the same type in a cascading manner so that all their
titles can be seen at once.

¢ Bring existing window in front, do not open new window: Reuses windows if they are already
open, preventing the increase of opened windows for clarity reasons.

e Window color for this session: If several Knowledge Builder are opened at once, this option
helps to distinguish between the different Knowledge Graphs by setting a temporary color of

the window frames per Knowledge Builder per session:
Personal System Index configurstion
Folder Windew placement
() Center windows
Windows
() Keep window positions
Editors @ Cascade windows
» » Structured query Bring existing window in front, do not open new window
L Graph ;
O Window color for this session Reset
Search field
Ei\ [Open new windows for this session allways on screen of primary windew
s
ol ontsize I e e e e e e e T e et
DED View configurstion
HECC v Keyboard shorteuts
Timeline

oK

e Open new windows for this session always on screen of primary window: If several screens
are used, a new window always is opened on the main screen.

¢ Show information about volume and server in the window title: For distinguishing between
the windows of different Knowledge Graphs from different Knowledge Builder, the Knowledge
Graph name and the server will be shown in the title of all opened windows. Serves for the
same purpose of clarity like setting the window color.

Technical Handbook 5.8 - 1.1. Global actions and settings

1.1.2.3. Editors

Personal ~ Systemn Index configuration

Folder Group starting at 10 | items

Windows Remember and restore last selected tab

Editors Write back changes immediately

Structured query Relation target search

Graph Type selection switch from tabs (top) to list (left) after 12
Search field

Font size

View configuration
Keyboard shertcuts
Timeline

Dev tools

oK

e Group starting at [...] items: This option leads to properties of the same type being bundled
into a dropdown accordion if the given number is reached.

e Remember and restore last selected tab: Allows the detail editors being displayed with the
same tab selected as in a previous access during the session.

e Write back changes immediately: This option takes effect on the backend (Knowledge Builder)
only. When activated, element properties are written to the Knowlede Graph immediately in
order to validate them against schema rules first before applying the changes. If disabled,
properties can be edited and the changes are written to the graph using the additional "Apply"
button, which is displayed at the bottom of the editor view. For the web frontend, (buttons
with) actions of the action type "validate" and "save" serve this purpose.

e Type selection switch from tabs (top) to list (left) after [...]: When the relation target selection
dialog is openend due to editing a relation, the relation targets are not shown separated by
tabs on the top edge but in forms of categories listed on the left side of the dialog.

1.1.2.4. Structured query

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

Folder Show condition labels
Windows Show condition inlined if possible
Editors [Always show finder numbers

Structured query (] Show access rights checks

Graph Show messages for the search definition
Search field

Font size

View configuration

Keyboard shortcuts

Timeline

Dev tools

¢ Show condition labels: If activated, query labels for properties are shown additionally to the

symbol:

: |
A Attribute |2 o1
& Relation e o has Target 48

D Attribute HE 'ﬁ' Value

value of [2] A=a[g @

: |
NG
L ‘.’ has sub category |° + |. Subtype YZ |

AL ﬁ = valueof[2] A=a[g

¢ Show condition labels inlined if possible: If enabled, relation targets and attribute values are

shown inline to their

property

types:

Technical Handbook 5.8 - 1.1. Global actions and settings

4+ @ subtype A-C
O Attribute |2 R
o Relation R | has sub category o has Target 4% .Subtype‘l'z

O\ Attribute HR ﬁ' Value =

I [Bhaw condition miined if possiblg Ii

value of [2]

A=a 7 @

8
O\ Attribute |2 4R
cf’ Relation MR
o has Target 4k

O Attribute HR
ﬁ' Value =

value of [2]

A=a g @

I [Bhow condition miined if possible Ii

¢ Always show finder numbers: Within structured queries, all elements are identified by means
of an inherent numbering system. However, the numbers only will be shown when needed for
building the query or when adding result columns to the results list. When this option is

enabled, the numbering will

keep persistent:

+ © subtype A-C
O Attribute |2 4R
& Relation B |o® has sub category 0' has Target 4# .SubtypeYZ

O Attribute R ﬁ Value =

|7

value of [2] A=a[g @

1 & |® Subtype A-C
O Attribute |2 2R
& Relation |3 4k | has sub category o' has Target 4 & .SubtypeYZ

M\ Attribute |5 HR 'm Value =

| [Always show finder numbers Ii

value of [2]

A=afy @

e Show access rights checks: Shows additionally the associated access rights concerning the

particular

property.

Technical Handbook 5.8 - 1.1. Global actions and settings

.

a Attribute | 2 R

& Relation HR o has Target 4¢
N Attribute HR ﬂ' Value = valuecof[2] A=afg E

Ii

.
T Check read access

& Attribute | 2 48 1' Check read access
cP Relation HR

T Check read access

Q has Target #® ® Subtype ¥YZ

T Check read access

a Attribute 4

T Check read access

Lt Value = valueof[2] A=a [F)

e Show message for the search definition: This option enables messages for comments,

warnnigs and errors to be shown at the right side legend of the structured query.

Besides that, the local option "Suppress warning" is available via context menu for
each query label.

NOTE

14 Show messages for the szarch defintior

Structured query

£= findObjects
14 " no parameters -
O Attribute B8 — 1 Error, 1 Warning, 1 Comment
P Relation 8 Q has Target i : ::dilian: Nam:nfsubtype yz needs to be the ...
& Atibute #8 ﬁ Ve = valeof 1] A=ap] A No searchable Ind:::r is equivalent to

& Relation H © has Toroet # | @ Knowledge Graph
O Attrioute #8

Structured query

£= findObjects
1 ~ no parameters
A Attribute 88
& Relation R a has Target 48
& Attibute 4 ﬁ Value = valueof[1] A=ag [E
&R Relation R © has Targer
O Attribute #8

10

Technical Handbook 5.8 - 1.1. Global actions and settings

1.1.2.5. Graph

The graph options are for the graph editor within the Knowledge Builder. For settings about the
graph in forms of the net navigator component, see chapter 3 "vcm-plugin-net-navigator".

Personal Systern Index configuration

Faolder [] Show bubble help with details Legend configuration
. [] Auto hide nodes Always show
Windows
[Aute layout nodes
Editors

[] Mode alignment
Structured query

Graph

) max. Modes 5 =
Search field x

L3

Font size max. label length |50

View configuration View Medium sized icon:

Add Remaove
Keyboard shortcuts

Timeline

Dev tools

oK

e Show bubble help with details Shows further information about the element on mouse-over:

@ Object A

Object A
Attributes

MName: Object A
Relations

has sub category: Y71

is equivalent tor Object 1

Auto hide nodes

Auto layout nodes

Node alignment

Use Cairo library to display the graph

11

Technical Handbook 5.8 - 1.1. Global actions and settings

e max. nodes: As in the graph editor itself, this option determines the maximum amount of
nodes that can be expanded or retracted via a relation without opening a dialog for selecting
the relation targets.

¢ max. label length: Defines the number of letter a node label can have without being shortened
by an ellipsis ("...")

¢ View: Determines the icon size of the nodes.

¢ Legend configuration: Normally the graph editor legend only shows either the types which
elements are displayed momentarily in the graph editor or types that have been added
momentarily to the legende via the context menu. If certain types always have to be shown
initially, thay can be specified here.

1.1.2.6. Search field

For the Knowledge Builder search, queries from within the working folder or the private folder can
be added by drag&drop. To administer the added queries (e. g. removing them), the search field
settings are used. Added queries are available in a dropdown selection when clicking on the query-
button next to the search field.

FOLDER Custom query
W Working folder (wokingFolder)
4 W/ Private

& Bookmark 1 Personal System Index configuration

&' Bookmark 2 Folder Configured by the a User defined
£ Custom query Windows Name Type Name Type Folder
LT Recently accessed objects Query Query Custom query Query Private

N Editors
£ Query results

KNOWLEDGE GRAPH

Structured query

Graph

Search field

Fant size

View configuration
Keyboard shortcuts
Timeline

Devtools

Moveup | Move down Add Remave

oK

1.1.2.7. Font size

This option allows the permanent setting of the font size within the Knowledge Builder. When
changing the font size, an example text is shown. Changes only take effect after restart of the
Knowledge Builder.

12

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

Folder Font size

Windows Default
Editors small

Structured query Large

Graph Extra large

Search field

Font size

View configuration
Keyboard shortcuts
Timeline

Devtools

oK

1.1.2.8. View configuration

The view configuration options take effect on the behaviour of the Knowledge Builder view
configurations exclusively. Options for the view configuration of the web frontend are configured by
means of the viewconfiguration mapper settings.

e Hard coded / Configured: For the folder structure within the organizer of the Knowledge
Builder, type-dependent view configurations can be specified. The options "Hard coded" and
"Configured" therefore allow switching between the default Knowledge Builder view
configuration and the customized view configuration. If certain types have a customized view
configuration which are defined for both the detail view and the folder structure, the folder
structure view will have priority when the view confguration is switched to "Configured".

e Beginner/Expert: Concerning the viewconfiguration mapper, two kinds of user oriented views
of the viewconfiguration mapper itself can be selected: "Beginner" splits up the configuration
tabs of the detail editors into "Configuration" and "Extended", "Expert" shows all configuration
options at once.

13

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

View configuration

Folder
! ® Hard coded (®) Beginner
Windows
i Configured i Expert
Editors

Structured query
Graph

Search field

Font size

View configuration
Keyboard shortcuts
Timeline

Dev tools

1.1.2.9. Keyboard shortcuts

For the ease of use, custom shortcuts can be defined for the actions as shown in the following
image:

14

Personal System

Technical Handbook 5.8 - 1.1. Global actions and settings

Index configuration

Falder Keyboard shertcuts
Windows Command Keyboard shortcut
Apply changes Strg-Return
Editors Bring main window to top
Close active window
Structured query Create new attribute Alt-Shift-A
Graph Create new relation Alt-5hift-R
Lockup registry key
Search field Lockup sernantic element with (D
. Mowve down Alt-Down
Font size
Mowve up Alt-Up
View configuration MNew window Alt-N
COpen folder: Private Alt-F

Keyboard shortcuts

Timeline

Cpen menu of crganizer
Rebuild view configurations

Settings

Dev tools Update REST interface

Keyboard shortcut:
OK

Often there are also inherent shortcuts available. If applicable, these shortcuts are described in
forms of a Shortcut note in the relevant chapter.

An overall principle of shortcuts within the Knowledge Builder: The combination of Ctrl + Click
removes items (e. g. elements from structured queries or proerties in the detail editor) or makes
them draggable (e. g. drag&drop of semantic elements from the Knowledge Builder into the graph
editor).

Within JavaScripts, elements assigned by internal names can be invoked with Ctrl + o (provided a
registry key or a configuration name has been given to the element so that it actually can be
referenced). Eqiuvalent terms within one script can be browsed easily by marking the term through
double-clicking it and then by pressing Ctrl + g.

1.1.2.10. Timeline

The timeline feature allows configuring a timeline view for the Knowledge Builder by means of a
structured query. For the timeline, several element types can be chosen as a dimension for the
timeline for their instances to be displayed according date values, flexible time values or time
intervals. The timeline view then needs to be configured as view configuration for the Knowledge
Builder to be applicable.

15

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

Folder Timeline configurations:

Windows *
Editors

Structured query

Graph

Search field

Font size

View configuration

Keyboard shortcuts

Timeline

Dev tools

oK

1.1.2.11. Dev tools

These options allow the setting of the port used for Dev services and if the Dev service is to be
started automatically when the Knowledge Builder is started. When using several Knowledge
Builder at the same time, the corresponding Dev services only can be used in parallel when they are
given different ports.

16

Personal System

Folder

Windows

Editors

Structured query
Graph

Search field

Font size

View configuration
Keyboard shortcuts
Timeline

Dev tools

1.1.3. System settings

Index configuration

Dev service

Port:

[] Automatic start

3050

Technical Handbook 5.8 - 1.1. Global actions and settings

Start

The changes are stored in the ini file kb.ini.

The system settings are available for accounts with administrator status only and allow overall

configuration of system-wide settings for the Knowledge Builder.

1.1.3.1. Folder

The folder options are for optimizing the list views according specific use cases when dealing with
large amount of data - thus improving usability by limiting additional features which otherwise are

active by standard.

e Maximum size of query result: Determines the maximum amount of hits that will be processed

and rendered for query results.

e Maximum number of results in objects lists: Determines the maximum amount of objects that
is displayable for an object list. If the amount exceeds the limit, a message will be shown
accordingly in the objects list instead of the listed objects.

¢ Free assortment up to number of results: The entries of object lists can be assorted by means
of the column header actions and filtering options. For large amounts of objects, the

assortment can be disabled to prevent unnecessary load.

17

Technical Handbook 5.8 - 1.1. Global actions and settings

e Auto query up to object count: Determines the amount of list objects up to which the table
queries the list results automatically. If the number of objects to be shown in the object list
exceeds the given limit, the query for rendering the table will only start if the search button is
clicked by the user. Additionally, for object lists within the KB everey table configuration has
separate options for activating the query automatically (tab "KB").

Personal System Index configuration

Folder Settings for all users
User Maximum size of query result: 100,000
System accounts Maximum number of results in object lists: 100,000
Rights F .
ree assortment up to number of results: 10,000

Trigger

Auto query up to object count: 1,000
Top Types
Languages
Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

oK

1.1.3.2. User

This option category administers the backend users that have access to the Knowledge Graph via
the Knowledge Builder.

¢ Create: Creates a backend user for the Knowledge Builder.

¢ Associate: Associates the backend user to a frontend user account object.

e Drop association: Removes the association of the frontend user account object from the
backend user account.

¢ Change password: Allows changing the own password or resetting the password of another
backend user. Additionally a password change can be enforced for the first/next login.

e Logout: Logs out the selected user.

¢ Delete: Deletes the selected user. Caution: Deleting the own user is also possible, leading to an

18

Technical Handbook 5.8 - 1.1. Global actions and settings

immediate deletion and logout!
Rename: Renames the selected user.

Message: Sends a message to the selected user, similar to sending a message via the
community section on the lower left corner of the Knowledge Builder. If the person is not
available because not logged in, a message can be sent here nevertheless. The message will be
displayed to the user at next login.

Administrator: Determines if the selected user is an administrator.

In order to enable non-administrative access to the Knowledge-Builder, a
NOTE dedicated KB folder structure has to be configured in advance which provides
access to the relevant content and functions.

Password change: Enforces a password change for the selected user at next login.
Private: Shows the content of the private folder of the selected user account.
Administrator: Shows the amount of user accounts with administrator status.
User: Shows the number of user accounts with user status.

Active: Shows the number of currently logged in users/administrators.

Personal System Index configuration

Folder User

admin
User

user
System accounts
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

1.1.3.3. System accounts

Associated with

Status
Mo password specified, Administrator, online
Administrator

Login timestamp
Today, 7:00:21 PM

Password type
SHA-256
SHA-256

Create
Associate
drop association
Change password
Logout
Delete
Rename
Message

Administrator

[] Password change
Private

Administrator

User

Aktive

OK

System accounts are needed for authentication of external services that communicate via TCP/IP

and services that communicate via the REST interface (e. g. bridges for webfrontend).

¢ Create: Creates a system account; after specifying a name, a token will be shown only once for

copying it for further usage (e. g. for bridge *.ini files).

¢ Update token: Updates a token and shows a suggestion once. Here a token value can also be

19

entered manually.

Technical Handbook 5.8 - 1.1. Global actions and settings

¢ Test token: Allows testing if a token string is valid.

¢ Delete: Deletes the selected system account.

¢ Refresh: Refreshes the current system account view.

e Show user accounts: Shows the user accounts additionally to the system accounts.

Personal System Index configuration

Folder

User

System accounts
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

1.1.3.4. Rights

Type Create
Update token

Test token

Refresh

[] Show user accounts

oK

20

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration
Folder [] Access rights activated

User User type:

System accounts Choose
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

oK

e Access rights activated: The access rights system and its access rights checks are only activated
if this option is enabled. The access rights system comprises the access check of web-frontend
users.

e User type: Specifies which type is used for access rights checks. Objects of this type can be
assigned as account-instances to a backend users in the administration section "User".

1.1.3.5. Trigger

This option enables/disables the trigger system.

The trigger section only is available within the TECHNICAL part when triggers are

NOTE
activeted via this option in the global settings.

21

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration
Folder [Triggers activated

User Recursive trigger limit Mone Reset
System accounts
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication

Maintenance

Client performance analysis

1.1.3.6. Top types

Top types can be administered her. Each top type comprises one separate Knowledge Graph within
the Knowledge Builder, shown as separate entry in the organizer of the Knowledge Builder.

By standard, properties are handled separately for each top typ and isolated from one top type to
another, but can be accesed by queries nevertheless.

Each top typ is a subtype of the overall "Top-level type" from the core Knowledge Graph.

22

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

User
Knowledge Graph

REST Configuration

WView configuration

System accounts
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

oK

1.1.3.7. Languages

When the value of a given translated attribute is not present in the sessions' current language, this
list defines the order of languages which are to be used as replacement values.

23

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

Folder Preferred Fallback Translations

User Add

System accounts Remove
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis
Move up

Move down

oK

1.1.3.8. Locking

24

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

[] Locking enabled

Folder
User Locked
System accounts Locking deactivated
Right
1ghts Remove lock Remove all locks
Trigger
Objects
Top Types
MName User
Languages
Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

1.1.3.9. Print configuration

25

Personal System

Folder

User

System accounts
Rights

Trigger

Top Types
Languages
Locking

Print configuration
Registry

RDF

Certificate authorities

SMTP

LDAP authentication

Maintenance

Index configuration
Header and footer

-- emtpy -- ~
left

-- emitpy -- v

Predefined text fields
Text field no. 1

Text field no. 2

Text field no. 3

Font size

Critical page count

Client performance analysis

1.1.3.10. Registry

Technical Handbook 5.8 - 1.1. Global actions and settings

-- emtpy -- ~ -- emtpy -- o
Center right
-- emtpy -- w -- emtpy -- ™
Margins
left 10
Rechts 10
Top 20
- Bottom | 20
5

26

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index cenfiguration

Registered objects

Folder
User Strict conventions for registry keys
Rights Apply to internal names

System accounts
Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
DAuth

Maintenance

Client performance analysis

oK

Strict conventions for registry keys: The conventions apply when creating a registry key and e. g. in
case of an XML schema transfer between volumes by means of the admin tool. The strict
conventions are as follows:

o All 26 letters of the ASCII code table (small letters and capital letters as well)

e Signs period ".", underscore "_" and dash "-"

e The first sign should be a letter

The conventions are case insensitive , which means that a distinction of registry
keys by small letters and capital letters is not possible. Example:

NOTE "myVolume.myQueryl" and "myVolume.MYQueryl" cannot be used within the
same volume. This also applies to the XML schema transfer from one volume to
another.

Apply to internal names: If enabled, the conventions also apply to internal names.

1.1.3.11. RDF

The RDF options comprise the settings for base URL, qualifier and additional namespaces that come
into account for identification entry nodes when importing or exporting RDF files.

27

Technical Handbook 5.8 - 1.1. Global actions and settings

The additional namespaces are for export only. For more information, see chapter

NOTE n H n 1
RDF-import and -export" of the users' manual.

Personal Systern Index configuration

Folder Base URL: https://i-views.com/kb#
User Qualifier: v

System accounts .
¥ Additional namespaces

Rights Add Remove
Trigger
Qualifier Mamespace
Top Types firds http:/fiirds.tekom.de/iirds#
Languages
Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

oK

1.1.3.12. Certificate authorities

28

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

Folder [] validate certificates
User Certificate authorities Exceptions

System accounts Add

Rights Subject |ssuer Valid until
Trigger

Top Types

Languages

Locking

Print configuration

Registry

RDF

Certificate authorities

SMTP

LDAP authentication

Maintenance

Client performance analysis

oK

1.1.3.13. SMTP

29

Personal System Index configuration

Folder

User

System accounts
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

1.1.3.14. LDAP authentication

Hostname:

Port: 25

Authentication
[Use SMTPS (obsolete)

User

Add

Technical Handbook 5.8 - 1.1. Global actions and settings

30

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

Folder

User

System accounts
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

1.1.3.15. Maintenance

Server Encrypticn plain I
Master-DMN
Master-Password

DM paths of containers ou=user,dc=organisation,dc=com
UID attribute

Master-DN for query

Master password for query

Additional authentication (optional)
Attribute for authentication

Expected value

Mapping for user information

Choose Test

oK

31

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

Folder Message Object Type Pricrity
User

System accounts
Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

Perform maintenance now

oK

1.1.3.16. Client performance analysis

32

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

[] Record client perfermance data Log targets

u Interval 10 Seconds (] Intemal
= O Influx

System accounts

Folder

Rights

Trigger

Top Types
Languages

Locking

Print configuration
Registry

RDF

Certificate authorities
SMTP

LDAP authentication
Maintenance

Client performance analysis

Refresh Reset Copy to clipboard Table

oK

1.1.4. Index configuration

The configuration of indexes for semantic elements within the Knowledge Builder can be specified
here. Furthermore, already configured indexers can be applied for each kind of element via the
detail editor of the respective element type.

Index filter

Index filters are needed for fulltext query indexes, comprising the settings for tokenizing, filtering
and splitting query strings.

33

Personal System Index configuration

Index Filter
Indexes

Metrics
index for relations

index for attribute values

Indexes

Technical Handbook 5.8 - 1.1. Global actions and settings

Add
Remowve
Settings

Rename

oK

e Metrics: The metrics comprise classified entries about the amount of objects, leading to
performance improvement in queries. Dependent from the extent of changes within the
Knowledge Graph (creating/removing semantic elements), the metrics have to be synchronized

from time to time.

e System: The system index is reserved for system properties (relation and attributes for core
functionalities); they are persistant and cannot be changed.

¢ Further indexes: In most cases, these are the pluggable indexes which can be built up according

individual needs.

34

Technical Handbook 5.8 - 1.1. Global actions and settings

Personal System Index configuration

Index Filter Available indexes:
Tim= MName filter identifier Type Status Create new
Metrics Metrics Must be synchrenized
Metrics System Systemn relation index active Delete
topic->val Pl ble ind cti -
index for relations opie-rvalue HggabE IncExer actve Settings
value-»topic Pluggable indexer active
index for attribute values value->topic (unique) Pluggable indexer active Assign
Synchronize
Merge
oK

1.1.4.1. The index-report

The index-report analyses which indexings are necessary. Comparing this "demand" to the actual
indexings will show missing and unnecessary ones. The index-report analyses structured queries,
search-configurations, view-configurations and scripts. Since scripts are only analysed regarding
their references, it is impossible to determine the usage of the referenced elements.

It is possible for structured queries to need rarely used properties because of
NOTE inheritance. These properties do not need to be indexed but the structured query
itself will still show a warning.

Where to find the index-report
Admins can find the index-report in the kb settings under "Index configuration". At first you can see
the "simple view". Using the buttons in the top right, you can switch to the "detailed view" and the

settings page.

When opening the index-report it immediatly starts its analysis. It will show which area is currently
being analysed and how it got to which property.

NOTE For larger graphs the analysis may take a while.

1.1.4.1.1. The simple view

35

Technical Handbook 5.8 - 1.1. Global actions and settings

 Settings

Personal System Index configuration

oK

Also Known As (Synonym)
Contains Song
Has Genre

Attribute (String)
Relation to: (Instances of Song)
Has Member Relation to: (Instances of Person)
Relation to: (Instances of Actor)
Relation to: (Instances of Song)
Relation to: (Instances of Opus)

Has Performer
Is Composer OF
Is Instrumental Musician On

Kurzbeschreibung Attribute (String)

Plays Instrument

Release Date Attribute (Flexible time)
Sub configuration of Relation to: (Instances of Table)
Tags Relation to: (Instances of Album)

Relation to: (Instances of Music Genre)

mood Relation to: (Instances of Mood Tag)

Relation to: (Instances of Instrument)

Instances of Music Example
Instances of Album

Instances of Actor, Instances of Opus
Instances of Organization

Instances of Album

Instances of Person

Instances of Person

Instances of Opus
Instances of Album

Instances of Person

Instances of Album
Instances of Column, Instances of Table
Instances of Mood Tag

oo = = o =l = === = == [= = (= = [P o [o [

mem= ===l === e === lee == ==~ %

(E=k=

% value-> property
value-»topic [velue/terget to element by prope

Is Keyword Of Relation to: (Instances of Album) Instances of Keyword

Is Member Of Relation te: (Instances of Organization) Instances of Person < >
Is Performer Of Relation to: (Instances of Album) Instances of Actor Reason

Is Place O Relation to: (Instances of Actor) Instances of Place Table: ViAlbum Liste - Tabelle> Column: Tags> Colui
Is Played By Relation to: (Instances of Person) Instances of Instrument

Is Played by Musician on Song Relation to: (Conteins Instrumental Musicia ce Instances of Instrument

is property of Relation to: (Instances of Column element, Instances o Types of Top-level property type

Is Song Contained On Relation to: (Instances of Album) Instances of Song

Is Vocalist On Relation to: (Instances of Song) Instances of Person

Name Attribute (String) Types of Top-level type
Name Attribute (String) Instances of Top-level type . N
Parameter of Relation to: (Instances of Method) Instances of Parameter et

ails

RDF-URI-Alizs Attribute (String) Instances of Top-level type, Types of Top-level type mood

Vialbum Liste - Tabelle
refiabout Attribute (String) Instances of Top-leveltype, Types of Top-level type e
rdf:D Attribute (String) Instances of Top-level type, Types of Top-level type e

Indlex filter
Indexes Properties with index-request [—
Index-Report Property type Type Domains of Definition # Actions x + topic->value +

e

Filter:

46 Actions (Assign index: 19 Create and assign index: 3 Remove indexing: 24)

oK

All propertytypes that were scanned by the analysis are listed here. The table shows the name
(Property type), the kind of property type (Type), the domains (Domains of Definition) and the
number of suggested actions (# Actions) consisting of adding indexings (# +) and removing indexings
(# x). A property type can be opened by double clicking its row.

All indexings of a property type can be seen on the right. Suggested changes have a "" or "x" in front
"" means that this index should be assigned to this property type and
that this indexing can be removed as it is unnecessary. Using the corresponding buttons on the

right, selected indexings can be added or removed.

of the index name. x" means

In the settings page you can change when an index should actually be added when clicking the "+".

Below this list, you can see where the analysis found missing indexings of a selected index that is
not already assigned to the property type (meaning those with a "+" in front). Upon selecting one of
these usages the details of how the analysis got there is shown below and every step can be
opened by double clicking it.

The list of propertytypes can be filtered using the input field below. The filter applies to the name of
the property type, the type and the defined domains. You can also use +/x/# a number to filter for
propertytypes with that number of suggestions to add or remove indices or total suggestions.

If no action should be suggested for an index, property type or usage, you can create an exception
by clicking the "No entry" (-) button.

Creating an exception

Exceptions define which Property types, Idexes or referencing elements should be ignored by the
analysis.

36

Technical Handbook 5.8 - 1.1. Global actions and settings

When creating an exception you can choose wether the usage of the property type or index should
be ignored. Additionally you can choose specific steps. A few examples for exceptions are: "No
indexings for queries in script xyz", "Ignore property abc", "Ignore index ijk" or all at once "in script
xyz ignore index ijk for property abc". Exceptions can also prevent suggestions are made for specific
property types. Additionally suggestions for a whole index can be prevented or a property type and
index can be removed from the list of suggestions. Obviously there are no steps for unused
indexings.

Every exception needs a comment describing its intention.

Exceptions also prevent the check wether an indexing is necessary.

1.1.4.1.2. The detailed view

it Settings - o X

Personal System Index configuration

Index filter Ox I
Indexes Properties with index-request Reasons
Property type Domains of Definition #Reasons Milliseconds *
Index-Report mood Instances of Album 1
Also Known As (Synonym) Instances of Music Example 1
Centains Song Instances of Album 2
mood Instances of Album 2
Has Genre Instances of Actor, Instances of Opus 4
Has Genre Instances of Actor, Instances of Opus 1
Has Member Instances of Organization 3
Is Keyword Of Instances of Keyword 2
Name Instances of Top-level type 3
Is Place Of Instances of Place 3
Plays Instrument Instances of Person 3
Is Instrumental Musicizn On Instances of Person 2
) Instances of Top-level type, Types of Top-level type 1
Parameter of Instances of Parameter 2
rdfiabout Instances of Top-level type, Types of Top-level type 1
Relesse Date Instances of Album 1
Has Performer Instances of Album 2
Release Date Instances of Album 1 v
< >
23 Requests (Identifier:2 Script: 3 Used i query: 13 View configuration: 5)
o A O A
Actions for selected requests General actions
Type Index Type Property type Index '*
Assign index topic->value Remove indexing Release Date value->property
Remove indexing Also Known As (Synonym) Volltedindex

Remove indexing Also Known As (Synenym)
Remove indexing rdf.about

value->property

value-> property (unique)
Remove indexing Name

Remove indexing Has Genre
Remove indexing Plays Instrument
Remove indexing Contains Seng

value->property
value->property
value->property
value->preperty

Remove indexing Tags value-topic

Remove indexing Tags value->property
Remove indexing mood value->property
Remove indexing Is Member Of value->property

Remove indexing rdf:D value->property (unique)

Remove indexing 15 Played By value->property
Remove indexing is property of value->topic
Remove indexing RDF-URI-Alias value-topic (unique)
Remove indexing Has Member value->property

Remove indexing Kurzbeschreibung value->property -

46 Actions (Assign index: 19 Create and assign index: 3 Remove indexing: 24)

ok

This view answers why a specific index is suggested for a property. Instead of properties the main
table contains the individual index requests. Additionally it has new columns: The number of causes
because of which an index is suggested, milliseconds (as measured by the performance analysis)
and a tag that can have the values "Used in query" (used in registered query), "Used in script" (used
in registered script), "Used in Mapping" (used in registered tablemapping), "View configuration"
(used in the view configuration) and Performance (used in the performance analysis). If a property
was found via a starting point, that was configured in the options, the tag is "Query", "Script" or
"Identifier" depending on the type of the starting point. "ldentifier" is used for RDF-
Systemproperties as well.

All references regarding a request are listed under "Reasons" on the right.

All suggested actions of a request are listed in the bottom left.

37

Technical Handbook 5.8 - 1.1. Global actions and settings

Unnecessary indexings are listed in the bottom right under "General actions".

In both of the tables of actions you can select one or more actions and execute them via the "Play"-
button above the tables.

1.1.4.1.3. Settings

The settings can be used to configure what gets analysed and what is suggested as a result.

it Settings

Index filter
Indexes

Index-Report

Personal System Index configuration

Show
[Additionally show all indexed properties
[Rescan after changes

Scanindexes
Scan view-configuration
Scan registered queries
Scan registered mappings
Scan registered scripts
Include performance-znalysis
Enter internal name or registry-key

v Add startingpoint

[Only show properties with analysed performance
Check all properties

0 = Maximal number of targets for a collection-indec
50 2| Minimal occurances to index
When adding an index

@ Synchronize immedietly

O Mark synchronisation required

O Add syncjob
Ignore properties of system-components

Prevent removal of indices for uniquness

Efl=

Remove selected startingpoint

Category Identificator
Script restfindAlbums

Combinations o ignore:

Edit property concept Edit usage Remove exception

Property type Usage Index Comment

ok

Manually configuring startingpoints

If there are scripts that are only used via the batch-tool but should still use indexes, they can be
added as a startingpoint for the analysis: On the left side under "Enter internal name or registry-
key" you can specify single or even multiple elements using wildcards (eg. "all*base*"). Additionally
you need to specify if the startingpoint is a script, query or type. Once the definition is done the
startingpoint can be created by pressing the "Add startingpoint" button. Obsolete startingpoints can
be selected and then deleted by clicking the "Remove selected startingpoint" button.

Exceptions

The exceptions that were created in the simple view can be managed in the bottom right. They can
be removed ("Remove exception") or the configured property ("Edit property conept") or usage
("Edit usage") can be shown.

Miscellaneous Settings

38

Setting

Additionally show all

(Default: off)

indexed properties

Rescan after changes (Default: off)

Scan view-configuration(Default: on)
Scan registered queries(Default: on)

Scan registered mappings(Default: on)

Scan registered scripts(Default: on)

Include performance-analysis(Default: on)

Only show properties with

performance (Default: off)

analysed

Check all properties (Default: on)

Maximal number of targets for a collection-
index(Default: 10)

Minimal occurances to index(Default: 50)

When adding an index:(Default: Synchronize
immedietly)

Ignore properties of system-components
(Default: on)
Prevent removal of indices for

uniqueness(Default: on)

1.1.5. Configuration file kb.ini

Technical Handbook 5.8 - 1.1. Global actions and settings

Description

Additionaly shows properties without suggested
actions.This setting will only take effect after the
next scan.

Automatically start a new scan after executing a
suggested action.

Analyses the view configuration if present.
If turned off, registered queries are not scanned.

If turned off, registered mappings are not
scanned.

If turned off, registered scripts are not scanned.

If measurements of the performance-analysis
are available (see client-analysis), they will be
used as startingpoints.

If no measurements are available for a property,
ignore its usages.(Can only be activated if the
performance-analysis is included.)

Also takes indexings into account, that were not
scanned by the index-report, regarding their
necessity.

Relations with few targets should have a specific
index. Usually this affects relations to catalog-
values. This integer defines the threshold for
such indexes.

Properties with few occurances don’t need an
index. This integer defines the threshold for
suggesting an index.

Defines what actually happens when adding a
indexing.Options: * Synchronize immedietly *
Mark synchronisation required * Add sync job

Indicates wether to scan properties of system-
components aswell.Only visible to developers.

the removal of indices for

uniqueness.Only visible to developers.

Prevents

As for every i-views product, an *.ini file can be created for the Knowledge Builder. In the following,
exemplary excerpts for the Knowledge Builder configuration file are listed:

39

Technical Handbook 5.8 - 1.1. Global actions and settings

; pre-fill corresponding fields in the login window
host=demo-server.empolis.com

user=peter

volume=demo

; configure logging if needed

logTargets=kb-log

; activate and configure file caching

; file caching speeds up data loading in subsequent sessions
cacheDir=cache

; maxCacheSize sets the size limit of the file cache (in MB)
; default is 50 (MB)

maxCacheSize=200

; the language parameter forces the kb to use the given language
; without this setting, the language is specified by the 0S
; possible values are "eng" und "ger"

; fallback is "ger" if the 0S language is unsupported

; language=eng

[kb-1log]

type=file
file=kb.log

40

Technical Handbook 5.8 - 1.2. Access rights and triggers

1.2. Access rights and triggers
This attribute handles the checking of access rights and triggers:

¢ Access rights regulate which operations on the Knowledge Graph may be executed be specific
user groups. They are defined in the rights system in i-views. The rights system is located in the
section Technical > Rights .

e Triggers are automatic operations that are triggered on a certain event and execute the
corresponding actions. The Trigger section is located under Technical > Trigger .

The rights system and triggers are initially not activated in a newly created Knowledge Graph. These
areas have to be activated before they can be used.

The procedure for creating rights and triggers is basically identical. Filters are required that check if
certain conditions are met or not. If these conditions are met, the rights system grants or denies
access, and a log entry is made or a script is executed for triggers. In the rights system, the
arrangement of filters is referred to as rights tree while that for triggers is called trigger tree.

For straight-on success in creating adequate query filter conditions based upon the
operation, please check the table in chapter 1.2.5 "Operations". In principle, the
operations filter work in an "AND" logic, leading to the requirement that all
conditions of an operation filter and all conditions of the subcomponents of the
operation filter have to be fulfilled. Therefore, it is recommended to choose the
most precise condition.

NOTE

1.2.1. Checking of access right

We use rights to regulate user access to the data in the Knowledge Graph. The two basic objectives
enabled by the rights system are:

¢ Protection of confidential data: Users or user groups may only see data that they are allowed
to read. This ensures that secrecy and confidentiality restrictions are applied.

e Work-specific overview: Certain users only need a section of the data of a model for their work
with the system. The rights system enables them to display only those elements that they need
in order to complete their tasks.

The i-views rights system is very flexible. It can be configured precisely for different requirements of
a project. By defining rules in a rights tree, consisting of individual filters and deciders, a graph-
specific configuration of the rights system is created. There are many options for compiling these
rules for the rights system, which generates even more differentiated rights. It is not possible to list
all possible combinations of configurations; this requires consulting in individual cases.

How does the rights system work?

Access rights in the system are always checked when a user executes an operation on the data. The
basic operations are:

41

Technical Handbook 5.8 - 1.2. Access rights and triggers

e Read : An element is supposed to be displayed.

e Modify : An element is supposed to be changed.

e Generate : A new element is supposed to be generated.

e Delete : An element is supposed to be deleted.
If the access right is supposed to be changed in a certain access situation, the Rights tree is
processed until a decision for or against access can be made in this situation. The Rights tree
consists of conditions that are checked against the access situation. To check the conditions, filters

are used which filter the elements of the Knowledge Graph and operations. Deciders are located at
the end of a subtree of filters in the rights tree. These deciders either allow or prohibit access.

In relation to the access situation, aspects are selected which are used as the condition for allowing
or prohibit access. In access situations, the following aspects are often used for the decision:

e The operation (generate, read, delete or modify)

e The element that is supposed to be accessed

e The current user

It is possible that only one aspect of the access situation is selected as a condition but it is also
possible to query a combination of the aspects listed.

Example: "Person A [user] is not allowed to delete [operation] descriptions [element]”.

1.2.1.1. The activation of the rights system

In a newly created Knowledge Graph the rights system is deactivated by default. Before it can be
used, it has to be activated in the settings of the Knowledge Builder.

Instructions for activation of the rights system
1. In the Knowledge Builder, call up the Settings menu and select the System tab. Select the Rights
field there.

2. Place a checkmark in the Rights system activated field.

3. In the User type field, specify the object type whose objects are the users of the rights system.
This is usually the “Person” object type. (Type must not be abstract.)

4. Once you have connected the i-views knowledge portal, enter a user (object of the previously

defined person object type) in the Standard web user field.

Before activation of the rights system, the folder is called Rights (deactivated) . Once the rights
system has been activated, the folder is called Rights . When the rights system is deactivated,
checks of the access rights are no longer performed. However, the rules defined in the rights tree
are retained and used again after renewed activation of the rights system.

NOTE If you access an element from the web front-end without special log-in, the person

42

Technical Handbook 5.8 - 1.2. Access rights and triggers

specified under Standard web user is used. It is common to create a fictitious
person called “anonymous” or “guest” here.

To ensure the rights system also functions in the Knowledge Builder, the user accounts of the
Knowledge Builder must be linked to an object from the Knowledge Graph. The user account can
only be linked to objects of the type for which activation of the rights system was specified in the
user type field.

The link is generally required for using the operation parameter User in query filters, or for using
the access parameter User in structured queries when the rights system or the search is not
executed in an application, but rather in the actual Knowledge Builder.

Instructions for linking Knowledge Builder users to objects of the person type

1. Open the Settings menu in the Knowledge Builder and select the System tab. Select the field
User there.

2. Select the user who is to be linked. Link can be used to link the user to a person object that is
not yet linked to a Knowledge Builder account. The Unlink function results in the Knowledge
Builder account link to the person object is canceled.

NOTE The user currently logged in cannot be linked.

In general, users with administrator rights may perform all operations, regardless of which rights
were defined in the rights system. The definition as administrator is also implemented in the
Settings menu in the User field on the System tab.

1.2.1.2. The rights tree

Traversing the rights tree

The rights tree is comprised of rules that are defined in a tree. The branches of the tree, also
referred to as a subtree, are comprised of the conditions that should be checked. The conditions are
defined in the system as filters that are nested in each other. The system works through the tree
from the top to bottom when the evaluation occurs. When a condition matches the access
situation, then the check continues with the next filter in the subtree. This filter is, in turn, checked.
This is implemented until the end of the subtree, when there is an access right or denial. If a
condition does not match the access situation, then a switchover to the next subtree occurs. When
the system encounters an access right or denial when working through the rights tree, the rights
check ends with this result. The branches (subtrees) of the tree are therefore worked through
successively, and the tree is “traversed” until a decision can be made.

Filters and deciders are nested in each other in the form of folders, so that a tree construction is
produced that is comprised of different subtrees. A folder can have several subfolders (several
successor filters on one level), which produces branching in the rights tree. Folders that are defined
on one level are worked through successively (from top to bottom).

Structure of the rights tree

43

Technical Handbook 5.8 - 1.2. Access rights and triggers

When creating the rights tree, it is important to group the rules in a sensible way because once a
decision as to whether access is allowed or denied has been made, no further rules are checked.
Hence, exceptions should be defined ahead of global rules.

The two main cases that you have to distinguish are:

¢ Negative configuration : Everything is allowed at the lowest subtree; denials are defined above
it.

¢ Positive configuration Everything is prohibited at the bottom, except for what is allowed above.

The order of the subtrees is therefore crucial when creating the rights tree. The order of the
conditions in a subtree in contrast (whether we check the operation first and then the property or
vice versa) can be chosen freely.

You don’t necessarily have to define all filter types to define a subtree of a rights tree. A subtree
consists of at least one filter and one decider. An exception is the last subtree which generally
consists of a decider only, which allows all remaining operations (which have not been prohibited in
the rights tree beforehand) or which prohibits all remaining operations (which have not been
allowed in the rights tree beforehand).

Example: rights tree

This basic example shows a rights tree consisting of a rights tree part and a default decider that
allows everything:

Delete or
Y modify

Y Mame, duration, &&
5 publication date &

Forbidden

k Allowed

44

Technical Handbook 5.8 - 1.2. Access rights and triggers

In the rights branch, the deletion or modification of the attributes name, duration and publication
date is prohibited. To do this, an operation filter is used that has the operations delete or modify as
the condition. Only these operations are let through by the operation filter. The next filter is property
filter that filters on certain properties. In this case, the attributes Name, Duration and Publication
date are filtered irrespective of the object or property on which these are stored. The last node of
the rights branch is the decider "Forbidden", which prohibits all access operations that match the
two preceding filters. If one of the two conditions does not apply to the access situation, the default
decider "Allowed" is executed.

This simple rights tree would look as follows in i-views:

Lunwaaart

ﬁ FOLDER Selected operations:
-:_ KNOWLEDGE GRAPH Delete attribute
Modify attribute value
TECHNICAL
4 53 Rights
» & REST Add Remove
» W View configuration Possible operations:

» £¥ Read all objects/properties of a type

» All operators
4 1} Delete or modify

4 /% Name, duration, publication date Create
T Access denied Delete
M Grant access Displaying elements
» b Registered objects Edit
» 4% REST Modify
» W view configuration
Query
» £} Entire semantic network
» £} Core properties Read
Use tools

Checking an operation using the rights tree example:

45

Technical Handbook 5.8 - 1.2. Access rights and triggers

T oo Ty

Yf Name, duration, &&
ﬁ 3 publication date &
Person A Delete Description

I Forbidden
- k Allowed

The left side shows the operation to be checked: Person A wants to delete the Description attribute.
The rights tree is depicted on the right side. The check of the condition of the first filter returns a
positive result because Person A wants to execute the operation Delete. In the rights tree, the next
filter of the rights sub-tree is executed. This is the property filter of the attributes, Name, Duration
and Publication date. The check of the filter returns a negative result because the Description is not
one of the filtered properties. Processing of the subtree is terminated. The next subtree of the rights
tree is processed next. This is already the default decider “Allow” which allows everything that is not

explicitly prohibited in the rights tree.

1.2.1.3. Decision maker in the right tree

Deciders are always at the last position of a rights sub-tree. The combination with filters is used to
determine access situations in which access is explicitly allowed or denied. If a decider is reached
while traversing the rights tree, the check of rights is answered with this decision. The operation to
be checked is then either allowed or rejected. The rights tree is then not checked any further.

Symbol Access right Description

* Access granted Access is granted in the access situation to be checked.

'k Access denied Access is not granted in the access situation to be
checked.

In general, there are two different deciders, a positive one called "Access granted" and a negative
one called "Access denied". **

Like all labels of the rights tree, "Access granted" and "Access denied" are standard

NOTE labels which can be modified if needed.

Instructions for creating a decider

46

Technical Handbook 5.8 - 1.2. Access rights and triggers

1. In the rights tree, choose the position at which you want to create the decider.

2. Use the buttons ﬂ and ‘k to create new deciders as subfolders of the currently selected
folder.

3. Assign a name to the folder.

1.2.1.4. Composing rights

To define rights, filters and deciders are combined in the rights tree. The Filters chapter explains the
different filter types and how they can be used. The deciders Grant access or Deny access each
represent the last node of the subtree of the decision tree. If the decider is reached, this decision
terminates the traversing of the rights tree.

The following functions are available for defining rules in the rights system:

Symbol Function Description

.t"i' New operations filter A new operation filter is generated.

Q New query filter A new query filter is generated.

g New property filter A new property filter is generated.

E New script filter A new script filter is generated.

a New lock filter A new lock filter is generated.

&' New organizing folder A new organizing folder is generated.

ﬂ Grant access A positive decider that grants access is generated.
‘k Deny access A negative decider that denies access is generated.

Organizing folders can be used to structure rights in a meaningful way. They do not affect the
traversing of the rights tree. Their only purpose is to group large numbers of rights into subtrees of
the rights tree that have related content.

Changing the arrangement of folders in the rights tree

In order to sort the filters and deciders in the rights tree into the right order, right-clicking opens a
context menu:

47

Technical Handbook 5.8 - 1.2. Access rights and triggers

Grant access
AE Rename
*u Delete
Export

Mawve up to top
Mawve up
Mowve down

Mowve down to bottom

The filter or decider can be renamed, deleted and exported in this context menu, and its position in
the rights tree can be changed. If two folders (filters or deciders) are on the same level, the Upward
or Downward function can be used to shift the folder further to the front or the back in the rights
tree. To the top and To the bottom shifts the folder to the first or last position of the level in the
rights tree accordingly.

If folders are to be nested in each other, meaning the level in the decision tree be changed, this can
be done using Drag&Drop.

Assembly of rights

Assembling filters and deciders in the rights tree creates a large number of possible combinations
for defining rights. By principle, there are 3 different procedures for defining rights:

¢ Definition of rights for every possible access situation

e Positive configuration

¢ Negative configuration
Because defining access rights for every possible access situation is a very complicated procedure,

one of the two other means of configuration is generally used. They are explained in the following
two sections.

1.2.1.4.1. Positive configuration of rights

If rights are defined in the rights tree which only allow specific accesses and deny all other accesses
about which nothing is specified, then this is referred to as a positive configuration of the rights
tree. Rules are defined in each subtree of the rights tree, which allow specific operations. All
operations to be checked traverse the rights tree: If the operation to be checked does not match
the conditions of the subtrees, it is rejected at the end of the rights tree.

48

Technical Handbook 5.8 - 1.2. Access rights and triggers

$ Filter

m' Filter

k Allowed

.ﬁ' Filter
k Allowed

h 4

l Forbidden

Example: Positive configuration

This example shows how a positively formulated rights tree might look like in the Knowledge

Builder:

4 &3 Rights
» @ REST
F W View configuration
» £} Read all objects/properties of a type
4 L3 Delete or modify
4 /& Name, duration, publication date
A Access granted
4 1} Create
4 [Objects of Subtype A
A Access granted

T Access denied The first rights subtree defines read access to

the attributes name, duration and publication date. The read operation is allowed for these
attributes. The second rights subtree allows new objects of the type song to be created. All other
operations are generally denied at the end of the rights tree.

49

Technical Handbook 5.8 - 1.2. Access rights and triggers

1.2.1.4.2. Negative configuration of rights

When rules are defined in a rights tree to reject specific operations and permit all the operations
that, after a check, are identified as not matching those operations, this process is described as a
negative configuration. Specific operations are prohibited in the subtrees of the rights tree. If one of
the operations to be checked does not match the conditions of the subtrees, the operation is
permitted at the end of the rights tree.

$ Filter
w Filter
l Forbidden
$ Filter
l Forbidden
L
* Allowed

Example: Negative configuration

This example shows how a negatively formulated rights tree might look like in the Knowledge
Builder:

50

Technical Handbook 5.8 - 1.2. Access rights and triggers

4 &3 Rights
b W REST
b W View configuration
» £} Read all objects/properties of a type
4 L} Delete or modify
4 /%) Name, duration, publication date
T Access denied
4 ¥ Create
4 [Dbjects of Subtype A
T Access denied

A Access granted Unlike with a positive configuration, for

example, the first rights subtree rejects the access rights for deleting and modifying the Name,
Length and Publication date attributes. The second rights subtree prohibits deletion of the relation
that links the songs to the album they are contained in. All other operations may be executed.

1.2.1.4.3. Example: Each user is allowed to change and delete items that he has created himself

What do you need to define this right in i-views? On the one hand, you need an operation filter
since this is about changing and deleting elements. On the other hand, the connection between the
user and the element on which the user wants to execute an operation must be defined, which is
only possible by means of query filters.

Operation filter

Selected operations:

Delete
Modify

Add Remove

In the operation filter, the operations Delete and Modify were selected.

Query filter

51

Technical Handbook 5.8 - 1.2. Access rights and triggers

o dm

[WHBVELART
Operation parameters: Possible operation parameters:
Primary semantic element < (Super) type ~
Accessed element
Core semantic element v
(®) All parameters must match () Any parameter must match

(® Query must be satisfied
(O Query may not be satisfied

s C‘Top—level type no parameters
o Relation ®R | created by Q has Target = ’:" Access parameter User

In the query filter, “Relation created by” is selected with relation target “Person.” On the relation
target Person, the access parameter User was specified. The settings All parameters must apply and
Search condition must be met are selected. In this case, the operation parameter “Primary
Knowledge Graph element” was selected.

A question relating to the schema is: On which elements is the relation was created by defined?
There are different options for implementing this relation in a Knowledge Graph:

1. Definition on objects and types: The relation is only used on objects and types.

2. Definition on all elements: The relation is used on all objects, types, extensions, attributes and
relations.

In the first case, it makes sense to use the operation parameter “Primary Knowledge Graph
element” or “Superordinate element.” If you define the right using the superordinate element, this
does not apply only to the object itself but to all properties stored on the objects that were created
by the user. If you use the operation parameter “Primary Knowledge Graph element,” the right also
applies to all meta properties of the object. In the second case, the operation parameter “Accessed
element” is used because only elements may be changed on which the relation was created occurs
with the corresponding relation target, the user.

Compiling the right in the rights tree

There are two different variants for combining the filters. If there are no branches in the rights
subtree, the order of the subtrees is not relevant.

52

Technical Handbook 5.8 - 1.2. Access rights and triggers

P Elements created by
¥ current user

f‘ Modify or delete
Y fy

Elements created by)
Q current user ¢T" Modify or delete

k Allowed k Allowed

The graphic illustrates the two possible combinations: Version 1 (left) first operation filter, then
query filter, version 2 (right) first query filter then operation filter, in both cases the decider
“Allowed” then follows last.

Recommendation: It makes sense to have the operation filter in the first position, which makes it
possible to create underneath it all other rights that filter on the same operation. This creates a
more simple, traceable structure in the rights tree.

Advanced right: Elements that were not created by the user may not be changed or deleted

The right implies the denial for all elements that were not created by the user but we have not yet
expressed this in the definition of rights. To do that, we have to take into account the Access denied
decider during the creation of rights. If you look at both versions of rights and combine these with a
negative decider, this results in the following variants. However, the two variants have different
effects in the rights system.

. Elements created by
.:‘Y Modify or delete g current user

Elements created by

Y current user ﬁi— Modify or delete

k Allowed k Allowed
= I Forbidden = I Forbidden

If you add one decider Denied to each of the combination options presented above, the two versions
are created: Version 1 (left) first operation filter, then query filter and decider “Allowed.” The
operation filter is also followed by a decider Denied in a second subtree. Version 2 (right) first query
filter then operation filter, and decider “Allowed.” In the version, the query filter is followed by a
second subtree with the decider “Denied.”

53

Technical Handbook 5.8 - 1.2. Access rights and triggers

Effects on the different versions on the rights system
Version 1 (left)

¢ Allows modification and deletion of elements created by users themselves.
¢ Prohibits modification and deletion of all other elements.

¢ No statement is made in relation to all other operations.
Version 2 (right)

¢ Allows modification and deletion of elements created by users themselves.
¢ Prohibits all other operations on elements created by users themselves (e.g. read).

e No statement is made in relation to all other elements.

The items show that version 2 does not express the requested access right. Only version 1
formulates the desired access right: All users can modify or delete elements they have created
themselves and elements that were not created by the users may not be modified or deleted.

1.2.1.5. Configuration of own operations

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs are
available in the main window. A number of operations can be configured in the Configure tab.

54

Technical Handbook 5.8 - 1.2. Access rights and triggers

taRESaRT =0
Test cases Configure

Operations

» All operators G
v Create

Add translation
Create attribute
Create extension
Create folder
Create object
Create relation
Create relation part
Create type
v Delete
Delete attribute
Delete extension
Delete folder
Delete object
Delete relation part
Delete type
Remove translation
v Displaying elements
show in graph editor
~ Edit
Validate attribute value
~ Modify
Change type
Medify attribute value
Meodify folder
Medify schema
~ Query
Use in structured queries
v Read
Read all objects/properties of a type
Read attribute
Read ohject v

Add Rename Remaove Initialize standard operations

The configuration of custom operations is generally only used when the Knowledge Builder is used
with other applications. A number of operations are application-specific operations that should be
checked together. This is a matter of checking a chain of operations, and not just an operation.

Instructions for the configuration of custom operations

1. In the Knowledge Builder, select the Rights folder in the System area.

2. Select the Configuration tab in the main window.

3. Click on Add to create a new operation.

4. In the windows that follow, enter an internal name and a description for the new operation.
5. The new operation is added as a user-defined operation .

6. User-defined operations can be deleted again using Remove .

1.2.2. Trigger

Triggers are automatic operations that are executed in i-views when a specific event occurs. They

55

Technical Handbook 5.8 - 1.2. Access rights and triggers

help support work flows by automating steps that always remain unchanged.

Examples for the use of triggers:

Sending emails due to a specific change

Editing of documents in a specific order by specific persons

Marking jobs as open or done on the basis of a specific condition

Creating objects and relations when a specific change is performed

Calculating values in a previously defined way

e Automatically generating the name attribute for objects (e.g. combining properties of the
object)

How do triggers work?

Triggers are closely related to the rights system. They use the same filter mechanisms in order to
determine when a trigger is initiated. The filters are arranged in a tree, the trigger tree, which is
structured like the rights tree. It consists of filters that are used to define conditions for the
execution of a trigger action. If an access situation occurs because an operation is performed, and
that access situation matches the defined conditions, the corresponding trigger action is executed.

Trigger actions are in most cases scripts that, depending on the elements of the access situation,
use them to execute operations. This makes it possible to automate steps that remain unchanged or
perform intelligent evaluations on the basis of specific constellations in the Knowledge Graph.
Scripts can be used to execute any operations on elements that are dependent on complex
evaluations, and thereby ensure situation and application-specific requirements for the Knowledge
Graph. Most triggers are therefore usually project and Knowledge Graph specific; a consultation
should be performed for each individual case.

1.2.2.1. Activate trigger

In order to be able to work with triggers, the trigger functionality must first be activated in the
Knowledge Builder.

Instructions for the activation of triggers

1. Call up the Settings for the Knowledge Builder.

2. Select the System tab there, and the Trigger field.

3. Place a checkmark in the Trigger activated field.
A Limit for recursive triggers can be specified here. The default setting is “None”. Triggers that call
themselves are referred to as recursive triggers. This occurs when even operations in the

Knowledge Graph are implemented in the trigger script that, in turn, themselves match the filter
definition of the trigger.

Before activation of the trigger functionality, the Trigger folder in the technical area of i-views is

56

Technical Handbook 5.8 - 1.2. Access rights and triggers

called Trigger (deactivated) . The folder is renamed Triggers by the activation.

If the current user is used in triggers (e.g. in query filters or using the
corresponding script function) and the user does not execute operations in an

NOTE application, but rather in the actual Knowledge Builder, then the Knowledge
Builder user account must be linked to a person object. The chapter Activation of
the rights system explains how a link like this is created.

1.2.2.2. The trigger tree

The trigger tree has the same structure as the rights tree. It is comprised of branches (subtrees),
which are comprised of filters and triggers. The filters are the conditions that must be checked for
the trigger to be able to be executed at the end of the subtree when all conditions to be checked
beforehand have been satisfied.

The trigger tree is queried for the data when each operation is performed — the tree is “traversed”.
If a subtree applies to the access situation, then the trigger is executed. If the condition of a filter
does not apply to the access situation, then a switchover to the next subtree occurs. Once the
trigger action has been executed, traversal of the trigger tree continues, in contrast to the rights
system, which stops being worked through when an decider is reached. In order to define that no
other filters should be checked in the trigger tree after execution of an action, the Trigger no other
triggers button is used:

Symbol Function Description

o Trigger no other triggers The traversal of the trigger tree is ended.

At the end of a subtree, no decider is available, in contrast to the rights system, but rather actions
are available.

Symbol Function Description

-}:f Define trigger A new trigger action is created.

The available trigger actions are:

e Enter log : A log entry is written.
e Execute script > JavaScript : A script file in JavaScript is executed.

e Execute script > KScript : A script file in KScript is executed.
Structure the trigger tree

The order in which you define the triggers when designing the trigger tree usually has no effect on
the performance of i-views. There are design recommendation for the rights tree, but these cannot
be applied to the trigger tree, as the trigger tree is further traversed after a trigger action has been
executed.

57

Technical Handbook 5.8 - 1.2. Access rights and triggers

To provide a clearer structure for triggers, they can be collected in organizing folders. The organizing
folders themselves do not affect the traversing of the trigger tree.

Symbol Function Description

F‘_J‘ Organizing folder Organizing folder for grouping subtrees

Example: trigger tree

This example shows a trigger tree that combines the names of persons and concerts automatically
from properties of the objects:

{‘T'. Modify or delete _ﬁ?

L

R Person OOO
[CifreAVA

*{ Execute trigger

;; Company OOO
R Sree A

";1 Execute trigger

This simple trigger tree begins with an operation filter and splits into two separate subtrees after
the operation filter. If either the modify or the create operation is executed, it is let through by the
operation filter. The persons subtree filters operations that are performed on attributes and
relations of person type objects. If the operation affects either the first name attribute or the last
name attribute, it is let through by the property filter. The corresponding script that compiles the
name attribute of a person from their first and last name is executed. The second subtree also
applies to the modify or create operation filter. However, it filters attributes and relations that are

58

Technical Handbook 5.8 - 1.2. Access rights and triggers

saved in company type objects. The property filter only lets operations through if they are
performed on the attributes or relations of the city, the street or the ZIP code. If these conditions
apply, the corresponding script that compiles the complete address string of the company is
executed.

This is what this trigger tree would look like in i-views:

4 37 Trigger
4 1} Create or modify
4 [J Person
4 /& Fore- and surname
=] Execute script
4 [Company
4 [City, street, ZIP code

=] Execute script

1.2.2.3. Create trigger

As described in the Trigger tree section, triggers consist of filters and trigger actions. These are
combined in such a way that a specific trigger action is executed only when it is required.

The following functions are available in the trigger area:

Symbol Function Description

{"1-, New operation filter A new operation filter is generated.

f; New query filter A new query filter is generated.

Ton New property filter A new property filter is generated.

r‘, New delete filter A new delete filter is generated.

ﬁJ' New organizing folder A new organizing folder is generated.

-;:{ New trigger A new trigger action is created.

o Trigger no other triggers A new “Stop” folder is created. It ends the traversing of

the trigger tree.

When creating triggers, you should consider two fundamental properties of the trigger mechanism:

e Execution of a trigger script can cause further triggers to be triggered. This occurs if operations
in the Knowledge Graph are executed in the trigger script itself.

e After a trigger action has been executed, traversal of the trigger tree continues. All trigger
actions of the subtrees that apply to the access situation are executed.

59

Technical Handbook 5.8 - 1.2. Access rights and triggers

1.2.2.4. Trigger actions

Trigger actions are used to perform intelligent operations in the Knowledge Graph, which, for
example, automate or support work flows. However, they are only executed when the access
situation and the links in the Knowledge Graph assume a specific state defined by the filter.

Instructions for the creation of trigger actions

1. Select the position in the trigger tree at which the trigger action is to be created.
2. Used the button ';:f to create a new trigger.

3. Select the action type from the list: Enter the log or execute the script (if you wish to execute a
script, select the script language).

4. The trigger is created as a subfolder of the currently selected folder.
Logging actions

In principle, there are three different possibilities for logging changes that have been initiated by
the trigger system:

¢ Log trigger: Special logging element that is used additionally to the respective trigger element
in order to log the trigger action itself. Advantage: The log trigger can be added quickly to any
script trigger, but an initialization file (*.ini) needs to be configured before. The log trigger is
described in the sub chapter "Log trigger".

e Script trigger with output in forms of "Sk.log()": Within any trigger script, entries for logging
can be added by means of the Sk.log method. Advantage: The log output can be defined in a
highly customized manner, restricted by the scope of the JavaScript APl only. The log
information is output within the "Script messages" dialog and/or in the respective logfile as
configured by the initialization file. For more information, see the JavaScript API
documentation.

e changelog trigger: A predefined registry key for a string attribute in combination with a
JavaScript method can be used for logging. Advantage: Log entries will be created in forms of a
"changelog" attribute directly attached to the respective semantic element on which the
changes take effect, depending on the definition range of the changelog attribute type. The
changelog trigger is described in the last sub chapter.

1.2.2.4.1. Script trigger

An operation parameter must be output for the script to be executed. In contrast to query filters,
only one operation parameter can be specified. Execution of the script starts on the element
contained in the operation parameter.

Time/type of execution
e Before the change: The trigger is executed before the operation is performed.

e After the change: The trigger is executed immediately after the operation has been performed.

60

Technical Handbook 5.8 - 1.2. Access rights and triggers

¢ End of transaction: The trigger is executed only at the end of the shared transaction.

¢ Job-Client: The Job-Client determines the time of execution.

Triggers that are executed for delete operations should preferably use before the
change as their time, as the element to be deleted will no longer be available
otherwise. For other operations, a more suitable time is after the change or end of
transaction , as it is then possible, for example, to add a property to the newly
created element or automatically generate the name from various properties of an
object if one or more properties were changed.

NOTE

The import chooses the order in which the properties will be imported in i-views.
Therefore a trigger that is initiated during the import should not rely on the
properties being available in full.

Execute once only per operation parameter

If this setting is selected, the element selected in operation parameter is executed no more than
once per transaction. If this setting is chosen, the time of execution should be set to end of
transaction so that the final state of the element is used in the script.

Example: For persons, the name of the object is meant to consist of the first name and last name.
With this setting, the trigger is executed only once if the first and last names are changed at the
same time.

Execution does not initiate trigger

This setting specifies that the operations executed within a trigger cannot initiate any further
triggers. This setting can be used to avoid endless loops.

Continue to execute script in case of script errors

If this setting is active, an attempt is made to restart after an execution error and continue with the
execution of the script. This setting is predominantly useful for scripts that are supposed to execute
instructions that are independent of each other, and not for scripts that build on previous steps of
the script.

Abort transaction if trigger fails

This setting defines the termination behavior in the event of script errors. If an error occurs while
the script is being executed and this setting is active, all actions of the transaction are reversed. If
this setting is not active, all actions are executed apart from the ones affected by the error. The
original action that led to the trigger being called is nevertheless written to the Knowledge Graph.

Execution during data refactoring

The term data refactoring describes operations for restructuring the Knowledge Graph, e.g. Change
type or Choose new relation target .

61

Technical Handbook 5.8 - 1.2. Access rights and triggers

Caution: Data refactoring operations can, in some circumstances, initiate unwanted trigger actions
and, in some cases, even generate errors during execution of the script. For this reason, it is
possible to set for each trigger whether it is to be executed during data refactoring.

Example for data refactoring: Reengineering to single-sided relation. Changing a relation type from
a double-sided relation into a single-sided relation causes a re-saving of relation targets. Although
this is not a factual change, this can trigger the execution of a trigger script that originally was
intended to react on relation target changes only.

Following processes are considered as data refactoring:
In the Knowledge Builder:

e "Choose new semantic element for property" (for attribute)

¢ "Choose new relation target" (at relation)

e Copying

e "Change subtypes into objects" (context menu "Reengineer")

e "Merge" (of nodes in Graph Editor)

e Relocating relations

¢ Change relation source/target in Graph Editor by means of Drag&Drop

e Converting relations from/to one-way relations
In general:

¢ Changing data storage of file attributes

e Changing relation source/target by RDF import
Deprecated:

e Behavior function "adsorbRelationTarget" (not needed anymore)

¢ Change relation source/target in edit view in web ui (pre version 5.4)
The function body for script triggers is created automatically.

The script has three parameters:

parameter Sk.SemanticEleme The selected parameter

nt / Sk.Folder
access object Object with data of the change (new attribute value etc.)
user Sk.User User who triggered the change

The following example sets the attributes with the internal name “changedOn" / “changedBy.”
“Primary semantic core object" should be selected as the parameter here.

62

/**

* Perform the trigger

Technical Handbook 5.8 - 1.2. Access rights and triggers

* @param parameter The chosen parameter, usually a semantic element

* @param {object} access Object that contains all parameters of the

AEEESIS

* @param {$k.User} user User that triggered the access

**/

function trigger(parameter, access, user)

parameter.setAttributeValue("modifiedAt", new Date());

$k.usexr().name();

parameter.setAttributeValue("modifiedBy", userName);

parameter.attributes("modifiedBy").forEach(function(old) { old

{
var userName =
if (userName)
else

.remove });

}

The parameter "access" may contain the following properties (varies in each operation):

Property

accessedObject
core

detail
inversePrimaryCoreTopic
inverseRelation
inverseTopic
operationSymbol
primaryCoreTopic
primaryProperty
primaryTopic
property

topic

user

1.2.2.4.2. Log trigger

Description

Accessed element

Core object

Detail

Primary relation target
Inverse relation

Relation target

“read," "deleteRelation" etc.
Primary semantic core object
Primary property

Primary semantic element
Property

Superordinate element

User (identical to “user” parameter of the function)

If the user would like to monitor or document the trigger functionality for when which trigger was

63

Technical Handbook 5.8 - 1.2. Access rights and triggers

triggered and which operators were executed in the Knowledge Graph, log triggers are suitable. The
log is written to the respective log file (bridge.log, batchtool.log etc.) in the application environment
that the operation that triggered the trigger is performed in.

Lines of the log entry Current state of the Knowledge Graph

pre before triggering

post after triggering

end at the end of the transaction

commit when the transaction has been processed successfully

Log entries are used to retrace whether a trigger was executed in a specific access situation that
actually occurred, and what it did. In contrast to this, a test can be performed in the test
environment to determine whether a trigger would be triggered or not in a specific access situation,
without the specific access situation being performed.

The operability of the log trigger feature actually depends on how the logging is configured by the
respective *.ini file (kb.ini, mediator.ini, jobclient.ini).

Example: For logging the trigger actions when using a local Knowledge Graph wihout mediator, a

"kb.ini" file is needed with a minimum set of configuration parameters:

[Default]
logTargets = kblog

[kblog]

type = file
format = plain
file = kb.log

This initialization file creates a logfile called "kb.log" in the Knowledge Builder folder.

For more information about different configuration files, see the respective chapter about "i-views
services".

Instructions for the creation of log triggers

1. Select the trigger script that is to be logged in the trigger tree.

2. Using the ";:'{ button to create a trigger of type Logging in the trigger tree directly above the

64

Technical Handbook 5.8 - 1.2. Access rights and triggers

X

Trigger « 3 Modify
Execute script 4 [Knowledge Graph
Legging 47 \Logging

=] Execute script

Cancel

script trigger.
Example:

12.12.20819 14:15:51 #pre: Change value of attribute "e-mail" of "Person A" from "userl23giv.com” to "userl23@iv.com”
12.12.2019 14:15:51 #post: Change value of attribute "e-mail"” of "Person A" from "userl23@iv.com” to "userl@iv.com”
12.12.20819 14:15:51 #end: Change value of attribute "e-mail” of "Person A" from “"userl23giv.com” to "userl@iv.com”
12.12.2619 14:15:51 #commit: Change value of attribute "e-mail” of "Person A" from “userl23@iv.com” to “userl@iv.com”

Log entry that documents the change of the attribute e-mail using a trigger.

1.2.2.4.3. Changelog Trigger

If you want to monitor the activities that users perform on objects, you should set up a changelog
trigger, also referred to as a change history.

For this purpose, you must first define a string attribute with the internal name “changelog.” This
changelog attribute must be defined for all elements for which it is to document user activities.

Change history = | Open

Click “Open” to open the table showing who made the change, when they did so, what the change
is, to which semantic element it applies, and which value was used.

Date User Change Semantic element Property Value

Dec 12 2019 3:35:24 PM Create Person A knows about Object A

Dec 12 2019 3:35:12 PM Modify Person A e-mail user 1 @iv.com
Dec12 2019 3:35:09 PM Modify Person A e-mail user123@iv.com
Dec 12 2019 3:35:05 PM Modify Person A e-mail user123@iv.de
Dec 12 2019 3:34:54 PM Modify Person A e-mail user1 @iv.de

Since operation filters like "create relation", "create relation half" or "delete
relation half" only apply to the relation origin (the semantic element itself), logging
of changing relation targets cannot be triggered. For this purpose, the trigger script

NOTE can be used if specified accordingly.

Modifications in attribute values will be logged only when they are created
(simultaneously when the attribute itself is created), but not when the attribute
value is deleted.

65

Technical Handbook 5.8 - 1.2. Access rights and triggers

The trigger must contain the operation filters that will log the change history, and the elements
where the attribute is to be visible.

The trigger script looks like this:

/**

* Perform the trigger

* @param parameter The chosen parameter, usually a semantic element

* @param {object} access Object that contains all parameters of the
access

* @param {$k.User} user User that triggered the access

**/

function trigger(parameter, access, user) ({
$k.History.addToChangelLog(access,parameter);

Example

A change log is to be saved in all objects in a Knowledge Graph. The aim is to log the modification,
creation and deletion of properties in the objects. First, an operation filter is created that reacts to

n o«

the operations “Delete attribute”, “Modify attribute value”, “Create relation”, “Create relation part”
and “Delete relation part”.

(e axe

Selected operations:

Create relation
Create relation part

Delete attribute

™ 1 [

Add Remove

Possible cperations:

In the next step, a query filter was defined to determine the Knowledge Graph on which operations
are performed.

66

Technical Handbook 5.8 - 1.2. Access rights and triggers

WoRR A+

Operation parameters:

Parent element

(® All parameters must match

(® Query must be satisfied
() Query may not be satisfied

o a Person

The “Superordinate element” operation parameter was added to the trigger script, because it
corresponds to the query filter.

The trigger rules (operation filter, query filter and trigger script) are located in the hierarchy tree as
follows due to their checking sequence:

4 37 Trigger
4 13 Modify
4 [Knowledge Graph

=] Execute script

1.2.3. Filter types

With the aid of filters, the conditions are defined in the rights tree or in the trigger tree to allow
access situations to be restricted when a decider or trigger should be executed. New filters are
created under the node currently selected in the tree. This way, they are nested in each other.

The three filter types operation filter, query filter and property filter are available in the rights
system. In addition to the three basic filter types, the trigger area provides a specific filter — the
deletion filter.

There are different types of filters — when do we use which filter?

Symbol Filter Description

'ﬂ"", Operation filter Filters the operations; selection from list

;; Query filter Filters elements by means of structured query
TOJD Property filter Filters relations and attributes; selection from list

67

Technical Handbook 5.8 - 1.2. Access rights and triggers

Symbol Filter Description

r‘. Delete filter Filters the deletion of elements

Operations can only be determined using an operation filter. Users can only be determined using a
query filter. Properties can be determined using either query filters or property filters. The use of
property filters makes sense when properties should be filtered regardless of other properties in
the Knowledge Graph such as relations to the user. Above all, when large sets of properties are to
be filtered, it is more straightforward and clearer to do so in a list instead of in a structured query. If
relations to the accessed element or to the user are to be factored in, then a query filter must be
used.

Instructions for creating a filter

1. In the rights or trigger tree, choose the position at which you want to create a new filter.

2. Use the buttons {?‘r, P, TE,P or Y‘. to create a new filter.

3. The filter is created in the tree as a subfolder of the currently selected folder.
4, Assign a name to the folder.
1.2.3.1. Operation filter

To specify the operations for which an access right should apply or a trigger should be executed,
operation filters are required. By selecting the required operation it is possible to add it to or
remove it from the filter.

68

Technical Handbook 5.8 - 1.2. Access rights and triggers

B[EBVRGHQ Lo dm

Selected operations:

Delete attribute
Modify attribute value

Add Remove

Possible operations:

v All operators

v Create
Add translation
Create attribute
Create extension
Create folder
Create object
Create relation
Create relation part
Create type

v Delete
Delete attribute
Delete extension
Delete folder
Delete object
Delete relation part
Delete type
Remove translation

~ Modify
Change type
Modify attribute value

The operations are divided into groups. When you select the higher-level node of a group, all lower-
level operations are included in the filter. If, for example, you choose the Create operation, the filter
considers the operations Create attribute , Create extension , Create folder , Create relation , Create
relation half , Create type and Create translation .

The Operations chapter lists all available operations and also specifies which operation parameters
can be used in combination. The various operation parameters are explained accordingly in the
Operation parameters chapter.

1.2.3.2. Property filter

You can use property filters to filter attributes and relations. There are two different procedures for
using a property filter:

e Restriction on properties : Specify the properties to which the condition is supposed to apply.
Subsequent filters or deciders of the subtree are only executed if the access property matches
the selected property.

e Exclude the following properties : Specify the properties to which the condition is not supposed
to apply. If the access property matches one of the selected properties, subsequent filters,
deciders or triggers are not executed.

69

Technical Handbook 5.8 - 1.2. Access rights and triggers

BEBRGHO %0

(® Restriction on attributes:

() Except the following properties:

Description

e-mail e-mail

knows about (Types of Knowledge Graph, Instances of Knowledge Graph) Supertypes: Attribute

MName Primary name Type: String
Defined for: Instances of Person
Attributes
Name: e-mail

Add Remove All Mone Edit

All properties Generic properties Attribute Knowledge Graph Relation REST Configuration View configuration

Possible properties: Description

Action (Instances of Action) Name
Action (Instances of Action) Supertypes: Attribute
Action (select) of (Instances of Table, Instances of Tree Node, Instances of Hierarchy, Instances of Property Type: String

Action of (Instances of Menu) Defined for: Instances of Top-level type

actionType Attributes
Activate actions from panel (Instances of Panel configuration) Average quantity (computed):
Activation mode 0.0082752613240418

Adapt to Specific Type

Additional tab

Estimated number of objects: 19

Name: Name
Additional tab (Instances of Additional tab) Relations

Additional tab panel attribute is property of. Name

Allow authorization header is property of. Name

Allow cookie

Allow query parameter

You can use Add and Remove to select the properties listed below. All properties below can be
selected using All . None removes all selected properties. You can use the Edit field to call up the
Detail editor of the attribute or relation that is selected in the top selection field. The tabs All
properties , Generic properties , Attribute, Relation , View configuration and Knowledge Graph are
designed to help users find the filtering properties more quickly. The Knowledge Graph tab shows
all relations and attributes that the user has created.

1.2.3.3. Query filter

Query filters make it possible to include elements in the environment of the element that is to be
accessed. This allows not only individual properties, but also relationships between objects,
properties and attributes to be included in the rights or trigger definition. When using query filters,
it is necessary to specify an operation parameter to which the result of the structured query is
compared. All available operation parameters are explained in the Operation parameters chapter.

There are two ways to define query filters:

e Search condition must be met : This setting is selected initially. If the search result of the
structured query matches the operation parameter, the condition of the filter is met and
subsequent filters, deciders or triggers are executed.

e Search condition must not be met : If the structured query returns the same element as the

70

Technical Handbook 5.8 - 1.2. Access rights and triggers

access parameter as its result, the condition is not met and the check of the rights or trigger
tree switches to the next subtree. If the result of the structured query differs from the result of
the access parameter, the condition is met and the subsequent filter, decider or trigger is
executed.

BEVRAKHO =#0

Operation parameters: Possible operation parameters:
Parent element © [(Super) type ~
Accessed element
Core semantic element "
() All parameters must match (®) Any parameter must match

(®) Query must be satisfied
() Query may not be satisfied

4k no parameters

The objects of the type at the top left that match the search condition are the result of the
structured query. These are compared to the element that is transferred by the operation
parameter. It is possible to use access parameters in the structured query. They can be used, for
example, to include the user, accessed element etc. in the query.

During selection of the operation parameter it is possible to configure whether

e all selected parameters must apply (All parameters must apply)

e or only one parameter must apply (One parameter must apply).

Initially, the setting All parameters must apply is selected. If, for example, the
operation parameters Accessed element and Primary semantic element are

NOTE selected, the condition is met only if the result of the structured query is both the
accessed element and the primary semantic element of the operation to be
checked.

Example 1: Query filter in the rights system

A right should be defined that determines that already modified object may be read by everyone;
71

Technical Handbook 5.8 - 1.2. Access rights and triggers

unmodified objects, in contrast, may not.

by

Subtype A

%

Person A reads Object A

modified at

value before now

In this example, the user "Person A" would like to read "Object A". This operation is now checked by
the rights system. A query filter has been defined in the rights system which checks whether the
object has already been modified. The structured query of the query filter searches of objects of the
“Subtype A” type, with the restriction that the attribute “modification date” is in the past. The
structured query delivers all objects that meet this condition. If "Object A" is one of them, then the
check by the filter returns a positive result and the folder that follows the query filter (with a filter or
decider) is executed.

In the case of the query filter, the search condition settings must be met, and “All parameters must
apply” must be selected.

Example 2: Query filter in the rights system

In most cases, there is a connection between the user who wants access and the objects and
properties that the user wants to access. An example of this would be: “Employees of a department
who look after a branch may edit all customers of this branch.” Another version of this example that
is illustrated below would be: “Users who maintain an object may edit and delete this object.”

72

Technical Handbook 5.8 - 1.2. Access rights and triggers

o Person A

@ Object A
) @ Object €
Q-
-@:
g Subtype A
1 O is maintained by

Person A deletes Object A

Person A

The left side shows a section of the Knowledge Graph: The object "Person A" is linked to the objects
"Object A", "Object B" and "Object C" via the relation "maintains". The inverse relation of
“maintains” is “maintained by,” which exists between the objects Object A, Object B and Object C
and the object Person A, and is queried in the query filter. This relation in the Knowledge Graph
represents that one person maintains object data relating to "Subtype A".

BEVRGHO =x0

Operation parameters: Possible operation parameters:
Accessed element - (Super) type -

Accessed element

v Core semantic element v

(® All parameters must match (O Any parameter must match

(®) Query must be satisfied
() Query may not be satisfied k] x

Access parameter

"~
+ @subtype A (Super) type 2
Accessed ele
= Y- e

Core semantic element

Detail

Folder

Instances of

Inverse relation

Inverse relation type

Parent element

Primary core semantic element
Primary property

Primary relation target

Primary semantic element
Property

Relation target

Types of

User

View configuration ¥

(De)select all

< [o] | cance

73

Technical Handbook 5.8 - 1.2. Access rights and triggers

In this example, user "Person A" wants to delete "Object A". The corresponding query filter delivers
all objects of "Subtype A" that were maintained by a certain user as the query result. The current
user is transferred to the structured query as an access parameter. The “Structured query” chapter
explains access parameters in structured queries. Hence the search in this access situation returns
all objects that were maintained by Person A. Since Object A is one of them, the query filter check
returns a positive result.

In this example, the access situation adds two aspects to the query filter: the object to be deleted
and the user. The query filter can thus be defined in two different ways. The object is either
transferred to the query filter as an accessed element and the user is used as the access parameter
in the structured query. Or the user is transferred to the query filter as the operation parameter
“User” and the object is used as the access parameter “Accessed element” in the structured query.

1.2.3.4. Delete filter

Delete filters are only available for defining triggers. They are used for testing in a deletion situation
whether the higher-level element is also affected by the delete operation. For example, you want a
trigger to not be executed if an object including all its properties is deleted but a deletion filter must
be used if a certain property of the object is deleted.

BEURAHO =40

Operation parameters: Poscible operation parameters:
(Super) type "
Accessed element
Core semantic element v

®) All parameters must match () Any parameter must match

(®) Mot covered by deletion
() Covered by deletion

When defining a delete filter, at least one operation parameter must be specified which determines
which deletion of an object is to be tested.

o All parameters must apply : All specified operation parameters must apply. For example, if two
operation parameters are specified (accessed element and primary element), then it is checked
whether the delete operation applies to both the accessed element and the primary element.
This can only be the case if the primary element is also the accessed element.

e One parameter must apply : Only one of the specified operation parameters has to apply.

In most cases, the operation parameter offers a superordinate element or primary
NOTE object because a check is to be performed as to whether only the property is
deleted or if the property is deleted because the entire object has been deleted.

74

Technical Handbook 5.8 - 1.2. Access rights and triggers

e Not affected by the delete operation : The condition of the filter is positive if the element
transferred in the operation parameter is not deleted in this transaction.

e Affected by the delete operation : The condition of the filter is thus positive if the element
transferred in the operation parameter is deleted in this transaction.

Example: Delete filters in triggers

In this example, a trigger is only to be executed if the city, street or ZIP code of a company is
modified or deleted, but not if the object containing the properties is deleted. The setting Not
covered by deletion is used for this purpose. If the delete operation affects the superordinate
accessed element, which in this case is the company object itself, then the checking of the subtree
is aborted because the filter has returned a negative result.

Opnunard =x0
YrYy 2 ¥Y
ﬁ FOLDER Operation parameters: Possible operation parameters:
%= KNOWLEDGE GRAPH Parent element © (Super) type 2
. Accessed element
TECHNICAL -
Core semantic element v
Ao
» & Rights (@) All parameters must match () Any parameter must match
437 T
rgger = = (@) Not covered by deletion
“ Deleting object? () Covered by deletion
4 [J Company

4 /& City. street, ZIP code
[=] Execute script

The superordinate element operation parameter is used along with the Not affected by the delete
operation setting.

PY Company OOO
L Top City, street, &‘.&

Y ZIP code

Q ZIP Code
12348 L x Deleting object? ﬁ‘:}

Person A deleting

'&1 Execute trigger

In this example access situation, the ZIP code attribute with the value “12345” in the “Company X”
object is deleted. The object itself is not deleted. The “Company” query filter, which is defined by the
“Superordinate accessed element” operation parameter, and the “City, street and ZIP code”
property filter receive a positive response. The subsequent delete filter also returns a positive
response, as the object containing the property (superordinate accessed element) is not affected by
the delete operation — in line with the “Not covered by deletion” setting of the delete filter.

75

Technical Handbook 5.8 - 1.2. Access rights and triggers

;.M; Company OOO

Yo City, street, &.’a

0% ZIP code

L x Deleting object? Q{}

Person A deleting

';:f Execute trigger

In this access situation the “Company X” object is deleted by user Person A. Deleting the object
automatically deletes all properties of the object — and thus all attributes of the object as well. The
check of the trigger tree is executed for the deletion of both the object and the attribute. The
“Company” query filter and the “City, street and ZIP code” property filter are fulfilled for the delete
process of the attribute in the check of the trigger tree. The delete filter itself is not fulfilled in this
situation, as the “Company X” object containing the “ZIP code 12345” property is deleted.

Use of delete filters makes sense, for example, if the trigger script compiles the name of the object
from its properties. As a result, the name of the object is not modified several times when the
properties of the object are deleted; instead, the object and all related properties are deleted
without the script for compiling the name being executed. This usually saves unnecessary
calculation times and can make sense in specific application scenarios, e.g. if the trigger sends an
email notification that an object has been renamed (and this avoids sending numerous
superfluous emails regarding the name change).

1.2.4. Operation parameters

Operation parameters control the element to which the result of the structured query for the
condition check should be compared in query filters. In the simplest case, the result is compared to
the element that is to be used to execute the operation to be checked. Operation parameters can
be used to modify the transferred element. You can choose the current user or elements from the
element environment that will be used as the comparison element for the query filter.

They are also used, among other things, in delete filters and script triggers. Based on the element to
which access is executed, they specify there the element on which the script is to be executed, or
on which the deletion of elements (and which elements) is to be filtered.

When is this useful? It can be essential if you cannot use an element from the environment of the
affected object instead of the object itself for comparison: when, for example, you want to check
access rights for creating new objects or types. It is not possible to define a structured query that
returns the object that has not been created yet. In this case, the query filter must be compared to
something else, i.e. the type of object to be created and, in case of object types, to the super-type
of the type to be created.

76

Operation parameter

(Super) type

Accessed element

Application

Core semantic element

Folder

Inverse relation

Inverse relation type

Parent element

Primary core element

Primary element

Technical Handbook 5.8 - 1.2. Access rights and triggers

Description

In the case of types, the (super) type is the super-type of the
type. In the case of objects, the (super) type is the type of the
object type. In the case of attributes or relations, the (super)
type is the type of the property.

The accessed element is the element affected by the operation.

Objects of the type "application" (to be found within TECHNICAL
> View configuration > Object Types > Application).

If the higher-level element is an extension, then the core
semantic element is the object on which the extension is stored.
Otherwise, the core semantc element is identical to the accessed
element.

The Folder operation parameter is the folder affected by the
operation.

If the property affected by the operation is a relation, the
parameter contains the inverse relation half.

The inverse relation type is the type of the inverse relation. This
can be used for the generation of relations.

The parent element is the object, the type or the extension
affected by the operation. In the case of properties, the parent
element is the object, the type or the extension on which the
property is saved.

If the accessed element is a meta property and the parent
element is a relation, the following needs to be obeyed:

¢ Due to the symmetric storage of meta properties at relation
halves, the returned direction of the relation is not unique
for double-sided relations (= conventional relations) or
symmetric relations. In this case, the required relation half
needs to be determined by means of a script or a structured
query.

¢ In case of single-sided relations, the parent element is the
real relation half (meaning: not the virtual relation half).

If the primary element is an extension, then the primary core
element is the core element of the extension. Otherwise, the
primary core element is identical to the core semantic element.

If the superordinate accessed element is a property, the primary
element is the object, the type or the extension on which the
property is stored (transitive). Otherwise, the primary element is
identical to superordinate element.

77

Technical Handbook 5.8 - 1.2. Access rights and triggers

Operation parameter Description

Primary property In the case of meta properties, the primary property is the
property closest to the object, type or extension. Otherwise, the
primary property is identical to property.

Primary relation target The primary relation target is the primary semantic element of
the relation target.

Property The property is the property that the operation affects (attribute
or relation). If the operation is performed on an object, type or
extension, the operation parameter property is blank.

Relation target If the property affected by the operation is a relation, the
Relation target parameter contains the relation target of the
relation half. (The source of the relation would be the higher-
level element in this case.)

User The user is the object of the users which executes the operation.

1.2.4.1. Operation parameter (Super) type

The “(super) type” parameter is used, for example, if operations that create new elements are to be
checked in the rights system. When elements are created, the query filter cannot be defined so that
it finds elements that have not been created yet. The query filter must work on the super-type or
type of the element to be created. During the creation of objects, attributes and relations, the type
of the objects, attribute or relation is used. For types, the super-type of the type to be displayed is
used.

Accessed element (Super) type

Object or extension The type of object or extension
Type The super-type

Property The type of property

1.2.4.2. Operation parameter Accessed element

The accessed element is the element of the Knowledge Graph that is currently being accessed. For
query filters in the rights system, for example, the accessed element is the element that is to be
accessed by an operation. When checking an access situation, the element is then transferred to
the query filter on which the operation is supposed to be executed. The query filter then compares
the accessed element to the result of the structured query.

1.2.4.3. Operation parameter Application

The operation parameter "Application" refers to the application context within which the element is
actually being accessed. Examples for applications are the Knowledge Builder or the
Viewconfiguraiton mapper.

78

Technical Handbook 5.8 - 1.2. Access rights and triggers

Accessed element Application

Object, type or extension Object of the currently used application

1.2.4.4. Operation parameter Core semantic element

The core element is used when work is done with extensions. Instead of the extension, the core
element delivers the object to which the extension is saved.

Accessed element Core object
Object, type or property The actual accessed element
Extension The object to which the extension is saved

1.2.4.5. Operation parameter Folder

If a folder from the Folder area of the Knowledge Graph is to be transferred to the search as a
parameter, the Folder operation parameter must be used.

Accessed element Folder

Folder The actual accessed element

Object, type, extension or Blank
property

1.2.4.6. Operation parameter Inverse relation

The inverse relation is the “opposing direction” of a relation half. If the relation half is considered as
directed graphs, then there is a relation between two opposing graphs (the “forward direction” and
the “reverse direction” of the relation) that is attached between two elements. The inverse relation

is therefore the opposing relation half. The inverse relation has the relation source of the relation
half as its relation target and vice-versa.

Accessed element Inverse relation

Relation half The inverse relation half

Object, type, extension or Blank
attribute

1.2.4.7. Operation parameter Inverse relation type

The inverse relation type is the type of the inverse relation.

Accessed element Inverse relation type

Relation half Type of inverse relation half

79

Technical Handbook 5.8 - 1.2. Access rights and triggers

Accessed element Inverse relation type

Object, type, extension or Blank
attribute

1.2.4.8. Operation parameter Parent element

The semantic element is used if the direct properties of an element are to be retrieved.

Accessed element Superordinate element

Object, type or extension The actual accessed element

Property Object, type or extension on which the property is stored
Meta-property Property on which the meta-property is stored

1.2.4.9. Operation parameter primary core element

If you want the corresponding object or type to be addressed for an accessed element, you must
use the primary core element. In contrast to the primary element, no extensions are
addressed/permitted when using the primary core element. In case of extensions as accessed
element, the core object is output.

Accessed element Primary core element
Extension The object to which the extension is saved
Object or type The actual accessed element

Property or meta-property of The object to which the extension is saved
an extension

Property or meta-property of Primary semantic element — object or type to which the property
an object or type is saved (transitive)

1.2.4.10. Operation parameter primary element

The core semantic element always delivers an object, type or extension. If the core semantic
element is executed on meta properties, the properties are processed transitively until the object,
type or extension to which the properties are appended is found.

Accessed element Core semantic element

Object, type or extension The actual accessed element

Property Object, type or extension on which the property is stored
Meta-property Object, type or extension on which the property is stored on

which in turn the meta-property is stored (transitive)

80

Technical Handbook 5.8 - 1.2. Access rights and triggers

1.2.4.11. Operation parameter Primary property

The primary property is always a property. It resembles the primary semantic element in that it
transitively processes meta properties. However, it delivers the last property that precedes the
primary semantic element, that is, the property stored directly on the primary semantic element.

Accessed element Primary property

Property The actual accessed element

Meta-property (or meta- The property that is closest to the object, type or extension
property of a meta-property)

Object, type or extension Blank

1.2.4.12. Operation parameter Primary relation target

In contrast to the primary semantic element of a relation half, the primary relation target is not the
object, type or extension on which the relation half is located but the object, type or extension to
which the inverse half of the relation is connected.

Accessed element Primary relation target

Relation half The primary semantic element of the relation target (object, type
or extension on which the inverse relation half is stored)

Relation half whose relation The primary semantic element of the relation target (object, type
target is a property or meta- or extension of the meta-property or property on which the
property inverse relation half is stored)

Object, type, extension or Blank
attribute

1.2.4.13. Operation parameter Property

Attributes and relations are understood to be properties. The operation parameter contains the
attribute or the relation on which the operation is performed. If the operation is performed on an
object or type, the operation parameter property is blank.

Accessed element Property
Attribute or relation The actual accessed element
Object, type or extension Blank

1.2.4.14. Operation parameter Relation target

The relation target is not the source, but rather the “target” of a relation half. It can also be
considered the inverse relation half.

81

Technical Handbook 5.8 - 1.2. Access rights and triggers

Accessed element Relation target

Relation half The relation target is the relation source of the inverse relation

Object, type, extension or Blank
attribute
1.2.4.15. Operation parameter User

The “User” parameter is always the user object of the user who is currently logged in, regardless of
the accessed element. For this purpose, the Knowledge Builder account must be linked to a
Knowledge Graph object. The chapter on activation of the rights system describes how this link is
created.

Accessed element User

Object, type, extension or Object of the user who is currently logged in
property

1.2.4.16. Examples: The use of operation parameters

Example 1: Accessed element and property in the rights system

The example below shows the access situation on the left side and the corresponding query filter
on the right side.

Access situation: Person A wants to change the attribute ZIP Code of company X.

Query filter: All attributes created by a certain user are filtered. In the structured query, the access
parameter “User” is used, which restricts the objects of user to the person who wants to execute
the operation. This corresponds to all attributes that were created by Person A.

Checking the access rights: To check the access rights, the attribute (accessed element/property)
on which the operation is to be executed is transferred to the query filter. If this attribute is

82

Technical Handbook 5.8 - 1.2. Access rights and triggers

included in the set of search results, the query filter check returns a positive result.

Operation parameter: The attribute Duration is transferred to the query filter. In this case, both the
operation parameter “Accessed element” and the property can be used because the attribute “ZIP
Code” is actually a property and represents the accessed element of the operation.

Example 2: Superordinate element and primary semantic element in the rights system

This example shows the access situation on the left side and the corresponding query filter on the
right side.

Access situation: Person A changes the Zip Code attribute, which currently has the value 12345 and
is part of the Company X object.

Query filter: The query filter is defined in such a way that it searches for all objects that were
created by a specific user; the currently logged-in user is the accessed element. Accordingly, the
query filter finds all the objects created by Person A.

Checking the access rights: If the result set of the query filter contains Company X, the following
folder (filter or decider) is executed.

Operation parameter: Use of the “Superordinate element” operation parameter has the effect
that, instead of the “Zip Code” attribute to be changed being transferred to the query filter, the
object in which it was defined is transferred to the query filter. This is the case for Company X.

In addition to the superordinate element, it would also be possible to use the “Primary semantic
element” operation parameter in this case. The “Superordinate element” operation parameter
would have the result that all properties and the object itself are rated positive by the filter. In
addition, the “Primary semantic element” operation parameter would also permit meta properties
of the object, no matter how many properties are between the object and the meta property.

Example 3: (Super) type in the rights system

The example shows the access situation on the left-hand side and the query filter applied in this
situation on the right-hand side.

83

Technical Handbook 5.8 - 1.2. Access rights and triggers

ZIP Code

FoRWA

ZIP Code Company X
12345

Person A creating

Access situation: Person A wants to create the attribute Zip Code on the object Company X. The
value is to be 12345.

Query filter: The query filter returns the attribute type “ZIP Code”.

Checking the access rights: If the attribute to be created has the “ZIP Code” type, the check of the
query filter returns a positive result.

Operation parameters: When creating elements, it is not possible to define a query filter that
returns the element to be created and is thereby able to check the access rights. This means that a
different operation parameter must be chosen as the accessed element when creating elements.
The “(super) type” operation parameter is suitable in these situations. In this example, the attribute
type is used, which is the ZIP Code attribute type.

Example 2: Superordinate element and primary semantic element in the rights system

This example shows the access situation on the left side and the corresponding query filter on the
right side.

ﬁ e created by
12345

Company X

Person A User L

Person A

Access situation: User Paul changes the Length attribute, which currently has the value 02:30 and is
part of the Song X object.

84

Technical Handbook 5.8 - 1.2. Access rights and triggers

Query filter: The query filter is defined in such a way that it searches for all objects that were
created by a specific user; the currently logged-in user is the accessed element. Accordingly, the
query filter finds all the objects created by Paul.

Checking the access rights: If the result set of the query filter contains Song X, the following folder
(filter or decider) is executed.

Operation parameter: Use of the “Superordinate element” operation parameter has the effect
that, instead of the “Length” attribute to be changed being transferred to the query filter, the object
in which it was defined is transferred to the query filter. This is the case for Song X. In addition to
the superordinate element it would also be possible to use the “Primary semantic element”
operation parameter in this case. The “Superordinate element” operation parameter would have
the result that all properties and the object itself are rated positive by the filter. In addition, the
“Primary semantic element” operation parameter would also permit meta properties of the object,
no matter how many properties are between the object and the meta property.

Example 3: (Super) type in the rights system

The example shows the access situation on the left-hand side and the query filter applied in this
situation on the right-hand side.

Access situation: User Paul wants to create the attribute Length on the object Song X. The value is
to be 02:30.

Query filter: The query filter returns the attribute type “Length.”

Checking the access rights: If the attribute to be created has the “Length” type, the check of the
query filter returns a positive result.

Operation parameters: When creating elements, it is not possible to define a query filter that
returns the element to be created and is thereby able to check the access rights. This means that a
different operation parameter must be chosen as the accessed element when creating elements.
The “(super) type” operation parameter is suitable in these situations. In this example, the attribute
type is used, which is the Length attribute type.

85

Technical Handbook 5.8 - 1.2. Access rights and triggers

1.2.5. Operations

Operation filters can be used to specify operations that are then permitted in the filter process of
operation filters. If a different operation is executed in the access situation than specified in the
operation filter, the system switches to the next subtree when traversing the rights or trigger tree.

The general operations Create , Read , Modify and Delete consist of multiple individual operations.
If one operation group is prohibited, that means that all the operations it contains are also not
permitted; vice versa, if an operation group is permitted, all the operations it contains are
automatically permitted as well.

The table shows an overview of all available operations that can be applied in operation filters.
Depending on the operation, only specific operation parameters can be used in query filters. These
are specified in the “Operation parameters” column.

Derived operation parameters such as primary semantic elements or primary
NOTE semantic core objects, for example, can be used whenever the parameter from
which they are derived can be used.

Special features of triggers No read operations can be used for triggers. In addition, the operation
groups Display of objects (operation: Display in graph editor) and Edit (operation: Validate attribute
value are not available for triggers.

In addition, the “Accessed element” operation parameter is available for triggers in the “Create”
operations if the time/type of execution is set to After the change or End of transaction .

Operation group Operation Operation parameter

Display of objects Display in graph editor Accessed element

Edit Validate attribute value Accessed element, property,
superordinate element,

(parameter to be checked:
attribute value)

User-defined operation

Create Create attribute (Super) type, superordinate
element
Create extension (Super) type, superordinate

element, core object

Create object (Super) type
Create folder Folder
Create relation (Super) type, superordinate

element, relation target,
inverse relation type

86

Operation group

Read

Delete

Modify

Technical Handbook 5.8 - 1.2. Access rights and triggers

Operation

Create relation half

Create type

Add translation

Read all objects/properties of a
type

Read attribute

Read object

Read relation

Read type

Delete attribute

Delete extension

Delete object

Delete folder

Delete relation half

Delete type

Remove translation

Modify attribute value

Modify folder

Operation parameter

(Super) type, superordinate
element, relation target
(Super) type

Accessed element, property,
superordinate element

(Super) type

Accessed element, property,
superordinate element

Accessed element,
superordinate element

Accessed element,
superordinate element,
property, inverse relation,
relation target, inverse relation
target

Accessed element,
superordinate element

Accessed element,
superordinate element

Accessed element, property,
superordinate element

Accessed element,
superordinate element

Folder

Accessed element, inverse
relation, property,
superordinate element, relation
target, inverse relation target

Accessed element,
superordinate element

Accessed element, property,
superordinate element

Accessed element, property,
superordinate element

Folder

87

Technical Handbook 5.8 - 1.2. Access rights and triggers

Operation group Operation Operation parameter

Modify schema Accessed element,
superordinate element

Change type Accessed element,
superordinate element

Use tools Export is no longer evaluated
Import is no longer evaluated
Edit/execute script is no longer evaluated

Read object The operation Read object is used to display objects for the corresponding object type
on the Objects tab. The operation does not prevent the display of the object when it is called up
using a linked object. In this case, the operations for properties Read attribute and Read relation
then apply.

Read all objects/properties of a type This operation specifically controls the access rights check
when processing a structured query. A structured query checks all intermediate results by default. A
search for all employees with a wage greater than €10,000 would therefore not result in any hits
when the wage cannot be read, even if the corresponding employee objects could be read. This
response is often preferred, however is seldom performant. In the case of an extensively configured
rights system in particular, processing of which requires a lot of processor capacity, we recommend
using a control that does not require intermediate results of a structured query to be checked
because a check of the final results is sufficient. In most Knowledge Graphs, permission can be
issued for all property types (“top-level type for properties”).

Operation parameters:

(Super) type

(®) All parameters must match

(® Query must be satisfied
() Query may not be satisfied

#* | Top-level property type

To examine which intermediate results are checked, this information can be made to appear in a
structured query. This is done using “Settings—>Personal->Structured query->Show access rights
checks”.

Validate attribute value The operation Validate attribute value is used when the attribute value to
be set must satisfy certain conditions. The definition of the condition for the attribute value is made

88

Technical Handbook 5.8 - 1.2. Access rights and triggers

in a structured query.
Case example of a configuration: The entered age of a webuser must be greater than zero.

Configuration by means of the structured query in the rights system: the attribute "Age [years]"
contains the condition "value > 0".

Configuration in the rights system: If the query condition is satisfied, then the value can be stored -
this is done by configuring a positive stopmarker "Access granted" ﬂ , for all other cases the
storage is denied by using the stopmarker "Access denied" ’k - which in this case is renamed to
"Value must be positive" for displaying the validation message.

The name of the stopmarker 'k (here: "Value must be positive") is going to be

NOTE . R N
displayed by the validation mechanism in the web frontend.
Snpuagart =40

W/ FOLDER Operation parameters: Possible operation parameters:

: KNOWLEDGE GRAPH Parent element (Super) type 8
Accessed element

TECHNICAL
Application v

4 @ Rights @ All parameters must match O Any parameter must match

» £ Objekte anlegen

» & View configuration B

) . O Query may not be satisfied
» W) View Configuration Mapper

» W) REST + | ® webuser
» £¥ Alle Objekte/Eigenschaften des Typs lesen O Attribute B | & Age [years] £ v > l:l
4 1¥ Validate attribute value
4 [Value greater than zero
A Access granted
T Value must be positive
A Grant access
» & Registered objects
» 4% REST
» W View configuration
» £} Entire Knowledge Graph
» £ Core properties
< >

Community

Display in the web frontend: when entering a wrong value, the validator returns a yellow warning
message with the name of the stopmarker directly underneath the related property edit input field:

User account
Warning!

= There are validation errors so that saving the values is not possible.

User

Name User m

<

Age [years] | _1|

Value must be positive

Two possible definitions are available there for validation of the attribute value:

e Condition for the attribute value to be set : The new value of the attribute can be validated by a
comparison with a specified value in the structured query.

89

Technical Handbook 5.8 - 1.2. Access rights and triggers

< 4.0

/N Attribute ¥R |46 Factor £k Val,

attribute value may only be less or equal to 4.0.

I

Example: The

e Compare with the attribute value to be set : This compares the current value with the new

value. O\ Attribute ¥8 | & Amount | LF current value = new value
Example: The new value of the attribute age may only be greater in this case. Smaller values are
not permitted.

e Compare the value to be set with the result of a script: This initially determines a comparative
value by means of a script.

N Attribute dR | #h Release date| [£) new attribute value > Script date today

The script is called using a parameter object that contains the following properties:

Property Value

attributeValue Value to be set

property Property to be changed (attribute)
topic Element of the property

user User who sets the value

Different comparative operators are available for the validation, which can be used to check the
attribute value to be set with another value. If the new value does not match the defined condition,
the filter check produces a negative result when the initial setting Search condition must be satisfied
has been selected.

Modify schema The modify schema operation concerns changes to the definition area of relations
and changes to the type hierarchy (is a subtype of and is a super-type of relations).

1.2.5.1. Example: The use of operation groups in the right system

This example shows how groups of operations (read, generate, modify, delete) can be used sensibly
when defining rights. All operations are to be prohibited for the Company type and its objects. This
includes the following actions:

¢ Deletion of the object type Company

Deletion of specific company (objects of Company)

Deletion of attributes that occur on a company

Deletion of relations that occur on a company (relation target and source)

Deletion of extensions that extend objects of Company

Deletion of attribute and relation types that have objects or subtypes of Company as their
definition area

For example, if all delete operations for an object and the corresponding type are to be prohibited,

90

Technical Handbook 5.8 - 1.2. Access rights and triggers

you have to ensure you cover all delete operations by means of the corresponding parameters
when selecting the operation parameters in the query filter of the right:

53 [@ comoam
4 5 VN

Accessed element Core element Parent element

C=

Object type

Extension b

[is property of] a

» Attribute
“-‘fa% ZIP Code: 12345
]

Object
Company A

Relations

Employee A

The only condition of the query filter used is the object type Company, for which the setting
Instances and Subtypes is selected. The operation parameter “Accessed element” covers the object
type “Company” and all objects that belong to this type. The parameter Core object covers the
extension objects that belong to copanies. Attributes and relations are covered by the operation
parameter “Parent element.”

In the rights tree, the operational filter for the delete operation comes first. This is followed by the
query filter depicted below and finally the decider “Access refused.”

=0
[WLABRAUQ =
Operation parameters: Possible operation parameters:
Accessed element < {Super) type -
Core semantic element . Accessed element
Parent element Core semantic element v
() All parameters must match (® Any parameter must match

(®) Query must be satisfied
() Query may not be satisfied

+ &) Company no parameters

Query filters used in the example: “Core object,” “Superordinate element” and “Accessed element”
have been selected as operation parameters. The settings used are “One parameter must apply”
and “Search condition must be met.”

Extension of the right with attribute and relation types

91

Technical Handbook 5.8 - 1.2. Access rights and triggers

A thus defined right covers all but one of the above described requirements on the right. Only the
deletion of attribute and relation types that have been defined for objects and subtypes of songs
are not taken into account in this definition of rights.

The definition of rights is extended with the following filter:

B EBRAHO =0

Operation parameters: Possible operation parameters:
Accessed element = (Super) type "
» | Accessed element
Core semantic element "

(®) All parameters must match (O Any parameter must match

(®) Query must be satisfied
i) Query may not be satisfied

o |c Top-level property type |

& Relation ## |&® Defined for | @) has Target 4

The query filter includes all property types (attribute and relation types) that have been defined for
objects or subtypes of company. In the query filter definition, the parameter “Accessed element” and
the setting “Search condition must be met” are used.

1.2.6. Testbench

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs are
available in the main window. The test system area is found in the Saved test cases tab. The test
system for triggers is called in the Triggers folder by means of the System area.

Saved test cases can be tested again here. The test interface in which the test cases can be defined
can be called using the Open testbench button.

92

Technical Handbook 5.8 - 1.2. Access rights and triggers

SRS Ry =0

Test caszes:

Description Expected result Result Decisicn path
(Super) type: Subtype A; Detail: -; Parent elerr Access granted

Check Open Remove E Open Testbench ;

In addition to the functionalities that are described in the following chapters, Testing an access
situation and Defining test cases, there is the option of testing access rights directly on an object or
type. Select the access rights function using the context menu (right click). The following menu
items can be selected there:

e Object: All operations (modify, delete, read and display in graph editor) are tested on the
object and their result is output.

e All: All operations (modify, delete, read and display in graph editor) are tested on the object
and all their properties (attributes and relations) are tested.

¢ Rights system test environment: The test environment for checking rights opens.

1.2.6.1. Test the access right situation

Two areas are relevant for testing the rights system and the trigger functionality:

e The actual test environment: The test environment offers the option to test the access rights or
when a trigger is executed for a certain test case.

e The Saved test cases tab: This lists the test cases and makes them available for subsequent
checking.

Instructions for opening the test environment

1. Select the folder Rights or Triggers in the Technical area in the Knowledge Builder.

2. If you are working in the rights system, select the Saved test cases tab in the main window.

93

Technical Handbook 5.8 - 1.2. Access rights and triggers

3. Click Open test environment (bottom right) so that the test environment opens in a new
window.

The test environment is comprised of several areas: The user and the element to which the
property that is to be checked is attached is defined in the upper area. The elements can be an
object, a type or a property (when this is transferred as an element).

The properties area lists all properties of the selected element. Non-italic properties are specific
properties that are already on the object or the property. Italic properties, in contrast, are
properties that can be created based on the schema, but have not yet been created. If creation of a
new property is to be tested, the property in italics must be selected.

The operation that is to be tested can be selected in the Operation window. Depending on the
parameters selected, checking rights either is possible or not.

If a property of a property, this being a meta-property, is to be tested, then the
property must be marked in the property window and the As element button must
be selected. In the case of relations, for example, the specific relation between two

NOTE - .
objects or properties is selected as an object. All properties of the specific relation
are now available in the properties window. (This can also be done with
attributes.) The Sem. element button can be used to reverse this step.

User: Person A X
Element Subtype A Parent X
Relation target X
Inverse relation ¥
Properties Operation
Estimated number of objects: 3 S All operators o
lcon: Apng ~ Create
MName: Subtype A Add translation
Color Create attribute
Estimated number of objects Create extension
fcen Create folder
Name Primary name Create object
RDF-ID Create relation
EDF-URF R v Create relation part

Use as element Crezte type v
Open Test case
Element Property Operation Access granted Decision path Time

- Create object Yes Rights -» Create -> Objec 2

The result of the test is displayed in the bottom window. The Check button must be selected for
this. The results window displays all tested cases.

e Element : the object, the type or the property on which the property is defined.

94

Technical Handbook 5.8 - 1.2. Access rights and triggers

e Property : the specific property that is to be tested (is blank when italic properties are tested)

e Operation : that operation that is to be tested

Access allowed : the result of the test in the test case

e Decision path : the corresponding folder which leads to the test result

Time : the time required for the rights check

When testing relations, the relation, the inverse relation and the both relations

NOTE
halves are generally tested separately.

1.2.6.2. Define test cases

In order to monitor the functionality of the rights system, it is possible to save test cases. This is
particularly important if changes are made to the rights system and you want to check afterwards
whether the new result still matches the expected result. All saved test cases are displayed on the
Saved test cases tab. There it is possible to check all test cases at the same time.

Instructions for defining a test case

1. In the test environment, select the element and the property you wish to check.
2. Select the operation to be tested.
3. Press the Check button. Now the access rights are tested for the delivered parameters.

4. In the results output, choose the test case you want to save. (You can only ever save one
operation as a test case.)

5. Press the Test case button. The selected test case is saved and is available for future checks.

Test multiple test cases simultaneously

95

Technical Handbook 5.8 - 1.2. Access rights and triggers

Yoo

B[LEVESIART
Test cases Configure

Test cases:
Description Expected result Result Decision path
(Super) type: Subtype A; Detail: -; Parent €l Access granted Access denied Rights -» Create -» Objects of Subtype A -» User -» Ac
(Super) type: Subtype A; Detail: -; Parent elerr Access granted Access granted Rights -> Create -> Objects of Subtype A -> Key-user -
(Super) type: Subtype A; Detail: -; Parent elerr Access granted Access granted Rights -> Grant access

Open Remove Open Testbench

Screenshot with saved test cases, the second test case is displayed in red.

All test cases whose test result matches the expected test result are displayed in green. If a test case
is displayed in red, the result of the check differs from the expected test result. The expected test
result is determined by the fact that the check of the test case was performed for the first time
during the definition of the test case. The result of this first check is displayed as the expected result
during later checks of the test case. In the test system, the expected result is either Access

permitted or Access refused ; for triggers, the expected result is either Execute script or “nothing
happens” in the form of a hyphen.

Saved test cases can be deleted with Remove . If you want to edit a test case, you can use the Open

test environment button to do so. In that case, all the parameters of the test case are transferred to
the test environment.

96

Technical Handbook 5.8 - 1.3. View Configuration

1.3. View Configuration

The view configuration makes it possible to configure various views of the data in i-views. The
configured views are deployed in applications. It is possible, for example, to display sections of the
Knowledge Graph or create specific compilations of data (e.g. in forms, tables, results lists etc.).

This allows us to answer the following questions, for example, and create the required views with
view configurations:

How should the properties of specific objects be displayed?

In what order should the properties be displayed?

When we create a new object, which attributes and relations should be displayed in such a way
that they cannot be overlooked and thus not filled out?

What should the list of objects for a type look like?

Should it even be a simple list, or should the objects be displayed in tables?

Which elements should be displayed in the individual columns?

Should relation targets be displayed directly? Or only specific attributes?

Should we define different tabs that summarize properties and attributes that go together? ...

Example: Specific persons have the properties Name, Age, Gender, Address, Phone number, Email,
Cell number, Fax, knows , is friends with and is a colleague of . Now we can use the view
configuration to create more structure for the data view by defining a tab with the heading
“General information”, which contains the name, age and gender; a tab with the heading “Contact
data”, which contains the address, phone number, email, cell number and fax; and a tab with the
heading “Contacts”, which contains the knows , is friends with and is a colleague of properties.

97

Technical Handbook 5.8 - 1.3. View Configuration

@ Downtown City

has location
Company A
is employee of
@ Gzt A
° knows about . Perscnll
knows about Person A
knows about Attributes
- Change history: o:MA:2019-12-12T14:34:54:e1D370_12 ...
@ Object B e-maik: user] @iv.com
Name: Person A
Relations
is employee of: Company A
knows obout: Object A
@ Objecs knows about: Object B

knows about: Object C

Details Knowledge and Skills

Personal information Professions
Personal information Professions
ame = |Person A » is employee of = Company A
e-mail = |user1@iv.com = Object A
Ad n = Object B
nows 3 = ObjectC

Example of a view configuration. Upper part of screenshot: Unconfigured section of an object in the
graph view with all its properties. Lower part of screenshot: Configured view of the same object,
where the properties that go together have been grouped, unimportant relations have been left out,
and similarity relationships are displayed directly.

One special case of view configuration is the configuration of the data view in the Knowledge
Builder, because the Knowledge Builder is also an application which allows various data views. This
is helpful if we want to use the Knowledge Builder as a preview in order to try out specific
configurations. The view configuration in the Knowledge Builder can be configured so that
important properties that need to be added can be requested in a clearly visible way, for example
the detail pages for objects. This is particularly helpful if data are to be collected systematically.

1.3.1. Concept

The concept of i-views is that semantic elements can be used for configuration. The views in the
Knowledge Builder are generated with the help of a preset view configuration.

1.3.1.1. View Configuration

The purpose of the view configuration is to format the data of the Knowledge Graph for
applications in such a way that it can be displayed either in Knowledge Builder or as an application
in the web front-end via a bridge.
In the Knowledge Graph, special “view configurations” can thus be created for use in Knowledge
Builder and for applications such as the ViewConfiguration Mapper.

98

Technical Handbook 5.8 - 1.3. View Configuration

The view configuration in Knowledge Builder contains the following categories:

Applications

Graph configuration

Configuration of the KB folder structure

Panel

¢ Relation target search

Start view (KB)

Search field (KB)

-—
p (Application Graph-Configuration Folder structure (KB} Panel Relation target search ~ Start view (KB) Search field (KBD — ¢ E

FOLDER .
< o[+ [+[o] AR
‘= KNOWLEDGE GRAPH

TECHNICAL - 9
- Configuration name Identifier Part of (name/label)
¥ @ Rights
» 42 Trigger Knowledge Builder knowledgeBuilder Alternative - Instance, Organizer, KB quick sez
» % Registered bjects Topic-Chooser kmultipletopicchooser
b o REST View Configuration Mapper viewCaonfigMapper
4\ View configuration
¥ Wi View configuration detection
«\m Object Types G p x G
[%% Application 4 %4 View Configuration Mapper &4]
» Wl Configuration element Dialog panels
» W Knowledge Builder configuration
¥ (] Panel configuration Configuration Extended KB Context
¥ styie FaiimEET T = | View Configuration Mapper
» W Subordinate configuration
¥ o Relation types Identifier = viewConfigMapper
» O Attribute Types
£ Not used

¥ £} Entire semantic network

» £} Core properties

Community

For more information, see the “Context/using view configurations” chapter.

1.3.1.2. View Configuration Mapper

The view configuration mapper is used to map the preconfigured views of the view configuration to
the web front-end of the browser.

The structure of the view configuration mapper is generally structured in hierarchical fashion and
contains the panels for building the layout (= content arrangement) of the web front-end. To display
the contents, a panel needs a sub-configuration, which is referred to as a “view” (= prepared
content).

In concrete terms, the view configuration mapper contains one main window panel and any
number of dialog panels. The main window panel reflects the entire display area of the website in
the web front-end and contains the following panels, for example:

¢ Window title panel

99

Technical Handbook 5.8 - 1.3. View Configuration

e Panel with defined view
¢ Panel with flexible view
¢ Panel with linear layout

¢ Panel with changing layout

Please note that the view configuration mapper is a single-page application; this means it is not the
visibility of panels over several pages that is controlled, but the visibility of the elements featured in
the permanent panels.

1.3.1.3. Create and update the view configuration

Create
In Knowledge Builder, there are two places where you can create a new view configuration:
1. Semantic element-oriented configuration

The first place makes sense if a view configuration is to be generated for a certain object type: On
the “Details” tab, you can edit the view configuration for details views and lists.

The displayed hierarchy has the sub-item “View configuration” with four additional subitems.

Object = Details: This is where you can configure the details view for objects.

Object = Object list: This is where you can configure the object list that shows the objects of
the selected type in Knowledge Builder.

Type - Details: This is where you can configure the details view for types.

Type = Object list: This is where you can configure the object list of subtypes of the selected
type that can be seen in Knowledge Builder.

100

Technical Handbook 5.8 - 1.3. View Configuration

Instances Subtypes 5 ﬁ D

Person

Overview Details

Type View configuration : Instance : Details : Person

¢ | » B

Instance MName Type Context Type
Type

4 (View configuration

Definition

4 Schema definition

Instances of Person Alternative Knowledge Builder Person

4 |nstance
Details
Object list

4 Type
Details
Object list

You can create view configurations for this type or objects of this type on the objects type on the
“Details” tab.

Click on “New" to create a new view configuration. For object lists you automatically create a
new view configuration of the table type. For details, a dialog opens in which you can select the
desired view configuration element (on this subject, see the “View configuration elements”
chapter).

By clicking on the Edit button or double-clicking on the selected view configuration, open the editor
with which you can configure the view.

On the “Context” tab of the respective configuration, the entry “use in” specifies in

NOTE
which application the configuration is to be displayed:

Application context “apply in" Result

Knowledge Builder The details view or the list for a type or object in Knowledge
Builder is displayed.

View configuration mapper The details view is used for the web front-end.

If there is no entry for the application context and the view does not receive an application content
through inheritance from a higher-level element (view or panel), the view is not assigned and
therefore deactivated.

101

Technical Handbook 5.8 - 1.3. View Configuration

Special case: Hierarchy + object list

A possible use case for the details view of the Knowledge Builder is to display a domain-specific
hierarchy with object details. In this case, “Knowledge Builder” must be entered for the application
context in the “Knowledge Builder” hierarchy view, and to configure the details, the configuration
name must be entered in the hierarchy view. Assigning a different application context in this
constellation can lead to an endless cycle in the view configuration.

2. View-oriented configuration

The second position presents itself if an application is to be generated from scratch the many view
configurations are to be created at once. To this end, Technical > View configuration > Object types
contains all view configuration elements that are in use in the Knowledge Graph or for which a new
view configuration can be created.

To configure a web front-end, use the panel configuration Technical > View configuration > View
configuration mapper . For more information, see chapter 3 “View configuration mapper.”

Update

To ensure that changes to the view configuration are copied to the application, you have to update
the view configuration in Knowledge Builder by clicking on the “View configuration update” m
button. This button is always located in the respective View configuration menu bar.

1.3.1.4. Context / Use of view configurations

The context in which a view configuration element is used is shown in the properties editor under
the “Context” menu tab.

O X .'..
-
-

N Instances of Subtype 1

4\ static Tree Node - Instance Configuration Extended Tree KB Context

4 . Static Tree Mode - Instance
4 W Tree Node Pattern - Instance Context
4 W Instances of [Abstract Type] 4{apply to = Subtype 1
W Tree Node Pattern - Instance apply to subtypes =0

apply in Knowledge Builder
Add relation
Usage
Context of = componentDetails Group

Context

102

Technical Handbook 5.8 - 1.3. View Configuration

The context area is used to define the semantic elements for which the view configuration applies,
and to define where, i.e. in which applications or in which other view configurations, it is displayed:

e “Apply to”: The semantic element for which the view is being used must be specified here. If
the view configuration is defined by the object type, the object type is entered automatically.
Additional object types can be specified as necessary

Example: If the view is a node category of the Net-Navigator, then the object type for which the
objects are shown can be specified under “Apply to.”

e “Apply to subtypes”: This is selected to show the type itself, and its subtypes, using the
application.

e “Apply in”: Specifies the application context, i.e. which application (mostly: ViewConfiguration
Mapper or Knowledge Builder) or configuration the view is applied in.

If no application has been entered for using the view configuration, then the view configuration will
not be shown, apart from the following exceptions. View configurations are defined as a tree
structure in which the principle of inheritance applies. This is why the application does not have to
be specified separately for sub-configurations. They are shown as part of the top-level
configuration. A property configuration is shown, for example, when this is part of a layout for
which its use was specified. A view configuration is also shown when it is part of a panel which, in
turn, is defined in an application.

The following applications are available from the start:
¢ Graph editor: The configurations have an impact on the display in the graph editor. The graph

editor is used for visualizing the semantic elements and their relationships.

¢ Knowledge Builder: The view configurations are used in the actual Knowledge Builder. Along
with the detailed configurations, the object list configurations are also available here.

¢ Knowledge portal: The knowledge portal is a component of i-views which can be used as a
front-end. It shows the objects of the Knowledge Graph on details pages and in context boxes
on the basis of their semantic contexts.

¢ Net-Navigator: This is used for visualizing semantic elements. In contrast to the graph editor,
which is part of the Knowledge Builder, it can be used in the Knowledge Builder and
ViewConfiguration Mapper applications.

¢ Topic chooser: It allows relation targets to be selected in a window.

¢ ViewConfiguration Mapper: The ViewConfiguration Mapper is an intelligent front-end which, in
contrast to the knowledge portal, uses the view configurations. It can be used to create
straightforward and fast views of the data.

Moreover, it also allows any individual applications to be defined, which can be linked to the view
configuration at this point.

References

103

Technical Handbook 5.8 - 1.3. View Configuration

“References” refers to the reuse and continued use of a view configuration within another view
configuration:

¢ “Is included in panel”: Indicates which higher-level panels there are in the view configuration
hierarchy

e “Has sub-panel”: Indicates which panels there are in subordinate hierarchy levels

e “Order”: Determines the order of the panel when the higher-level panel has a linear layout
(horizontal or vertical)

¢ “Sub-configuration”: Refers to a subordinate configuration that contains the view (= specific
display of the content)

e “Activate actions from panel”: Indicates that an action in this panel is influenced by the action
in another panel (for example: Display of the search result in one panel is influenced by the
search input in another panel)

¢ “Show result from action”: Determines that the action by another panel causes a result to be
displayed in a defined form in this panel (for example: Net-Navigator shows the elements for
the object that was clicked in another panel’s search result field)

e Other relations (“Table of”, “Context of”, “Configuration for meta properties of”, “Action of”,
etc.) show the contexts in which a view configuration is used. A view configuration can be used
in any number of view configurations.

1.3.1.5. The validity of view configurations

The chapter Using the view configurations already noted that the application in which and the
objects and types for which the view is displayed are decisive for view configurations. Nonetheless
it is possible that the view configuration is not displayed in the selected application. This question
is: When is a view configuration valid? And for which object or type is the view configuration valid?

Inheritance of view configurations

In relation to inheritance, view configurations respond like properties. Subtypes or objects of
subtypes inherit view configurations.

Application of the most specific view configuration

The subtypes use the super-types according to the inheritance principle as long as they don’t have
their own view configurations. The most specific view configuration is always used: This is the
configuration that is defined directly on the type. If that is not the case, it is checked whether there
is a view configuration on the super-type. If that is not the case, the next level up in the type
hierarchy is checked to determine if a view configuration has been defined. The view configuration
that is closest to the object type is then used. If no view configuration is found on the super-types,
the default configuration is used for the administrators.

What happens when there are two equivalent view configurations?
If there are two equivalent view configurations, no view configuration is displayed. If the application

104

Technical Handbook 5.8 - 1.3. View Configuration

or object type was not defined for one of the view configurations, this is not considered to be an
active view configuration. In this case the other view configuration is used. If you want to display
different views for different users, you can define a rule in the detector system. In this case, the
view configuration is used in accordance with the defined rule as long as the rule only has one view
configuration dependent on the user.

1.3.2. Menus

Menu configurations contain buttons, so-called actions , which allow the user to execute a range of
functions.

The menus mainly serve two functionalities in the handling of actions. On the one hand, they can
be used to structure actions, and on the other, they can be used to specify where the menus are
deployed. The Knowledge Builder and ViewConfigMapper contain many locations where the
contents of menus are displayed, for example buttons at the head of an editor, or the context menu
for an individual property. Currently it is not yet possible to apply menus to all places where menus
are theoretically possible.

The next section describes the direct setting options for a menu, as well as the existing menu types
and how to use them.

Name Value

Label The menu type and the interface handling the display determine whether
the label is displayed.

Replaces standard This parameter currently only affects the Knowledge Builder. Some
menu editors, e.g. for a table, display standard menus. These can be switched
off with the help of this parameter.

Menu type The menu type describes the use of the menu in the individual
components. The menu types are described further down.

Menu types:

Menu bar

105

Technical Handbook 5.8 - 1.3. View Configuration

Name Value

ﬁ Add standard This icon is only displayed as an entry of the context menu if standard

actions actions can be added, currently for menus of tables and search
configurations.The standard actions are applicable for the Knowledge
Builder view configuration only and comprise the actions provided as in
object list menus:

New

Show (Edit)

Display graphically

Search

Delete

Recently accessed objects
Refresh view

Show in tree

Print

€ i & © X BENE

Note

e If the parameter Replaces standard menu is not set, the actions that are not included in the
menus are appended sequentially.

e If the order of the standard actions is supposed to be changed, the parameter Replaces
standard menu must be set. Following that, standard actions can be added using the Add
standard actions action. The standard actions can now be sorted in any way you wish and
mixed with your own actions.

106

Context menu

Icon

Knowledge Builder

ViewConfigMapper
JSON

List

Icon

Technical Handbook 5.8 - 1.3. View Configuration

E

Currently it is possible to expand or define context menus for a table row
and an object editor.

Object configuration: You can use the Menu tab to create menus in any
top configuration of an element. You can also switch off the standard
menu here by setting the Replaces standard menu parameter.

Table configuration: The context menu contains two sections for a table
row. The first relates to the selected element, the second relates to the
table. There are two different configuration locations for the two
sections. For the first case, the menu for an element must be linked to
any configuration, ideally a new one, which in turn is attached via Apply
in to the table that is to display the context menu. In the second case, the
menu can be attached directly to the table.

This is currently not used in the ViewConfigMapper.

"label" : “Menu (context)”,
"actions" : [{...}],
"type" : "contextMenu"

107

Knowledge Builder

ViewConfigMapper
JSON

Toolbar

Icon

Knowledge Builder

ViewConfigMapper

JSON

1.3.3. Actions

Technical Handbook 5.8 - 1.3. View Configuration

This is only used in the start screen configuration. The configured actions
are displayed in a list. If labels are assigned for the menus, these are also

displayed and

=
B

Upper menu
“ HomePage
@ UserGuide
Lower menu

m EmailSupport

therefore

J \

g

Background image

Menu 2

offer a structuring option.

This is currently not used in the ViewConfigMapper.

"label™ “Menu (List)",
"actions" [{...}],
"type" "listMenu"

The actions contained in the menus are added in sequence. Subdivision
by menus and labelling of menus are currently not considered.

The actions contained in the menus are added in sequence. Subdivision
by menus and labelling of menus are currently not considered.

"label™
"actions" [dooollls
"type" "toolbar"

“Menu (toolbar)”,

The actions in i-views are divided into preconfigured action types. These action types are

categorized as follows:

108

Technical Handbook 5.8 - 1.3. View Configuration

Universal actions (can be used in knowledge and ViewConfiguration Mapper)

¢ Actions specific to Knowledge Builder

Actions specific to ViewConfiguration Mapper

Internal actions (for administrative use only)

Depending on the action type and application, additional configurations are required, for example
creating additional panels for displaying the results of an action.

1.3.3.1. General

Functionalities can be specified in the view configuration using actions.

All the configured actions are displayed in the Knowledge Builder as additional buttons. The script
contained in the action is executed when the respective button is clicked.

The actions configured are generally displayed as buttons in the Knowledge Builder or in the web
frontend (by means of the ViewConfiguration Mapper). Actions can be summarized in a menu, or
be defined directly for a view configuration.

Instances Subtypes Schema

Standad actions on an instances list

The label is displayed as a tooltip in the Knowledge Builder. The selected symbol (any image file) is
scaled to the size of the button.

If no symbol is specified, no button is displayed in the Knowledge Builder. For the
web frontend, a label or an icon is needed at least.

Actions of any type can be attached at a wide range of positions. In most cases,
they are also displayed. There is no guarantee that this action can be executed in
the content in which it is currently being used. The applicaton area for the actions
(Knowledge Builder or web frontend) is described in detail in the following

NOTE

chapters.

Setting options

Name Value

Configuration

109

Name

Configuration name

Label

Script for label

Bookmark path

Action type

Script (custom)

Script (deprecated)

Script (before action)

Script (ActionResponse) (VCM)

Script (after action)

Script (recall)

perform by

Technical Handbook 5.8 - 1.3. View Configuration

Value

The configuration name serves for identification and reuse of the
configuration element.

A label can be defined for the button for the action here.

A script can be used to specify the button label. This option is
only available when no label is specified.

Bookmark path can be selected or created here. The displayed
name is used as path pattern in the same time. The path pattern
is used for path pattern construction of the bookmarking
resource. For detailed information, see chapter about
bookmarking ("Bookmarks and Resource").

The type of action. The different types are explained further
down. A script overwrites the action defined by the action type.
Dependent on the action type, only certain types of script might
be available.

When switching the action type, scripts which
are not applicable anymore will be removed; is

NOTE the script is unregistered, it will be deleted. A
dialog informs about the consequences
beforehand.

The script that is to be executed for this action. The script is
allowed to modify elements of the knowledge graph and defines
the action result.This script is available if one of the following
action types has been selected:

e Choose relation target

e Script

¢ Selection

The script that is to be executed for this action. Deprecated -
use "Script (Custom)"

This script is available only if the action type "Save" has been
selected.

A script specified here executes a so-called ActionResponse after
the action. This script must not be used for standard VCM-views.
Not available for all action types.

This script is available only if the action type "Save" has been
selected.

A view role can be selected or defined here.

110

Name

Question before execution

Script for question
execution

Transaction

Display

Script (enabled)

Script (visible)

Icon

Tooltip

Script for tooltip

before

Technical Handbook 5.8 - 1.3. View Configuration

Value

For web frontend only. A text can be specified here which is to
be shown to the user in a dialog box before the action is
executed. The dialog provides the option of canceling or
continuing the action (Ok/Cancel/Close).

Delete element for sure?

OK Cancel

A script can be used here to determine the text for the
confirmation dialog for the action. Caution:

e If a blank string is returned, the dialog does not appear.

e If an error occurs within the script, the dialog won’t appear
as well.

This option is only needed for editing purposes in the web
frontend: By means of the transaction begin , a temporary
state/element can be memorized until another action ends the
transaction using the transaction commit . Example: Creating
temporary elements in a dialog which then can be written
permanently into the Knowledg Graph by means of the acton
type " Save " and the transaction type " commit " or rejecting
the creation by means of the action type " Abort ", without a
transaction type.

A script can be used here to determine whether the button for
the action is to be activated, and should therefore be able to be
executed.

A script can be used here to determine whether the button for
the action is to be displayed (return value "true" for visibility,
"false" for invisibility).

Icon in forms of a bitmapped graphic which can be selected here
that is to be displayed on the button for the action. For the web
frontend, vector graphics can be used as well. An action needs at
least an icon or a label to be visible in the web frontend.

The content of the tooltip (= mouse-over text) for the action can
be defined here, instead of using the text of the label.

A script can be used here to determine the content of the tooltip
(= mouse-over text) for the action, instead of using the text of
the label.

111

Name

After execution (action)
Notification

Script for notification

Notification type (VCM)

After execution (panels)
Show result in panel (VCM)
Activation mode (VCM)

Script for activation (VCM)

Script for target model (VCM)

Close panel (VCM)

KB

Action type

Use original position

Styles

Technical Handbook 5.8 - 1.3. View Configuration

Value

Text shown in a notification that appears after the action.

A script can be used here to determine the content of the
notification.

As a metaproperty of the notification or the script for
notification, the notification type can be set to for different
message colors in the web frontend:

e "Success" (green message)
¢ "Information" (blue message)
e "Warning" (yellow message)

e "Error" (colorless message)

A panel in which the result of the action is to be displayed.
See chapter "View Configuration Mapper" (3.2.1.2)

In general, an action can be (re-)used to show content in diverse
panels. The script for activation defines, if the respective panel
will be activated for showing the content after execution of the
action or not - by returning a Boolean value. If no script is used,
the panel will be activated in every case. Example: The save
action of an edit dialog is configured to initiate the creation of a
new object. Depending on the type of the recently created
object, the new object will be displayed either in sub panel A or
in sub panel B of a flexible layout panel.

A script can be used which context / semantic element is to be
passed on to the following view after execution of the action.

Applicable to dialog panels only. After execution of the action,
the panel is automatically closed.

The action type that is only applicable when using the action
within the Knowledg Builder and not for the web frontend.

Styles can be used in different ways to influence the appearance of the button or the behavior of
the button. See respective chapter.

Context

112

Technical Handbook 5.8 - 1.3. View Configuration

Name Value

Action of Describes in which menu the action is currently used. An action
can be (re-)used in different menus.

Sort order Describes the position of the action within the superordinate
menu.

Notice Tells e. g. whether the action is used in more than one
configuration. In this case, a blue sign with an exclamation mark
appears nearby the context tab:

Configuration KB Styles) Context

1.3.3.2. Universally applicable actions

Universally applicable actions can be used in both the Knowledge Builder and in the web frontend
using the ViewConfiguration Mapper. This includes the action types “Display graphically”, “Delete”,
“Search” and “Tag”. For further information about the tag action type, see the respective chapter

about tagging.

1.3.3.2.1. Action type "Display graphically"

The “Display graphically” action is used in a view configuration to graphically depict object types,
relations and objects in the Net-Navigator. Here the configuration is as follows:

Configuration Styles KB @ Context

Configuration name = | A: ShowGraph

Label = |x

Action type = | Display graphically >

Script = [=] JavaScript see

Script (ActionResponse) Choose

4 Show result in panel D: Graph

1]]
<

Activation mode

Script for activation Choose *0s

Script for target model Choose et

4 Show result in panel

Activation mode

Script for activation Choose

Script for target model Choose

n
O

close panel

113

Technical Handbook 5.8 - 1.3. View Configuration

For this purpose, a panel must be specified under “Show result in panel” that contains a graph
object as its sub-configuration. The graph object in turn must contain a graph configuration for the
definition of the elements to be displayed:

‘EEE Table - Instance W | D: Graph u Graph-Configuration - Instance

Click action Sub configuration

Show result in panel Graph configuration

u A: ShowGraph ' Graph - Instance

1.3.3.2.2. Action type "Delete"

This action type deletes the respective element.

(o]

| JOFS & X 2 @
Wil Table - Instance
4N i Name Configuration = Actions Styles KB Context

N ! Name

(o}

4\ Column - Instance U p ox x ‘ ’ u

[~ M: Delete x

Configuration Styles KB Context

Configuration name = ~
Label =X
Action type = |Delete ~
4 Path pattern = d
Parameter assignment = Choose
Script = Choose os
Script (before action) = Choose oo
Script (ActionResponse) = Choose sse
Script (after action} = Choose see
execute in view = .
Transaction = ~
» Question before execution = |Delete really?

For view configuration in the web frontend, the delete action deletes the respective accessed
element. For example, a delete action in a menu in the second column element of a table results
into a button shown at each row, leading to the row element being deleted when clicked onto.

114

Technical Handbook 5.8 - 1.3. View Configuration

MName

Object 1 x
Ohject 1.1 b 4
Object 1.1.1 b4

In Knowledge Builder, the "Delete" action type is preconfigured for object lists:

Instances of Subtype 2 Subtypes Schema

goR- o

Delete (Strg-

S . |

Name
Object 1
Object 2

Like any other configuration in Knowledge Builder, the default configuration can be replaced with a
customized configuration, containing the specified "Delete" action type.

1.3.3.2.3. Action type "Search"

This action triggers a search. This function has been integrated into the menu bar of object lists in
the KB (shortcut Ctrl + S):

Instances Subtypes Schema

o|s|r|0o| 2 EERLLE

When used for the configuration of the web front-end, the action is assigned to an action by means
of the drop-down menu under the entry “Action type:”

115

Technical Handbook 5.8 - 1.3. View Configuration

WOLR s
i
Wi Instances of Subtype 2
.
4N EName Configuration Sort Table Rows KB Context
i Name
Menus Styles
o
| FOFS & X 4 u
[Menu - Instance
¥ show Configuration Styles KB Context
\Z Display graphically N X — A
Configuration name = |Search
W2 search
W2 Recently accessed objec Label =
& Print Script for label = Choose P
¥ Delete -
Action type = |Search V|
4 Path pattern = d
Parameter assignment = Choose
Script = Choose s
Secript (ActionResponse) = Choose e
execute in view = .
Transaction = v
¥ Question before execution =
» Script for question before executiol= Choose see
< > v

Tip:

e |f a search function with string input (keyword search) is required for the web frontend, then
the search field element or the query element in the view configuration mapper can be used.
An input line and search button are preconfigured for search field view and query view as well.
For the search field view, the search result can be displayed by means of a search result view
which is influenced by the search field view.

e Furthermore, a "Query" view can be used which combines search input field and search result
view into one element. As long as the search input field is not required to be situated apart
from the search result, using this view is recommended.

1.3.3.3. Actions for the Knowledge Builder

These action types can only be used for configurations in the Knowledge Builder.

The KB-specific action types are only available in the “KB” tab of an action from KB
version 5.2.2 or higher. Since these action types are all used per default for object

NOTE lists and the Knowledge Builder start page nevertheless, they mainly are for
configuring menus with a reduced amount of actions or for completion of
customized actions by additionally using the standard action types.

1.3.3.3.1. Action type "Save query results"

If searches are executed in the Knowledge Builder by means of a structured query, you can save the
results by clicking the button in the menu bar:

116

Technical Handbook 5.8 - 1.3. View Configuration

This action saves the query result in a folder you can choose:

Ordnername

Strukturabfrage #unnamed search (1 Treffer)

Meuen Ordner erstellen in

ORDNER

W Arbeitsordner (workingFolder) {Organize

% Privatordner

< >

QK Abbrechen

The saved search is an object list based on the configuration of a structured query
relating to currently existing semantic elements. If changes are made to the

NOTE relevant elements after the search result has been saved, this will have an effect
on the saved results as well: When the relevant element is deleted, it no longer
exists in the saved search result.

1.3.3.3.2. Action type "Refresh view"

In the KB, an action with the action type "Refresh view" recalculates the visible content of table
cells. This option provides a preconfigured action that is available via the “Update” button in the
object list menu bar (shortcut: F5).

117

Technical Handbook 5.8 - 1.3. View Configuration

Instances Subtypes Schema

DERBEE x =50+

1.3.3.3.3. Action type "Print"

This action is used in the menu bar of list views. The preset configuration can be used to print out
object lists or output them in an Excel table, without having to create an export mapping.

Instances Subtypes Schema
o1+ [5] s EROXE

The “Print” action opens the Print dialog in Knowledge Builder.

‘42 |nstances

Printing of 27 Elements

Print template | Excel export

Printout

=

-

Copies print

Miicrosoft Excel [xdsx File) y E
|

Printing | | Cancel

The Print action is also available in the results lists of structured queries. When configuring

individual views in Knowledge Builder, the action must be added to the respective view or
configuration element:

118

Technical Handbook 5.8 - 1.3. View Configuration

WOLR =
N
Wi Instances of Subtype 2
4N EName Configuration Sort Table Rows KB Context
N i Name
Menus Styles
o
| JOFS-S & X 4 U
[1 Menu - Instance
¥ show Configuration Styles KB Context
\Z Display graphically N X - X A
Configuration name = |[Print
W2 search
W2 Recently accessed objec Label =
& Print Script for label = Choose ses
2 Delete = -
Action type = |Print V|
4 Path pattern = .4
Parameter assignment = Choose
Script = Choose s

The prerequisite for being able to use the action type “Print” is that the Printing component exists,
which can be installed retrospectively via the Admin tool if necessary.

The configuration of the printing component is available within the "TECHNICAL" part of the
Knowledge Graph. There, printing templates can be defined using document templates. For more
information, see the respective chapter "Reports and printing".

1.3.3.3.4. Action type "User guide"

The action type "User guide" provides a preconfigured action that opens the i-views web manual in
the browser.

O

Seei-views

o 1
o 1 J

CIEE
ﬁ Homepage

m E-Mail support

In contrast to the “Web-link” action type, this is a link to a preconfigured address, like the
“Homepage” action type.

119

Technical Handbook 5.8 - 1.3. View Configuration

Setting options

Name Value

URL Preconfigured weblink to the i-views manual.

1.3.3.3.5. Action type "Homepage"

This action type can be used for the start view of the KB. The home page is opened in the browser.

O

Seei-views

OO

@ User guide

(“ Homepage)

m E-Mail support

Setting options

Name Value

URL Link to a website

1.3.3.3.6. Action type "Show in tree"

The Show in tree action can be used to display the location of an element from the Knowledge
Graph. Executing this action has the effect that the location of an element (e.g. an entry in a list
view) appears at the corresponding point in the structure tree of the organizer (left column of the
KB) and opens in the details view of the element.

120

Technical Handbook 5.8 - 1.3. View Configuration

Instances Subtypes Schema
DERBEE <504

1.3.3.3.7. Action type "E-Mail support"

This action type can be used for the start view of the KB. The actions contained open a dialog in
which you can send an email to the configured address.

O

Seei-views

o]0

@ User guide
ﬁ‘ Homepage

@ E-Mail su@

Setting options

Name Value

URL Email link

1.3.3.3.8. Action type "Web link"

The “Web link” action type can be used for the start view of the KB. It differs from the “Homepage”,
“E-Mail support” or “User guide” action type in that way that you can assign any web address as the
hyperlink.

In later KB versions (KB 5.2.2) the “Web link” action type is only available on the

NOTE . .
“KB” tab - see following picture.

121

Technical Handbook 5.8 - 1.3. View Configuration

Action .
Action - Instance Q

Configuration Styles KB Context

Use original position E O .

Action type = | Web link ~ ‘ E

Setting options

URL Address of the web link.

If the URL attribute is not displayed, it can be added by editing the action in an
unconfigured editor view.

NOTE

Action o= @
: 2
Action - Instance L
Configuration name = 7+ Open graph editor
— Open gured graph editor

» Label = | = Showintree

St for e = o o
{action type = | Web link v| Reengineer >
4 Path pattern = Crest= copy

Schema

Parameter assignment

_ Action ;
Seript Action - Instance 2

Seript (ActionResponse) y ’
o Attributes
execiite in view

>
B () = [ntpsiiews comce L]

Add attribute

Relations

n
¥ Action of = Lower menu
[Add relation
Extensions
Extension = Weblink “|[=

1.3.3.3.9. Action type "Recently accessed objects"

Shows the objects (semantic elements) that were last used in the respective table. Objects might be
filtered depending on the definition of the table.

122

Technical Handbook 5.8 - 1.3. View Configuration

Instances Subtypes Schema

In Knowledge Builder, this action is preconfigured for list views and can be called up using the key
combination Ctrl+R.

1.3.3.3.10. Action type "New"

The new action creates new types or new objects in the Knowledge Graph. The new action is, for
example, used in the menu bar of object lists in the Knowledge Builder.

Instances Subtypes Schema

nﬂ XTwO%D

For the web frontend, a script must be used instead of the action type "New". For
more information, see the chapter “JavaScript-API”.

NOTE

1.3.3.4. Actions for the viewconfiguration mapper

The actions for the ViewConfiguration Mapper can only be used for the web front-end and are split
into different action types.

1.3.3.4.1. Action type "Cancel"

The action type "Cancel" is used in the web frontend to cancel a started transaction.

Example: A menu action with the option "transaction: begin" is configured to create a temporary
object for displaying it in a dialog. A subsequent action with the option "transaction: commit"
(mostly in combination with the action type "Save") completes the transaction and persists the
object, whereas an action of the action type "Cancel" cancels the transaction and rejects the
temporarily created object.

1.3.3.4.2. Action type "Show"

This action initiates a re-calculation of a suitable view for the semantic object that is the target of
the action. You typically use this action if you want to change the view. The result of the action is
the new view.

123

Technical Handbook 5.8 - 1.3. View Configuration

You can use “Show result in panel” to determine in which panel the view is to be displayed.

Configuration Styles KB Context

Configuration name = | A: ShowlnDialog ”

Label = | Show details
Action type = |Show V‘
4 Path pattern = .’:
Darametor nccinnment = Chane-
a8
After execution (panels)
4 Show result in panel = D: Detail

!
[<]

Activation mode

Show (active flag and content)

Script for activation
Update (without flag, content only)

int for taroet =
SC-'L,CI. jor target model Lazy [Iazy ﬂag_. no con‘ten‘t)

I
™

4 Show result in panel

Activation mode

f
=
T

Script for activation

=)
]
]

Script for target model

close panel =01 =
The “Activation mode” determines the update behavior of the view:
Activation mode Description
Default The target panel is activated (= made visible) after the action

execution, regardless of whether it was activated before the
action or not. If the target panel is connected to other panels
with an "influences" relation, those panels will be activated
aswell and provided with new content. The action result will be
the new model of the target panel and its influenced panels. This
mode is useful e.g. for showing a dialog panel.If there is no
configured activation mode, this mode will be used as default.

124

Activation mode

Refresh view only

Refresh model and view

1.3.3.4.3. Action type "Selection"

Technical Handbook 5.8 - 1.3. View Configuration

Description

The target panel is only refreshed, if it was already visible before
the action execution. Furthermore, no additional panels will be
activated through "influences" relations. The action result has no
influence on the panel’s content: the same model will be shown,
but the view may change due to side effects of the action (e.g.
because a query now yields more results or a shown object
received new properties).

The target panel is only refreshed, if it was already visible before
the action execution. Furthermore, no additional panels will be
activated through "influences" relations. The action result
becomes the new model of the target panel and replaces the
previous model.

This action corresponds to the “Display” action, with the only difference being that the action is
executed on the parameter “selectionElement,” i.e. on a selected element.

NOTE This effect also applies to any script that might be available.

The “Selection” action is used only (but not necessarily) in order to call up a display from another
panel when clicking on a table entry or list entry in a search result. This is often used to display
detailed information on a semantic element.

Example

Configuration Sort Table Rows KB Context

WCOWEomowoWmowmmom momom

A: ShowGraph

(]

]

Choose

Choose

Configuration Styles KB @ Context

Configuration name A: ShowGraph

Choose. eos

Selection ~ I

Choose -

D: Graph

Choose see

Choose ese

125

Technical Handbook 5.8 - 1.3. View Configuration

Keep in mind that the respective “Selection” action specifies the panel that this action is supposed
to affect. This is specified under “Show result in panel.”

1.3.3.4.4. Action type "NN-Expand"

NN-Expand is an action type that makes it possible to expand a graph node in the Net-Navigator.
This means that you can see all the nodes that are connected to this node via a relation and that are
permitted by the graph configuration. The affected relations between the nodes are also displayed.
Nodes that are already displayed in the Net-Navigator only display the relevant relations in addition.

Display with a plus sign as shown in the image below is the default setting. If you click on the plus
button and it involves too many relations, a dialog window appears, and that dialog window has
also been configured already. In this dialog you can choose which nodes should be displayed.

€) Object 1.1

In the graph configuration this action is attached to all node categories that are supposed to be
equipped with it. A menu that can contain all NN actions is created on the “Node” tab. In the action
itself, it is only necessary to select the “NN-Expand” action type, all other specifications are
optional. Further action types are available from the neighboring “...” button.

126

Technical Handbook 5.8 - 1.3. View Configuration

WORXE$ -

-] Graph-Configuration - Instance
» W Instances of Subtype 1
» W Instances of Subtype 2

Configuration Category MNodes Context

» W Instances of Subtype 3 s SR
QLXK (%
[l nnMenu
& nn-Expand Configuration Styles KB Context
: ::::‘:e Configuration name = | nn-Expand ~
Label =
Seript for label = | Choose eoe
Action type = | NN-Expand ~
4 Path pattern = A
Parameter assignment = Choose
Seript = Choose .
Script (ActionResponse} = Choose sse
execute in view = .
Transaction = |
1.3.3.4.5. Action type "NN-Hide"

With the configuration of this action type, a menu button is provided in the graph nodes that hides
the selected graph nodes and its displayed relations one time (see crossed-out eye in the image).
The node can, for example, be displayed again when another connected node is expanded.

€) Object 1.1

The NN-Hide action is configured like the NN-Expand action, but “NN-Hide” is chosen as the action
type instead of “NN-Expand”. In order to configure more than one action type on a node, multiple

127

Technical Handbook 5.8 - 1.3. View Configuration

actions must be created for a menu.

-Doﬁxti .

[] Graph-Configuration - Instance
» W Instances of Subtype 1
» W Instances of Subtype 2

Configuration Category MNodes Context

» W Instances of Subtype 3 LEmis Sgie
| JOFYS & X 2 u
[nnMenu
& nn-Expand Configuration Styles KB Context
: ::i:i:e Configuration name = | nn-Hide ~
Label =
Script for label = Choose o
Action type = | NN-Hide w
4 Pgth pattern = d
Parameter assignment = Choose
Seript = Choose CrT
Seript (ActionResponse) = Choose eee
execute in view = '
Transaction = vl
1.3.3.4.6. Action type "NN-Pin"

The NN-Pin action is used to configure a menu button that allows a node to be pinned down in the
Net-Navigator. When the graph is automatically restructured, for example when expanding another
node, the node that was pinned down remains in its position. Despite this, the node can be
repositioned manually and the pin is released when the graph is reloaded. Clicking on the pin again
also releases it again. The “pinned” status is displayed by a change in the graphic (the pin points
downwards instead of lying at an angle).

128

Technical Handbook 5.8 - 1.3. View Configuration

€) Object 1.1

The configuration of the action type is performed as described in the “NN-Expand action”.

-DOSX‘I" .

-] Graph-Configuration - Instance
» W Instances of Subtype 1
» W Instances of Subtype 2

Configuration Category MNodes Context

» W Instances of Subtype 3 s S§ie
0OSXES W
[nnMenu
& nn-Expand Configuration Styles KB Context
&2 nn-Hide — ~
¥ nnFin Configuration name = | nn-Pin
Label =
Script for label = Choose ese
Action type = | NN-Pin v
4 Path pattern = d
Parameter assignment = Choose
Script = Choose ese
Seript (ActionResponse) = Choose eee
execute in view = '
Transaction = M
1.3.3.4.7. Action type "Save"

The Save action stores the form data from the web front-end in the Knowledge Graph. The web
front-end automatically recognizes the action type and sends it to the configured view. If no view
has been defined as the recipient of the action, the web front-end tries to find a suitable view in a
neighboring panel.

129

Technical Handbook 5.8 - 1.3. View Configuration

To do this, the action type “Save” is assigned to the action in a menu:

Configuration Actions Styles KB Context

| 7 JOFNS & & 4 u

A: DeleteElementOfDialog
A:SaveElement Configuration Styles KB Context

ASaveElement

Configuration name

» Label = |Save
Action type = |Save ~ |
4 Path pattern = .ﬁ
Parameter assignment = Choose
Script = Choose e
Script (before action) = Choose e
Script (ActionResponse) = Choose o
Script (after action) = Choose e
execute in view = .
Transaction = | commit ~

» Question before execution

The Save action can be used, for example, to replace the individual Save buttons in several edit
fields in a dialog with a customized Save button.

If you want to to use the save-action to do more than just to save (e.g. add another
object to the object you just edited), you have to use "Script (after action)" instead
of "Script". The reason is that otherwise the save action would be overwritten by
the script action.

NOTE

1.3.3.4.8. Action type "Print"

Like in the Knowledge Builder, the Print action is used for generating documents based on the
shown model. The difference is that no configuration dialog is shown to the user. The necessary
settings therefore need to be configured at the action configuration. Prerequisite for using the Print
action is the availibility of the printing component, which can be installed using the admin tool.

Depending on which kind of view is used to execute the print action, the behavior is slightly
different:

e Table print: If the action is performed by a table or search view, a table print based on the
columns and content of the respective table is executed. If the print action is not connected to
a print template, a new .xIsx document is generated, otherwise the table content is embedded
in the provided template file. In both cases the filtering and sorting of the table is respected,
but all elements are printed regardless the configured pagination of the table.

130

Technical Handbook 5.8 - 1.3. View Configuration

e Element print: If the action is performed by any other view, the element which is the model of
the respective view is used as the basis for the generated document. In this case the
configuration of a print template is mandatory. This mode is also used for print actions that are
configured in table rows. In that case they refer to the respective row’s element.

For a print action, the desired file name and target format can be configured. A configured target
format requires a suitable converter configuration from the template’s source format to the target
format. For more information regarding the configuration of print templates and converters, refer
to the chapter on "Reports and printing".

1.3.3.5. Internal actions

The use of internal actions requires expert knowledge. If in doubt, please contact i-views support:
support@i-views.com.

The actions listed here are only included for reasons of completeness. This includes actions such as:

e Sort action
e Jump action
e Create target action

e Script action: If there is a script on an action, it causes it to be executed automatically, and
therefore overwrites the integrated function of the respective action type.

1.3.3.6. Scripts of actions

1.3.3.6.1. Script (custom)

This script is executed when the action is triggered. The script may modify elements of the
knowledge graph and compute the result of the action which is usually the model to be visualized in
the defined target panel(s).

The script may also read and modify session variables or view state.

function customAction(action, actionResult) {

}
Arguments
action Sk.Action - The object representing this action.
actionResult Sk.ActionResult - The result of the action.

Parameters of the action can be accessed by the corresponding functions of the action object (see
JavaScript documentation).

The view (Sk.View or sub-classes) executing the action can be accessed in the script as "this" object.

131

mailto:support@i-views.com?subject=i-views%20Tutorial

Technical Handbook 5.8 - 1.3. View Configuration

1.3.3.6.2. Script (actionResponse)

The purpose of this script is to provide a custom response to customized fronted-implementations.
For standard ViewConfigMapper this script must not be used.

This script is executed after the action has been executed. Its main task is to prepare the result of
the action for the ViewConfigMapper (or other front-ends). The script must return an object of the
type Sk.ActionResponse.

function actionResponse(element, context, resultModel) ({
var actionResponse = new $k.ActionResponse();

actionResponse.setData(resultModel);
actionResponse.setFollowup("new");

actionResponse.setNotification(“done", "warn");

return actionResponse;

}

Arguments

Argument Value

element The semantic element in the context of which the action is
executed

context (deprecated) More predefined variables that describe the context of the
action in more detail

resultModel The result model of the action result.

ActionResponse

The ActionResponse can be supplemented with values for Followup / Data and Notification . These
values can be evaluated by other applications such as the ViewConfigMapper.

In the Knowledge Builder, the following values for Followup are possible in tables:

refresh Renders the current table again without recomputing the list
update Recalculates the table
show-element Selects the element in data in the table. Alternatively, the “data”

element can handle an object by means of {"element":
actionResult, "viewMode": "edit} in order to open the result in a
new Detail editor.

Followup is not evaluated in detail editors.

132

http://www.k-infinity.de/api/4.0/symbols/%24k.ActionResponse.html

Technical Handbook 5.8 - 1.3. View Configuration

1.3.3.6.3. Script (actionVisible)

function actionVisible(element, context) {
return true;

The return value is used to decide whether the button is displayed or not.

In the case of actions on the elements, the following function is called up in tables, which transfer
an array of elements and expect an array of Boolean values. This can be used to compute the
visibility for the elements more efficiently in one go.

function actionsEnabled(elements, contexts) {
return elements.map(function (element, index) {
return actionVisible(element, contexts[index]);

)

1.3.3.6.4. Script (actionEnabled)

function actionEnabled(element, context) {
return true;

The return value is used to decide whether the button is active.

In the case of actions on the elements, the following function is called in tables, which transfer an
array of elements and expect an array of Boolean values:

function actionsVisible(elements, contexts) {
return elements.map(function (element, index) {
return actionVisible(element, contexts[index]);
})

1.3.3.6.5. Script with Ul specific actions

The script that implements the action can access Ul-specific functions in the Knowledge Builder
using context.ui .

Ul functions should not be executes within transactions when possible, as the display is not
updated within the transaction.

133

Technical Handbook 5.8 - 1.3. View Configuration

context.ui.alert(message, windowTitle)

Shows a message.

context.ui.requestString(message, windowTitle)

The user can enter a string.

context.ui.confirm(message, windowTitle)

Opens a cancel dialog.

context.ui.choose(objects, message, windowTitle, stringFunction)

Have an object selected from a set.

context.ui.openEditor(element)

Open the default editor for the object.

context.ui.notificationDialog(notificationFunction, parameters,
windowTitle)

A wait dialog or notification dialog is opened. Depending on how it is configured, it can be canceled.

Possible parameters:

Parameter Description Default value

autoExpand The dialog display area is opened initially. true

canCancel The dialog can be canceled. true

stayOpen The dialog remains open after the end of the true
function.

Example:

ui.notificationDialog(
function() {

134

Technical Handbook 5.8 - 1.3. View Configuration

ui.raiseNotification("start");
for (var i = 0; i < 10; i ++)
ui.raiseNotification("" + i + "*" + i + "=" + (i*i));
ui.raiseNotification("end");
return undefined;
Bo
{ "canCancel" : false },
"A wait dialog"

Messages can be output in the display area using the following raiseNotification function.

$k.UI.raiseNotification(message)

This message is only captured by the notificationDialog function, and the message is only output in
the display area there.

1.3.3.7. Action sequences

Often we might want to summarize the changes that the user makes to the Knowledge Graph and
that are split into several sequential actions.

Example: In one action, a new product is created, and in the next action the properties of the
product are described. Aborting the second action would create a product without a description in
the Knowledge Graph.

What is required is an “All or nothing” behavior to ensure that either all actions that belong
together are executed or that none of them are. You also want to ensure that other users can only
see the change to the Knowledge Graph once it has been completed. You can achieve such behavior
by encapsulating the actions in a “Transaction”.

In order to summarize a sequence of actions in a transaction, you mark the first action with
“Transaction - begin” and the final action with “Transaction - commit”.

Caution: The transaction is started only if the first action actually modifies the Knowledge Graph.
When creating new objects in a sequence of actions you also have to ensure that the order of newly
created objects is deterministic, so whenever an action script is repeated the creation order is the
same as before. If the set of created objects varies dependent on the actual situation, make sure to
sort the originating set in a deterministic way before creating the objects (e.g. by idString()).

The transaction commit can also be brought about dynamically via the “setTransactionCommit()”
script function.

If the transaction is to be canceled, you can achieve this by means of an action of the “Cancel” type.
Canceling means that all previous changes to the Knowledge Graph conducted within the
transaction are undone. The “setFailed()” script function can be used to dynamically initiate a

135

Technical Handbook 5.8 - 1.3. View Configuration

cancellation.

As a transaction is always coupled to the duration of a session, a transaction is canceled
automatically when the session ends in which the transaction was started. If, for example, you open
a dialog at the start of the transaction and the dialog is closed before the transaction was
completed, the transaction is canceled automatically. This does not apply to dialogs that are opened
while a transaction is already running, because this creates a new session on the session stack.
Dialog sequences (one dialog is closed and another dialog is opened immediately) do not interrupt
the transaction either.

1.3.4. View configuration elements

A view configuration describes how objects or types are to be shown. The different element types
that are available in the view configuration are described in the following.

The individual view configuration elements can, in part, be plugged together in any way. The
configurations can also be used multiple times as a sub-configuration.

List of the different detail configuration types

Configuration type Top-level configuration Can include the following sub-configuration
Alternative X any

Property

Properties X property

Layout X any

Hierarchy X any

Script-generated X

content

Static text

Search Table

Setting options that all detail configuration types have in common

Name Value

Configuration name This is not used in the user interface. The user who creates a
configuration has the option of assigning a name that is
comprehensible for the user in order to be able to find this
configuration more easily later on, and to be able to use it again
in other configurations.

136

Technical Handbook 5.8 - 1.3. View Configuration

Name Value

Script for window title Only for use in the Knowledge Builder. If an object is, for
example, opened by double-clicking in the object list, a window
with the properties of this object opens. The title of this window

can be determined using a script.
) o x
Personal information Professions
Personal information Professions
Name = |Person A b isemployeeof = Company A
e-mall = | user1@iv.com knows about = Object A
D k = Object B
kn = ObjectC
Add relation

The setting options for the individual configuration types are described in the

NOTE
following sections. The obligatory parameters are printed in bold.

1.3.4.1. Alternative

An alternative is used to configure many different alternative views on an object. You can use tabs
to switch between the views in the application.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of
the configuration.

Label A label is only used if this configuration is embedded in another
configuration, e.g. an additional alternative .

Script for label The Script for label is used for dynamic computing of the label.
This script is only available, if no entry exists for "Label"

Default alternative The sub-view that is supposed to be selected initially can be
specified here.

Script for default alternative

Restore last selected If enabled, the lastly selected tab keeps selected, even if a
alternative change of view occured.
Script for visibility This script is used to compute dynamically, if the view needs to

be visible or not.

Display in an application

If the views are exported into JSON, the individual sub-views are attached to the alternatives KEY in

137

Technical Handbook 5.8 - 1.3. View Configuration

an ARRAY.

Details X

Tab 1 Tab 2

Example of an alternative in an application: You can use the tabs to switch between the views “Tab
1”7 and “Tab 2”.

Display in Knowledge Builder

In Knowledge Builder, the various configured views of an object that are linked to the alternative

are made available to users by means of tabs
Personal information Professions

Example of an alternative in Knowledge Builder: You can use the tabs to move between the view
“Details” and the view “Knowledge and Skills”

Configuration of tabs

If a view configuration of the “Alternative” type has been created, you can use the button “Create
new objects of object configurations” to add a new tab.

™1 Alternative: Instances of Person

WO .2 %

CJ Instances of Person

» U Details Configuration Menus Styles KB Context

» I Knowledge and Skills _ -
Configuration name -
Label
Script for label = Choose

It usually makes sense to use the view configuration type “Layout” as the tab as any number of view
configurations can be placed therein. The label of the view configuration is also the label of the tab.

138

1.3.4.2. Layout

Technical Handbook 5.8 - 1.3. View Configuration

A layout can be used to summarize different sub-configurations in one view. The subelements are

then shown in order.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another
configuration, e.g. Alternative .

Orientation Defines whether subviews are stacked horizontally or vertically.
The default behavior is horizontal orientation.

Script for visibility A script that determines whether the layout is displayed or not.

Display in an application

Sydney

Sydney ist eine Stadt in Australien und die Hauptstadt des Bundesstaates New South Wales. Sie
wurde am 26. Januar 1788 gegrundet und ist mit 4,63 Millionen Einwohnern (2011) im
stadtischen Gebiet (Urban Centre) die groBte Stadt des australischen Kontinents.

Zahlreiche Universititen, Museen und Galerien befinden sich hier. Sydney ist rémisch-
katholischer und anglikanischer Erzbischofsitz.

Félschlicherweise wird Sydney oft far die Hauptstadt Australiens gehalten, diese ist jedoch
Canberra.

[Quelle: wikipedia, Foto © Robin Bechold |

Bevélkerung 4.293.000

Sehenswiirdigkeiten
v

Sydney Opera House

Land

° Australien

Display in Knowledge Builder

Gruppe (chne Beschriftung)

Eigenschaftsliste mit Name, Bild, Text
und dem Attribut Bevélkerung

Eigenschaftsliste mit Uberschrift und
der Eigenschaft ,hat Sehenswirdigkeit”

Suche mit tber die Region gezogener
indirekter Beziehung zum
Land der Stadt

A frame is drawn around a layout in the Knowledge Builder. This frame then shows the views of the

sub-configurations.

139

Technical Handbook 5.8 - 1.3. View Configuration

. D Og x ‘ ‘ Image with label Attributes
. o Attributes
4 () [Abstract Type] Hee

Name Object 1

< @ Subtype 1

+ € Object 1
» @ Object 2
» € Object 3 Details
» € Object 4 This ic a view of the type "text". :
+ @ Object 5 Relations

@ subtype 2 has subcomponent

© Subtype 3

@ intelligent views gmbh

Add attribute

Relations

Object 1.1
has subcompenent Object 1.2
has subcomponent Object 1.3

is equivalent to Object A

is root object of Subtype 1

Annotations Add relation
Annotations

Text =

A layout detail view adjacent to the tree view with the following sub-configurations: Image view
“Image with label”, text view "Details" and string property "Text", contained in a vertically oriented
layout on the left side. On the right side, a second layout with vertical orientation of properties is
shown.

1.3.4.3. Hierarchy

The configuration type “Hierarchy” displays elements of a Knowledge Graph as a hierarchy in a tree
structure, in which individual branches can be expanded and collapsed.

Either relations or relation targets can be used for work. The hierarchy is structured from the start
element of the view configuration, for which all subordinate relations or objects and their
subordinates must first be determined. After this, the higher-level relations or objects are
determined for each element. This element result set is then shown in the hierarchy.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of

the configuration.

Label A label is only used if this configuration is embedded in another
configuration, e.g. Alternative .

Script for label
Icon

Script for icon

Show parent banner

Do not show detail view

It is also possible to define a label using a script.
Sets the icon for all nodes of the hierarchy.

Returns an element icon as blob to be displayed for nodes of the
hierarchy.

Only relevant for the Knowledge Builder: Banner is displayed.

Per default, a standardized detail view is displayed besides the
hierarchy view which shows the details of the selecetd element.
This option suppresses the detail view from being displayed.

140

Technical Handbook 5.8 - 1.3. View Configuration

Name Value

Restore last expanded nodes If enabled, the last expanded nodes stay expanded for one and
the same context element during the whole web-frontend

session.

Click action Reference to an action that is called when a hierarchy element is
clicked.

Script for visibility Determines whether the whole hierarchy view is visible or not.

Generate subelements without When new subelements are generated in the hierarchy, what
name query their name should be is queried by default. A checkmark here
generates nameless objects without a name query.

Traversal

Structured query (down) Structured query for determining the subordinate element.

Structured query (up) Structured query for determining the superordinate element.

Script (down) Script for specifying a relation or a relation target to determine
the element node of the lower hierarchy level.See example
below.

Script (up) Script for specifying a relation or a relation target to determine
the element node of the upper hierarchy level.See example
below.

Relation (down) Relation half which points downwards.

Relation (up) Relation half which points upwards.

Output up to depth

Sort

Sort downward Controls if sorting is in ascending or descending order. If this
parameter is not set, sorting occurs in ascending order.

Primary sort criterion Selection option for the criterion used for sorting the properties:

e Position: The order defined in the configuration is used
(default).

¢ Value: The content of the attribute or display name of the
relation target is used.

e Script for sorting: The script saved in the attribute Script for
sorting is used for determining the sort criterion.

Secondary sort criterion Sort criterion for properties which have the same value for the
primary sort criterion. The setting options are analogous to those
for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for the

primary or secondary sort criterion.

141

Technical Handbook 5.8 - 1.3. View Configuration

Name Value

Disallow manual sorting By default, the user can reattach elements in the Knowledge
Builder to the schema by means of Drag&Drop. If this option is
activated, this is no longer possible.

KB

Creating elements without If enabled, the menu directly above the hierarchy allows creating

question by name subelements without asking the user for a name of the new
element.

Actions and styles

Actions and styles can be attach for both the entire hierarchy and for the individual nodes. From
version 5.2 or higher, style classes can be automatically assigned using a script.

Display in an application

The JSON representation of a configuration of type hierarchy is only available from version 4.1 or
higher.

~ @ Object 1
~ @) Object 1.1

€ Object 1.1.1
€ Object 1.1.2

€) Object 1.1.3

€) Object 1.
€D Object 1.

M

]

Display in Knowledge Builder

A hierarchy appears in the area on the left in the detailed display of an element. The element is
displayed with a view configuration without hierarchy in the area on the right. This view
configuration must be defined separately and the configuration name of the hierarchy must be
specified under Reference >> Apply in . Alternatively, the sub-configuration can also be specified
directly in the hierarchy under Sub-configuration .

142

Technical Handbook 5.8 - 1.3. View Configuration

L _JOFt2 & & 4

€} Object 1
4) Object 1.1
€ Object 1.1.1
€ Object 1.1.2
€ Object 1.1.3
€ Object 1.2
€ Object 1.3

Notes

Elements are not always represented by their name in hierarchies. It is not possible to display
anything other than the name, or information supplementing the name, directly in the
hierarchy.

The values of all properties that can be filled out for forming the hierarchy are relations.

The individual attributes such as relation - descending can be assigned multiple times.

The relation or relations are determined and collected for each attribute type. If different
attribute types are specified, the subsets are used to form an intersect.

Example - application case
Hierarchies are typically used to represent supertopic/subtopic relations or part-of relations.
1. Relation that forms a hierarchy

The most direct variant. The relations that form the hierarchy are entered.

Relation (down) = has subcomponent

|
o

Relation (down)

Relation (up) = is subcomponent of

I
hY

Relation (up)

2. Structured query that forms the hierarchy

The relations can also be determined by means of a structured query.

Structured query (up) = [Structured query e

143

¢ is subcomponent of

roperty of 5 EiSubtype 1

+
~* isp

3. Script that forms a hierarchy

Technical Handbook 5.8 - 1.3. View Configuration

A script can also be used to collect the relations that potentially form a hierarchy. The current
element is passed to it as a parameter, and it must return a set of relations. Instead of working
on relations, working on elements is also possible.

Script (up) =

[=] JavaScript ene

Script example for relation with internal name 'is SubcomponentOf":

Option a): Using relations

function relationsOf(element)

{

return element.relations('isSubcomponentOf');

}

function targetsOf (element)

{

return undefined;

Option b): Using relation targets

function relationsOf(element)

{

return undefined;

}

function targetsOf (element)

{

return element.relationTargets('isSubcomponentOf');

Please be aware that only the usage of relations or relation targets in one and the

NOTE

same script makes sense; otherwise each hierarchy node will appear twice. The

other part of the script keeps unchanged and returns "undefined".

144

Technical Handbook 5.8 - 1.3. View Configuration

1.3.4.4. Tree

Just like a “hierarchy,” a “tree” is based on the configuration of a hierarchical tree structure. In
contrast to a hierarchy, a tree can also include static nodes. Hence, it is possible to create a tree
without a Knowledge Graph source element. Another difference is that the sub-nodes of a “tree”
can be configured differently whereas all nodes of a “hierarchy” respond in the same way for a
given semantic element.

WOEXE S

= Instances of Subtype 1

m

L FOFP £ X 4
| Context element [Abstract Type] ‘

4 g Static Tree Node - Instance |4 O [Abstract Type]
4 gl Static Tree Node - Instance (I I <) subtype 1
4\ Tree Node Pattern - Instance () 2 4 € Object 1
4 W Instances of [Abstract Type] () - (), 4 @ Object 1.1
N\ Tree Node Pattern - Instan apply to [Abstract Type] € Object 1.1.1
€ Object 1.1.2
d D Object 1.1.3
@ Object 1.2
€ Object 1.3

has subcomponent » € Object 2
.) » € Object 3

» &) Object 4

‘} D » €) Object 5

8 Subtype 2
€ Subtype 3

is supertype of I

N Relation (down)

apply to

m omom

Relation (down) has root object

Relation (down)

Relation (down)

Ieon

W m om m

Transitive

View configuration for tree view Tree view in Knowledge Builder

A tree configuration generally distinguishes two types of nodes:

e Static hierarchy node: Nodes of this type always exist if there is a connection to the root of the
tree. The “context element” relation can be used to optionally integrate the node into a
semantic element.

NOTE The top node of a tree is always static and always invisible.

¢ Hierarchy node patterns: This type can map several nodes for each level. A node is formed for
each relation target that can be reached from an element of the higher-level node. You can set
the property “transitive” to map several levels. You can the property “apply to” to restrict to
which element types the node pattern is applicable. Otherwise the node pattern can be applied
to all elements that fall into the target validity area of the configured relations. As an
alternative to determination via a relation type, sub-nodes can be determined using a
structured query. The structured query begins with the element of the parent node. The
subordinate nodes are determined by the part of the query that is marked with the predefined
identifier “subnode”. If you want to use the “Transitive” option, the corresponding relation in
the query must be marked with the predefined identifier “subnodeRelation”.

The sorting of tree nodes can be configured in the same way as that of the “hierarchy.” However,
this configuration does not globally apply to the tree but each node configuration applies to the

145

respective sub-nodes.

Technical Handbook 5.8 - 1.3. View Configuration

Finally, the image and label displayed can be configured for each node type, either directly or via

script.

Setting options

Name

Configuration name

Label

Script for label

Do not show detail view

Disallow manual sorting

Restore last expanded nodes

Script for visibility

Sort configuration

Sort downward

Primary sort criterion

Value

The configuration name is used for identification and reuse of
the configuration.

A label is only used if this configuration is embedded in another
configuration, e.g. Alternative .

Script that returns a string for the label instead of using the label
attribute.

Per default, a standardized detail view is displayed besides the
hierarchy view which shows the details of the selecetd element.
This option suppresses the detail view from being displayed.

The standardized detail view can be replaced by

NOTE L . .
configuring a customized view.

By default, the user can reattach elements in the Knowledge
Builder to the schema by means of Drag&Drop. If this option is
activated, this is no longer possible.

If enabled, the last expanded nodes stay expanded for one and
the same context element during the whole web-frontend
session.

Script that returns a Boolean value for whether the view is to be
displayed or not.

Controls if sorting of subnodes is in ascending or descending
order. If this parameter is not set, sorting occurs in ascending
order.

Selection option for the criterion used for sorting the subnodes:
¢ Position: The order defined by the Sort order meta property
of involved relations is used

e Script for sorting: The script saved in the attribute Script for
sorting is used for determining the sort criterion.

¢ Value: The display name of the relation target is used.

146

Name

Secondary sort criterion

Script for sorting

KB

Script for window status

Script for window title

1.3.4.5. Properties

Technical Handbook 5.8 - 1.3. View Configuration

Value

Sort criterion for subnodes which have the same value for the
primary sort criterion. The setting options are analogous to those
for the primary sort criterion.

Reference to a registered script that returns the sort key for the
primary or secondary sort criterion. Attention : if there are
several different sub-node configurations, the script is potentially
called with instances of different types and should be formulated
in a correspondingly general way.

Returns a status label for the window footer when the detail
view within the Knowledge Builder is opened in a new window.

Returns a label for the window title when the detail view within
the Knowledge Builder is opened in a new window.

The Properties configuration is a list of individual configurations. The sub-configurations can be
exclusively of the Property type, each of which is linked to an attribute or a relation of a Knowledge

Graph object or type.
Setting options

Name

Configuration name

Label

Script for label

Initially expanded

Script for visibility

Setting options for sorting

Value

The configuration name is used for identification and reuse of
this configuration.

Display name of the collection of properties. If no label is
specified, the string ‘Properties’ is used in Knowledge Builder.

Alternatively, the display name can also be determined via a
script.

If this configuration in included e.g. as a meta-configuration, this
parameter can be used if this is supposed to be expanded
already when opening Knowledge Builder.

The web frontend does not display the affected

NOTE
meta-property if the checkmark is not set here.

Control of the visibility of the properties by a script.

147

Name

Sort downward

Primary sort criterion

Secondary sort criterion

Script for sorting

Display in applications

Technical Handbook 5.8 - 1.3. View Configuration

Value

Controls if sorting is in ascending or descending order. If this
parameter is not set, sorting occurs in ascending order.

Selection option for the criterion used for sorting the properties:
¢ Position: The order defined in the configuration is used
(default).

e Script for sorting: The script saved in the attribute Script for
sorting is used for determining the sort criterion.

¢ Value: The content of the attribute or display name of the
relation target is used.

Sort criterion for properties which have the same value for the
primary sort criterion. The setting options are analogous to those
for the primary sort criterion.

Reference to a registered script that returns the sort key for the
primary or secondary sort criterion.

The views of the configuration of individual property elements are stored in an ARRAY during
output in JSON format and appended with the KEY properties .

Display in Knowledge Builder

The label set in the configuration is displayed prominently. This is followed by views of the

configured properties.

Attributes and Relations

(Attributes and Relations)

Prominent representation
of the label

ID

Image small
Name

Short description
Synonym

is similar to object

is used in combination with object

Note

= ‘ 135448912456

relationPlusComponent.png

Object 1

This is an object of the subtype 2. It carries individual properties inlcuding synonym,
Instance 1

Object 1.1

Object 4.5

Add attribute or relation

Meta properties are appended using the same process.

148

1.3.4.6. Property

Technical Handbook 5.8 - 1.3. View Configuration

The Property view configuration can be used to define individual attributes or relations to be
displayed in a list of properties. It is also possible to use an abstract property that groups a set of

properties.
Setting options

Name

Configuration name

Label

Script for label
Property

Query for virtual properties

Script for virtual properties

Display type

Value

The configuration name is used for identification and reuse of
this configuration.

Display name of the property. If no label is specified, the name of
the property type is output.

The label can be determined by means of a script specified here.
Link to the property type that is to be displayed.

Alternative to ‘Property’: Instead of defining the porperty, a
query can be used which returns the needed kind of property.
This comes in handy when the property is not directly assigned
to the object.

Alternative to ‘Property’: Script for calculating the values to be
displayed.If you set the “ Automatic updates ” meta flag, the KB
is automatically updated when a value on which a calculation
was based is changed. Caution: if you set this flag, this can have
a significant effect on performance, depending on the script.

Available in two cases:
1. The property is a relation: Selection option for the display of
the label of a relation target. This setting is only available if

the Relation target view setting has the value Choice or
Relation structure .

2. The property is a file attribute: Selection option for the
display of the value in a file attribute.

Selection options:

¢ Icon (topiclcon): Icon of the relation target / file as an icon
¢ Icon and string

¢ String (name attribute: Name of the relation target / name
of the file

149

Technical Handbook 5.8 - 1.3. View Configuration

Name Value

Show filter Only relevant in the view for editing objects: This option can be
used to create a prompt that decides whether this configuration
is displayed. The prompt is filled with the object of this property.
The property is displayed for editing only if the prompt receives a
result.

Show new properties Only relevant in the view for editing objects.There are following
options:

e never: If this option is set, the respective property is only
shown if already assigned. If the property value of a shown
property is erased without replacement by another value,
the property edit line is faded out. In order to show new
properties, this is done by clicking on the button "Add
attribute or relation".

¢ if not available yet: If this option is set, the property is
shown only if the property has not been created yet. This
makes it quick and easy to complete and less easy to forget.

Name = | Object 1

Synoenym

¢ always: If this option is set, another property is shown in
addition to the property of the same type, so this can be
filled quickly and conveniently. It must be permitted for the

property to occur multiple times.
is similar to object = Object 1.1
is used in combination with object = Ohbject 4.5
is used in combination with object = ﬁ

If no option is chosen, the behaviour equals the
"never" option. The formerly available setting

NOTE "Show additional properties" from previous i-
views versions (5.3 and earlier) is incorporated
into the option "always".

Configuration for embedded Specification of the configuration to be used to display meta
meta properties properties. The meta properties are embedded, i.e. the property
is displayed after the value. The name of the property type is not

displayed.
Name = | Object 1
ID = 135448912456 Jan 7 2020

150

Name

Configuration for
properties

Click action

Script for visibility

meta

Technical Handbook 5.8 - 1.3. View Configuration

Value

Specification of the configuration to be used to display meta

properties. The meta properties are displayed under the value of
the property. For display in the web front-end, the properties
with the meta properties must be set to “initially expanded.”

|

Name = | Object 1
D = | 135448912456
changed at = |Jan 7 2020

The conditions under which the property is displayed can be

defined via JavaScript.

Relation target (only available for relations)

Relation target view

Table

Relation target filter

Relation target type filter

If a relation is chosen as the property, this parameter can be
used to define the view of the relation targets:

Choice: All relation targets are listed and displayed with a
preceding checkbox. In case of existing relations, the
checkbox is equipped with a tick.

Drop down: This setting is only useful if the relation may
appear only once. A drop-down list is displayed showing all
relation targets available for selection.

Relation structure: All relation targets are listed in the left
area, rather like a hierarchy. The right area then shows the
details view for the selected relation target. This view is only
effective if the configuration is directly subordinate to a top-
level configuration.

Table: Table view of the relations. The table view can not be
applied in the Knowledge Builder. For the table view, the
Table setting must be filled in.

Table (relation targets): Table view of the relation targets.
This table can be applied in the Knowledge Builder.

Only available if the Relation target view has the value Table or

Table (relation targets) , in which case it is obligatory. The table
configuration specified here determines which properties of the
relation targets are to be output in table form. For the relation

target to be displayed, at least its name must be configured in

the table. For configuration of a table, see the Table chapter.

Query for filtering the relation targets to be shown.

Query for filtering the relation targets by their type.

151

Name

Script for relation target label

Show relation target

Display

Tooltip

Placeholder text

Script for placeholder text

Script for tooltip

Sort

Script for sorting

Sort downward

NOTE

Technical Handbook 5.8 - 1.3. View Configuration

Value

Script which returns a dedicated string for the relation target
label. If not used, the primary name of the relation target is
shown as label.Example: A person belongs to a department with
the name ‘Dpt. IV’. Using a suitable script, it is possible to change
the output for the person from ‘Dpt. IV’ to ‘Darmstadt city
administration, Dpt. IV".

Only available for relations. By default only the name of the
relation target is displayed. When you click the name, the
relation target opens in another editor. But if you choose the
Show relation target option, the relation targets are shown
directly, which means not just their names, but also all their
properties.

Tooltip which appears when hovering the mouse pointer over
the relation target.

A placholder text which is shown in light grey when the relevant
string attribute has no attribute value yet.

Script which returns a string for the placeholder text instead of a
statically configured placholder text.

Script which returns a string for the tooltip instead of a statically
configured tooltip.

The script is used to determine a value for sorting. See the
example below.

Controls whether the properties are sorted by name in
ascending or descending order. If this parameter is not set,
sorting occurs in ascending order.

Options either can be set by defining their value or, if available, by an equivalent

script. Option value and script cannot be used at the same time.

Configuration of a property

A property can only be configured as part of a list of properties. It is acceptable for the list to

contain only one property.

152

Technical Handbook 5.8 - 1.3. View Configuration

|_RORY2 & B 4 v

I Instances of Subtype 2
4 W Attributes and Relations Configuration Menus Styles KB Context
H Mame - ‘ ‘ n

Configuration name
] Property - Instance

» Label

0 |

Script for label

bookmark identifier

(Property | .?l-)
Query for virtual properties = Choose see
4 Script for virtual properties = Choose P

In this example, the properties view configuration already contains the “Name” property. A second
property is created by selecting an attribute or a relation for the entry “Property” (marked in
orange).

Assorted property display for an object

If an object has several properties of the same type, they will be displayed in alphabetical order by
default. If nevertheless the display order of the properties needs to be different (e. g. in order to
emphasize preferences for synonyms or for forenames), a dedicated metaattribute can be attached
to each property.

The sortKey attribute can be displayed for editing purposes by configuring a meta properties view:

Attributes and Relations

Name = | Object 1
4 Synonym = |Topic1
sortKey = |1
4 Synonym = |Element 1
sortKey = |2
4 Synonym =
sortKey =

In case of the Synonym attribute, the value 2 is entered for sortKey , so this value

NOTE
is temporarily shown at the end of the list.

For this purpose, an attribute with the internal name ' sortKey' needs to be defined which can be
applied to each individual property:

153

Properties of the type
Name

Color

lcon

is property of

Definition
Value type

Internal Mame

Defined for

Technical Handbook 5.8 - 1.3. View Configuration

sortkey

sortKey

Add attribute or relation

| Property

Integer

‘ sortl(a

Qi

The sortKey attribute is then referenced by a script for sorting which is attached to the property

view configuration:

154

Technical Handbook 5.8 - 1.3. View Configuration

Synonym

Configuration Styles KB Context

Configuration for meta properties = Properties - Instance

Click action = u
Script for visibility = Choose see
Relation target
Display

» Tooltip =

P Placeholder text

Script for placeholder text = Choose b
Script for tooltip = Choose e
Sort
Script for sorting C = [E sortkeyScript) see
Sort downward = [v
Example of a script for sorting :
function sortKey(element)
{
if (element instanceof $k.Property)
{
var attribute = element.attribute('sortKey')
if (attribute)
{
return attribute.value();
bo
¥
return undefined;
}
1.3.4.7. Edit

This configuration type is used to make attributes and relations of a Properties configuration

155

Technical Handbook 5.8 - 1.3. View Configuration

editable. For this purpose, it is assigned to the relevant Properties element at a higher level. Next to
a button for saving changes, a Delete button is displayed next to every property where this is
possible.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of
the configuration.

Label A label is only used if this configuration is embedded in another
configuration, e.g. Alternative .

Script for label

Edit mode switchable If this option is selected, the properties are first displayed only as
a normal list. However, a switch is offered as an addition, which
can be used to switch between the normal view and the edit
view.

Only custom buttons If this option is set, the Save button is not displayed.

Script for visibility

1.3.4.8. Table

Tables can be used as a sub-configuration for displaying results of queries of the configuration type
“Query,” or as a separate configuration for displaying the object lists in the Knowledge Builder.

A table lists specific objects, properties or subtypes of a specific type. Whether all objects,
properties or subtypes, or only a selection, is displayed, can be managed using the input in the
heads of the columns. The values entered are used to execute a structured query according to
suitable objects, properties or subtypes and display the result as a table. Moreover, in the case of
object lists, a new object, a new property value or a new subtype can be generated with the
properties that were filled in after entering values in the heads of the columns.

A subcomponent of the table configuration is the column configuration . This, in turn, contains a
column element or a menu cell . This layout is used to separate properties relevant to the column
(such as order and name of the column in the table) and to assign which contents should be
displayed in the column. Column elements , in turn, allow the assignment of properties, script
modules and structured query modules.

Since version 5.1, not only column configurations , but also additional tables can be added to a
table configuration. This provides the option of summarizing frequently used columns in a table
configuration and add them to another table in full. The intermediate tables are removed when
determining the overall table. There is only one level of columns.

156

WO R

Wii Table - Instance

Configuration Sort Table Rows
Configuration name

» Label
Click action
Script for label
Without initial sorting
Sort order
Without column filtering
Page size
Label for empty table
Script for visibility

Restore last column filtering/sorting

KB

Technical Handbook 5.8 - 1.3. View Configuration

Context

Choose ese
O
O

Choose san
O

The hierarchical display of all sub-configuration elements in the table configuration exhibits a menu
line that is assigned with actions as follows:

*
\ 4

NOTE

Create and link a new subelement.

Search through all potential subelements that
already exist and link (= add) the slected
subelement.

Delete link again. When this occurs, the
subelement is retained as an object and can be
used again in other configurations.

Delete complete subelement selected. If used in

other configurations, a warning will appear
before deleting which highlights all existing links.

Move selected subelement up in the list.

Move selected subelement down in the list.

The availability of an action depends on the currently selected table element in the

hierarchy on the left side.

Example of a simple table configuration

For a list of objects, certain properties should appear in a table. The name attribute used to
represent the objects in the first column should not be forgotten.

157

Technical Handbook 5.8 - 1.3. View Configuration

QL X1 ¥

Wi Instances of Subtype 2
4N i Name

| £ Name
4NiD

Vi

Configuration name

IO TIOT STOW

Do not create

Do not search

Emphasis
Mapping element
Content
Property

Use hits

Configuration Menus Styles Context

\i ’
-l
-
Instances of Subtype 2 Subtypes Schema

BoE- -

Name D
135448912456
8941119

Object 1
Object 2

Name

Setting options (table)

Name

Configuration

Configuration name

Label

Click action

Script for label

Without initial sorting

Sort order

Without column filtering (VCM)

Page size (VCM)

Value

The configuration name is used for identification and reuse of
the configuration.

Defines a static heading for the table.

Determines an action which is performed when clicking into a
table row.

Script which returns a string as substitute for the label.

No sorting occurs. Default process: the first column is used for
sorting.

For instance lists in the Knowledge Builder, each table
configuration is represented in a separate tab. By specifying an
integer, the user can control at which position the tab is
displayed, provided that several tables are configured for the
same instance type or for the same folder structure element. The
tables are sorted using two criteria, which are checked in the

following order:

1. Attribute Sort order specified: If yes, then this is used as the
sort criterion. If no, then the configurations for types are
shown first, followed by those for objects.

2. Sorting by display name

Suppresses the indication of column filters in the web frontend.
In the Knowledge Builder, column filters are always displayed.

This specifies how many rows (= search result hits) should be
display on one page. Default value: 20

158

Name

Label for empty table (VCM)

Script for visibility (KB)

Restore last
filtering/sorting (VCM)

Structuring relation

Sort
Column

Sort priority

Sort downward

Table

Tab "Menus"

Tab "Styles" (VCM)

Rows

Tab "Styles"

column

Technical Handbook 5.8 - 1.3. View Configuration

Value

A label configuration which is displayed instead of the original
label when the table is empty.

Script which returns a Boolean for whether the table is visible or
not. For instance lists in the Knowledge Builder, the whole tab
will not be displayed if visibility is set to false. In the web
frontend, this script has no effect.

Restores the recently selected filtering or sort order for the
duration of the web frontend session.

If this table configuration is embedded in another table
configuration, all columns in this table refer to the relation
targets of the configured structuring relation. If for example the
outer table lists persons and the inner table has "owns" as
structuring relation, all columns of the inner table refer to the
things that a person owns. The configured properties of the
relation targets (e.g. all category names of all owned things) are
accumulated in the column. If a column element of the inner
table determines its values by script or query, the script or query
is executed once for every relation target and the results are also
accumulated in the column.

Column configuration for which the sorting takes effect.

An integer value determines the order by which table column
values the assortment of the table rows will be influenced first.

Example: If an ID is more important for sorting instances than
the primary name, the column for ID gets the sort priority 1 and
the column for primary name gets sort priority 2. A higher sort
priority overrides the sort direction ("Sort downward") of
another column.

Determines if the values are sorted upward (alphanumerical
order) or downwards.

For the Knowledge Builder, the menu actions at the top of the
table can be configured here. For more information, see chapter
"Actions for the Knowledge Builder".

For the web frontend, different styles can be applied on the
whole table at once.

When using a table for the Knowledge Builder, styles can be used
for rows of the table for the purpose of character formatting.

159

Technical Handbook 5.8 - 1.3. View Configuration

Name Value
KB
Automatic search e Automatic search

¢ No automatic search: No automatic search is performed.
e Automatic search up to threshold (system settings)

Creating elements without When this option is enabled, new elements can be created by

question by name clicking on the button "New", without a dialog asking for a name
before creating the element. As an indication for the missing
name, a period "." is shown as name instead.

Script for window title (KB) A script can be used which returns a string for the window title
whenthe table is opened in a separat window.

Script for windowstatus (KB) A script can be used which returns a string for the bottom line of
the Knowledge Builder application or the window (if the table is
opened in a separate window).

Without inheritance If the table is used for instance lists in the Knowledge Builder,
only the instances of the currently chosen type are displayed,
without instances of subtypes.

Context

apply to Restricts the context to the instances of a given element type.

apply to subtypes Restricts the context to the subtypes of a given element type
(instead of instances).

apply in Application context for within the view is applied. For the table
to be displayed within the Knowledge-Builder at all, the
application "Knowledge-Builder" must be selected here.

Usage Within the section "Usage", the "Context of" relation reveals for
which view the current element is used as application context. It
is the counter part of the relation "apply in" of the other
respective element.

Table of Indicates the superordinate view configuration element within

which the table is used.

Actions and styles

Actions and styles can be defined for the entire table, as well as for rows.
Use

The Context tab specifies where the table is used.

The object type specified under Apply to is the type to which the table should be applied. Tables
can be used again in other view configurations. If the table module is a different view configuration,

160

Technical Handbook 5.8 - 1.3. View Configuration

this is displayed under [inverse] Apply in .
The property Apply in refers to an application. Several links are possible.
Examples:

e If the table to the right in the main window in the Knowledge Builder is to be used by the folder
structure during navigation, then the table configuration must be linked to the corresponding
folder structure element.

e If potential relation targets are displayed as tables in the Knowledge Builder, then the table
must be linked with the Knowledge Builder application.

Tables / Object lists in the Knowledge Builder

To configure the way objects or types are displayed in a table in the Knowledge Builder, the Details
tab contains the section View configuration = Instance/Type - Object list next to the respective
type. Creating and maintaining the table configuration is explained using the objects of Subtype YZ
as an example.

Instances Subtypes Schema

Subtype YZ

Overview Details

Type " View configuration : Instance : Object list : Subtype YZ

Definition
4 Schema definition

Instance Mame Type Context Type
Type

4 View configuration

Instance Table Objects (Type based folder structure) Knowledge Graph

4 |nstance
Details
Object list

4 Type
Details
Object list

No table configuration has yet been linked with this type. The greyed entry shows a standard
configuration which is inherited from the upmost type "Knowledge Graph" of the type hierarchy by
default. By clicking on the New button, a new, blank configuration is generated here. The
configuration can then be selected and be edited as needed. As soon as the application context has
been specified (e. g. "apply in: Knowledge Builder"), the configuration is applicable after updating
the view configuration.

161

1.3.4.8.1. Column configuration

Technical Handbook 5.8 - 1.3. View Configuration

As mentioned before, column configurations contain properties used to define the display and
behavior of the column in the table. The column is only displayed once properties are configured in
the column elements contained in the column configuration.

Setting options

Name

Configuration

Configuration name

Label

Script for label

Bookmark identifier

Column width (%)

Standard operator

Search string

Do not show

Mandatory for query

Not sortable

Script for input field
preprocessing

Mapping element

Operators

Value

The configuration name is used for identification and reuse of
the configuration.

Displayed in the caption of the column. Please note that the
label is used for display in the table, but the column
configuration also contains the configuration name attribute.
This name is used only to manage and find the configuration
internally and is not displayed or output.

As an alternative to the static label text, a script can be used
which returns a string for the label.

The bookmark identifier is used to represent a query parameter
in forms of an expression within the web frontend URL. It can be
used for query views and table column filters and synchronizes
parameter value and URL in both directions.

A percentage value is expected here for the column width (so for
60% you have to enter “60”).

The operator used initially in the search for a search text.
Preset search text for the column filter.

If this value is set, the complete column is hidden. This is used,
for example, to sort a search result using hit qualities without
displaying them.

If this value is set, the column must be filled out for the search to
be permitted.

Prevents the table from being sorted when clicking onto the
column header.

For preprocessing any search text input in the column filter
before passed on as parameter for the column element query, a
script can be used.

162

Name

Configuration name

Symbol

Key

Label

Modifier

Menus

Technical Handbook 5.8 - 1.3. View Configuration

Value

The configuration name is used for identification and reuse of
the configuration.

Symbol that will be shown in the dropdown selection of the
column filter.

Operator designator that defines which kind of operator is used
(e.g. "word" or "containsPhrase"). See the operators explained in
the chapter about runtime generated queries.

Tooltip that will be shown in addition to the symbol in case of
mouse-over.

Name of the indexer string filter.

For the column, a menu can be configured for the web frontend which is displayed besides the
label text at the label (header) of the column.

Styles

For columns, there are following style settings which can be applied within the view configuration

mapper:

hideFilters

hideLabel

Context

Sub configuration of

Sort order

Sorted column of

Sort priority

Example

Suppresses the column filters from being displayed in the web
frontend.

Suppresses the column label from being displayed in the web
frontend.

Specifies for which table configuration(s) the column
configuration is used.

Specifies at which order the column is arranged within the table,
compared to another column. If there is more than one column
with the same sort order, the columns are ordered alphabeticaly
by column label.

Indicates that the column is used for sorting the table content.

Specifies the sort priority of the column used for sorting,
compared to other columns used for sorting.

163

Technical Handbook 5.8 - 1.3. View Configuration

WORX2 S .

Vi Instances of Subtype YZ

| i Name p

Configuration Operators Menus Styles Context

Configuration name

» Label = |Name
bookmark identifier =
Column width (%) = |15

Operator - Instance

Standard operator

Standard operator

Search string

Do not show =0
Mandatory for query =0
Not sortable =0
Script for input field preprocessing= Choose S

Mapping element

Column configuration for the Name column

1.3.4.8.2. Column operator

The column operator configuration determines which comparison operator can be used in the table
view when entering a term into the table filter. In most cases, operators like "equal”, "contains
phrase" or "contains string" might be needed.

For example, the difference between "contains phrase" and "contains string" is as follows:

e " contains phrase ": When entering several words (= phrase) into the filter, only content with
the same word order will be found

e " contains string ": When entering several words into the column filter, content matching an
arbitrary combination of the entered words will be found

164

Name

Technical Handbook 5.8 - 1.3. View Configuration

Synonym

Graph Krnwledge|

€ =

Name
Graph Knowledge

Knowledge Graph

Contains phrase: word order sensitive

Synonym

Knowledge Metwaork

Contains string: word order insensitive

This allows to use different filtering behaviors when filtering large tables to narrow down the search

results to specific content.

For all filter operators, a dropdown provides a selection of all operators defined for the respective

column:
Standard operator ﬁ ﬁ Operators
Mame l Synoflym
Knowledge Graph €= Knowledge Network -

Met-Navigator

View configuration mapper

m

aph

Equal ewconfiguration mapper

1
]

Label

If the table is used within the Knowledge Builder, a context menu is provided additionally for

selecting or removing effective operators:

165

Technical Handbook 5.8 - 1.3. View Configuration

Instances of KG Element Subtypes Schema — ﬁ D
- S
/.
I U] &
Name By Copy Synonym
@ Paste
Knowledge Graph >0 Knowledge Network
) eset
petinaviGatoy = Operator > &' contains phrase Siaph
View configuration mapper € Contains string Viewconfig mapper
&« Equal

Creating new column operators
New column operators can be created as follows:

Precondition: the respective column element needs to have defined its property to be shown.

Since the application of operators depends on the value type of the property to be
filtered for and on the indices, the preset operators are only available if the
property of the column element has been defined. If string operators are needed,
a correctly configured index including index filter is required.

NOTE

Q After having specified the property of the column element, select the column itself again.

@ Click onto the search button: a selection of operator templates will be shown, each applicable
on the value type of the property. Operator templates shown with the appendix "Create new"
indicate that they are not used until now (no instance has been created from the template).

e Select the needed kind of operator.

@ The "Operator" tab shows the newly created and assigned operator. Each operator listed here
will be available for the column filter. Operators can be reused for other table columns.

166

WOLEXE S

N Instances of KG EHement

A} lllmeo
o
| _Fers: & % 2
W Centains string (string t
Configuration
) corfiguration name
lcon
A 4 ey
Please choose
contains phrase (string t « w) &
Contains pression] (string to (textFilter]) (Create new)
() Contoins string (string to words fite (extFier)
Equal (Create new)
Exactly equal (Create new)
Greater than (Create new)
Grester/Equal (Create new)
Less than (Create new)
Less/Equal (Create new)
not equal (Create new)
| (Dejselect all
[o] o)

Technical Handbook 5.8 - 1.3.

View Configuration

Column @

\ Contains string (string to wards filter (textFilter))

[mm

[sores

[Cnmains string

Contains string

\
\
[Enthalt Zeichenkette
\

string to words filter (textFilter)

e For the default operator, switch to the "Configuration" tab and select one of the operators:

L _Fert £ 2 2

2 Instances of KG Blement
41§ Name
Vi Name.

Configuration name
» Label
Script for label

Bookmark identifier

Column width
Srands
Search string
Do ot show

Mandatory for query

Operator '. =
EBlse

Configuration Operators Menus Styles Context

Womomowowmomowmomom

o
o

' &
Query Name/Label Part of (name/label) apply to apply in & .
Contains string (string to Contains string (string to Column - Instance
Equal Equal Column - Instance :
v
Configuration name | Equal -
lcon equalpng
key equal
» Label :Equal
Operator of Name
$ Elements [ox]| Crestenew | Conead |

Within the Knowledge Builder, the standard operator will not be shown in the

NOTE
in the context menu.

respective column filter, but it is active when no other operator has been selected

Operators also can be defined by yourself. For the operator, following properties can be specified:

167

Property

Configuration name

Icon

key

Label

modifier

Operator keys

Operator name

containsPhrase
covers

distance

equal

equalBy
equalCardinality
equalGeo
equalMaxCardinality
equalMinCardinality
equalPresentTime
equalsTopicOneWay
fulltext

greater
greaterOrEqual
greaterOverlaps

greaterPresentTime

Description

Technical Handbook 5.8 - 1.3. View Configuration

Value type

The configuration name is used for identification String

and reuse of the configuration element.

The icon which will be shown in the filter and its Blob

dropdown selection.

Without further plugins, vector

images like *.svg cannot be

NOTE used

elements

configuration

within the

Knowledge Builder.

The operator key for the operator. See table String

below.

Text for the tooltip which will be shown at the String

symbol in case of mouse-over.

Name of the index filter.

Description

Contains phrase
contains
Distance

Equal
Corresponds to
Equal cardinality

Equal (geo)

String

Short term

Cardinality smaller than or equal to

Cardinality greater than or equal to

now (present)

filter with

Contains string
Greater than
Greater/equal
Overlaps from above

after now (future)

168

Operator name

isCoveredBy
less
lessOrEqual
lessOverlaps
lessPresentTime
notEqual
overlaps

range
regexEqual
regexFulltext
unmodifiedEqual

words

Modifiers

Description
is contained in
Less than

Less/equal

Overlaps from below

before now (past)
Not equal
overlaps

Between

Regular expression

Technical Handbook 5.8 - 1.3. View Configuration

Short term

Contains string (regular expression)

Exactly identical

Contains string

For using operators like "Contains phrase", the respective operator key like "containsPhrase"

requires a modifier which depends on an index filter.

Index filters are used within an index. The index configuration is done in the global settings of the

Knowledge Builder: Settings > Index configuration.

Within the configuration of the index, the name of the assigned index filter can be specified and

copied for using as modifier:

169

EE

Personal System Index configuration

Technical Handbook 5.8 - 1.3. View Configuration

&

Index filter A Available indeces: [[] Jobclient is to load index into main memo
= Name filter identifier Type Status “ | Create new
fullText [string to words filter] string to words filter Pluggable indexer active "
Metrics Metrics Must be synchronized Delete
System System relation index active
topic->value Pluggable indexer active
value->topic Pluggable indexer active . Assign
value->topic (unique) Pluggable indexer active .
Synchrenize
¥
*# Indexer configuration —] Merge
Addable index modules
>
0K
Add Index module
Assigned index modules
Distributor by property type A
Index value/target to element
. — ' fullText *
.\'lh.leftllg!‘ to element by property type: string to word: Remove last index module

string to words filter (textFilter) || selectfilter | [filter identifier
Indexer Name
fullText Abort oK

‘____._.____EiEName

New index filters are defined within the main settings of the Knowledge Builder: Settings > Index
configuration > Index Filter

Personal System

Index filter

Indexes

Index configuration

textFilter

[ERN

70

1.3.4.8.3. Column element

Technical Handbook 5.8 - 1.3. View Configuration

A column element is used to assign the content that a table column is supposed to show, and how
that should take place. You can either specify properties, such as attributes and relations, that are
defined by the semantic objects, or you can use structured query modules or script modules.

Setting options

Name

Configuration

Configuration name

Do not show

Do not create

Do not search

Emphasis

Relation target view

Content

Property*

Structured query element*

Value

The configuration name is used for identification and reuse of
the configuration.

Use this Boolean attribute to control whether the values of the
selected property should be displayed. By default all properties
are displayed.

This attribute controls whether this property is supposed to be
created when a new object is created if the relevant input field in
the column contains a value. By default new properties are
created.

Here you can specify that the configured property is not
transferred to the search. This means that this property is not
used to search for the entered search values.

If all column elements in a column are set to
NOTE "Do not search", this has the same effect as "Do
not show"!

Here you can provide formatting specifications for the display of
values; currently, the only available option is underline .

Currently only the Drop down alternative is available. If you
select it, the possible values that can be entered for this column
for filtering in this table are compiled from the possible relation
targets as per the schema into a drop-down list, so that a
possible value can be specified quickly. This is recommended for
manageable amounts of potential relation targets.

NOTE This parameter is only available if a Relation
type property was selected.

Properties in this group determine the content of the table cell.
Most of the following options are mutually exclusive, indicated
by a *.

Link to the property type that is to be displayed.
A structured query can be used to determine the property.

171

Name

Script*

Mapping element*

Show name*

Quality*

Show size

Use structuring relation

Technical Handbook 5.8 - 1.3. View Configuration

Value

A script can be used which returns the cell values to be displayed
(a property, hit, element or primitive value).

Show the name of the row element, independently of which
attribute type is defined as name.

For the web frontend, this option displays a bar showing the hit
quality incl. percentage value.

Instead of the properties that are determined by any of the
above methods, show only the number of properties.

Modifies all of the above determination methods such that they
refer to the structuring relation that is defined for this embedded
table instead of the relation target (for structuring relations see
the section on general table configuration).

It is possible to define multiple column elements for a column configuration. This makes sense, for

example, if multiple attributes are to be considered in the search, for example the Name and
Synonym attributes, but only one of them is to be displayed.

Example

The Name attribute is configured in the first column element of the Name column configuration.

@ LiX2S

Wi Instances of Topic
4\ Name

\ } Name

Configuration Menus Styles Context

MName for objects

Configuration name

Do not show =04

Do not create =04

Do not search =04

Emphasis = -
Mapping element =

Content

Property = MName

The Topic belongs to relation is configured in the column element of the second column.

172

Technical Handbook 5.8 - 1.3. View Configuration

Yo, og X9 : Column element
N topic belongs to
i Instances of Topic

4\ Name Configuration
N i Name

4 1| ! topic belongs to

V' topicodonos o Do ot show =0

Configuration name

mn
>

Do not create =0

Do not search =0

Apply to relationtarget O

Emphasis = | A |
Relation target view = | Drop down v | |Z|
Mapping element = | |
Content

Property = topic belongs to

The transitiveRelationalChainUpwards structured query module is configured in the column
element of the third column.

. p og x f ‘ Column element

transitiveRelationalChainUpwards

¥ Instances of Topic

Emphasis

Mapping element

“ . # Name Configuration

N { Name) — .

~ Configuration name = |

4 | £ topic belongs to

\ ¢ topic belongs to Do not show =0
‘.!Tspartof Do not create =00

FEA—————

Do not search =0

Content

Structured query element =P transitiveRelationalChainUpwards see

Related structured query:

173

Technical Handbook 5.8 - 1.3. View Configuration

+ = ¥ name (Parameter is not set)
O\ Attribute He ﬁ Value = @ name A-=a[f

To make it possible to adopt values from the input field of the column, the structured query must
have configured parameters. Multiple parameters can be applied, all of which are assigned the
same value when the structured query is evaluated.

This is different from other cases in which the structured query is used. Normally
NOTE the results are determined by the initial object (in this case “Topic”). In this case,
the results are determined by the objects or properties to which the parameter is

attached (in this case the name attribute).

Unless further changes are made, the value displayed in the column is the value of the attribute
used for filtering. If the displayed value does not result from the attribute used for filtering, there
are two options:

e The “ renderTarget “ identifier can be attached to relation targets. Objects marked in this way
are displayed in the table as the column value. “renderTarget” also has the effect that, during
output via the JavaScript API, the properties relating to display are included in the output as a
link.

e The identifier “ renderProperty “ can be attached to attributes. Properties marked in this way
are displayed in the table column as the column value.

If the search module is not used for filtering, the element to be displayed must be determined by
means of a manually defined parameter or by means of predefined parameters like
renderTarget/renderProperty!

The structured queries that can be included in the module of the column element can be selected
from a list of structured queries that have already been registered, but it is also possible to create
new structured queries for exactly this module, which includes the allocation of a registration key.
The Do not create property does not affect columns that have been assigned a structured query
module.

A script module is mapped to the fourth column

174

Technical Handbook 5.8 - 1.3. View Configuration

| JOFSS & X 2 .

i Instances of Topic

4\ Name Configuration Menus Styles Context
N i Name _ _
.) Configuration name = |
4\ ¢ topic belongs to
\ ¢ topic belongs to Do not show =0
4\ fis part of Do not create =

\ ¢ transitiveRelationalChainUpwards
.) Do not search =
4\ ¢ has responsible person

\ £ JavaScript Emphasis = | - |
|

Mapping element =

Content

Script [=] Java Script see

The aim is to display the persons responsible for the objects to which the topic listed in the table is
linked by means of Topic belongs to . As with the structured query, it is possible to select the
assigned script from a list of registered scripts or to create (and register) a new one in the dialog.
The script editor opens when you click the script module name.

/*

* Returns matching elements for column search value "objectListArgument"
* Note: "elements" may be undefined if no partial query result is
available.

* Return undefined if the script cannot provide any partial result
itself.

*/
function filter(elements, queryParameters, objectListArgument) {

return elements;

// Returns cell values rendered as topics for the given element
// For cell values rendered as Hits, use renderHits() instead
function renderElements(element, queryParameters) {
var result = new Array();
var firstTargets = element.relationTargets(“isTopicOf”) ;
if (firstTargets.length ==) { return result ;
}
else {
for (var i = @; i < firstTargets.length; i++) {
var secondTargets = firstTargets[i].relationTargets(
“hasResponsiblePerson”);

175

Technical Handbook 5.8 - 1.3. View Configuration

for (var j = @; j < secondTargets.length; j++) {
result.push(secondTargets[j].name());};
e
b5
return result.join(', ');

In this case the language of the script module is JavaScript. Two parts have to be maintained here:
the upper part is used to filter all elements in the table on the basis of the objectListArgument value
entered in the column, while the second part specifies how the value to be output for an element is
calculated. This first part has not been described as yet. A code pattern is added to both parts
during creation, and it can be built upon during creation.

If KScript was selected as the language in the script module for controlling the output of a column,
the selected (registered) script must provide a return value for the column for every object that
forms a row.

As KScript is in principle designed for only one output, the following convention has been reached
for filtering:

If the selected script contains a function named objectListScriptResults and a declared parameter,
this function is called with the argument of the corresponding search input in order to return the
set of matching objects. The function is called as the initial object on the root term or the former hit
list — depending on the best way to resolve the search. To make this version truly efficient, it is
recommended to evaluate the search inputs accordingly and use the result to call a registered
structured query in order to forward its result to the object list.

1.3.4.9. Query

The user can use the view configuration element “Query” to configure query options for the
Knowledge Graph. The query can either be a predefined query with parameters, or be a search field
input screen for the user.

The “Query” can be selected as a sub-configuration of an alternative or a layout . Any type of query
is obligatory here, the results of which are displayed. Searches for user inputs can also be
configured; instead of the configuration element “Query” (object configuration), the configuration
element “Search field element” is used for the view configuration. Examples of the panel
configuration for the web front-end can be found in chapter 3 “ViewConfiguration Mapper”.

When a search is to be configured for the web frontend containing facets, then the functional chain
should be observed in the case of panel influencing: Query or Search field element -- Facet -=
Search result.

Setting options

176

Name

Configuration name

Label

Script for label

Bookmark identifier

Table

Script for table configuration

Query

Script for visibility

Setting options for a query

Technical Handbook 5.8 - 1.3. View Configuration

Value

The configuration name is used for identification and reuse of
the configuration.

A label is only used if this configuration is embedded in another
configuration, e.g. Alternative .

The label can, alternatively, be determined using a script.

The bookmark identifier is used to represent a query parameter
in forms of an expression within the web frontend URL. It can be
used for query views and table column filters and synchronizes
parameter value and URL in both directions.

A table configuration is specified here which is used to display
the search results.

The table can also be determined using a script.

A search can be selected here that is executed as soon as the
configuration element is displayed. The semantic object, for
which the view configuration is displayed, can be used as an
accessed element in the query.

A script can be used to control whether the configuration
element should be displayed.

The following parameters are maintained as meta properties for a query .

Name

Parameter name

Value

Specifies a parameter name that is to be used in the query.

Setting options for a parameter name

The following parameters are maintained as meta properties for a parameter name :

Name

Script for value determination

Script for parsed value

Value

The script with the function parameterValue is used for
determining the search value for the specified parameter name.

177

Technical Handbook 5.8 - 1.3. View Configuration

Name Value

Value determination Specifies the value determination path.

e Script: The value is determined from the script and must not
be overwritten by the user.

e Script, overwritable by user input: The script determines
the value. The user may overwrite it.

e User input : No script evaluation. User input only.
Value disposition
Type xsd-type
Label During output to JSON, this value ends up in label.
Bookmark identifier
Tooltip
Query for proposed values
Script for proposed values

Sort Order

Display in an application

Query results are output in a table by default.

a Person A

user1@iv.com

Mechanics engineering

a Person B

user2@iv.com

Electronics engineering

a Person C

user3@iv.com

IT Management

In this example, query results are output in the web frontend as a table view “medialist” render
mode style. The “medialist” render mode converts the typical table view into a sizable list with an

178

Technical Handbook 5.8 - 1.3. View Configuration

icon and link to the objects. Additional properties of the object can be specified by means of further
column elements (in this case, the email address as an attribute and the profession as a relation
target of persons).

Instead of using the individual configuration element "Query" for the Web-Frontend, searches can
be split into the separate configurations "Query" and "Search result view".

Display in Knowledge Builder
The results of any query are always shown in an object list in the Knowledge Builder.
Example:

VORXEE |5

™) Instances of Person

" :
» U Details Configuration Extended KB Menus Styles Context
4] Knowledge and Skills) - =
: Configuration name =
t‘] Profession
» Label = | Profession
4 Query = [Structured query s
4 Pgrameter name =
Script for value determinatior = Choose
Script for parsed value = Choose

Value determination

Value disposition

Type =

The “Details” and “Knowledge and Skills” tabs are defined in the view configuration. “Profession” is
a configuration element of the type “Search”. An existing query can be selected or a new one be
created directly, under “Query”.

&
+ Profession #e* Accessed element
G
. 3
cf Relation 4# | is profession of has Target 4® =#* Access parameter Accessed element
g G

Definition of the search

179

Technical Handbook 5.8 - 1.3. View Configuration

10| R

MName

Embedded systems

IT Management

The result of the query is displayed in the “Knowledge and Skills” tab in the Knowledge Builder for
objects of the type “Person”.

1.3.4.10. Graph

The contents of the Knowledge Graph are plotted in a graph with their objects and connections (
see chapter Knowledge Builder > Basics > Graph editor).

Setting options

Name

Configuration name

Label

Script for label
Graph configuration

Height/width

Hide legend

Initial topics query

Initial topics script

Script for visibility

Value

The configuration name is used for identification and reuse of
the configuration.

A label is only output if this configuration is embedded in
another configuration, e.g. Alternative .

A script that returns the label.
A graph configuration object is defined here.

This defines the width and height of the configuration element,
either as a percentage or exact to the pixel.

This defines whether the legend for the node types is to be
displayed.

Query which determines the semantic elements which are
displayed initially when the graph is displayed.

Script which determines the semantic elements which are
displayed initially when the graph is displayed.

The visibility of the configuration element can be defined in a
script referenced here.

180

1.3.4.10.1. Graph configuration

Technical Handbook 5.8 - 1.3. View Configuration

The graph configuration only allows specific types and relations to be displayed in the graph. This
prevents unwanted types and relations from appearing in the graph. The graph configuration can
also be queried using JavaScript functions. It is, for example, used in the Net-Navigator.

Node category elements are subordinate to a graph configuration.

Setting options

Name

Configuration name

Label

Maximum node distance

Maximum node age

1.3.4.10.2. Node category

Value

The configuration name is used for identification and reuse of
the configuration.

A label is only used if this configuration is embedded in another
configuration, e.g. an additional alternative .

Integer value which determines the maximum displayable
amount of nodes across their links; thus determining the longest
possible graph path distance.

Integer value for maximum amount of steps after which the first
nodes are faded out when links are expanded.

Node categories are subordinated to graph configurations.

They are assigned subordinate link elements.

Setting options

Name

Configuration

Configuration name

Label

Script for label

Adapt to specific type

Hide abstract types

Value

The configuration name is used for identification and reuse of
the configuration.

Label which is used for the legend of the nodes in the web
frontend. This option has no effect within the Knowledge Builder.

Script that returns an element name or a string for the label
instead of using the label attribute.

When this option is enabled, only the subtypes will be displayed
as legend instead of the overall supertype.

This option prevents abstract types from being displayed in the
legend.

181

Name

Show in legend

Icon

Script for icon

Expand extensions initially

Color

Script for color

Category

Menus

Nodes

Menus

Context

Technical Handbook 5.8 - 1.3. View Configuration

Value

This option is for the net navigator in the web frontend only:

¢ If needed: The legend for the node at top of the graph is only
shown when the node is existent within the graph.

e Always: The legend is shown disregarding the nodes being
shown in the graph.

¢ Never: The legend is never shown, even if the respective
node is shown in the graph.

Icon which is displayed for the node category in the graph
exclusively. When no icon is specified, the (inehrited) icon of the
respectve semantic element of the Knowledge Graph is shown.
When no icon is specified at all, types are shown in forms of
colored rings and objects are shown in forms of colored and
filled circles.

Script which returns the icon for a node category instead using
the icon attribute. Return value is a blob attribute or a value of
the type Sk.Blob.

When this option is enabled, extensions are expanded inititally
when the core object is displayed in the graph.

Color assigned to the nodes of this category. This affects the
coloring of the node circles and of the legend.

Script which returns the color assigned to the nodes of this
category instead of using the color attribute. Return value is a
hexadexcimal color value.

When displaying the graph in the web frontend (net navigator),
actions can be added for nodes as follows:

e Node satellite menu buttons for expanding, hiding and
pinning the node.
e Action being executed when clicking onto the node itself.
For further information, see the respective chapter View

Configuration Mapper > Viewconfig elements > Graph
configuration .

182

Name

Apply to

1.3.4.10.3. Link

Technical Handbook 5.8 - 1.3. View Configuration

Value

Determines for which instances or types the node category is
applied. One node category can be assigned to several different
instances or several different types.

Links are subordinate to a node category. They represent the edges of the graph, thus the relations

of the Knowledge Graph.

Setting options

Name

Configuration name

Label

Script for label
Color

Query for link

Relation for link

Script for link

Initially expanded

Preferentially expanded

1.3.4.11. Text

Value

The configuration name is used for identification and reuse of
the configuration.

The label attribute is not effective for links. Use the script for
label instead.

Returns an element name or a string for labeling the link.
Determines the color of the link.

Query which determines the target element of the link, based on
the origin which is the superordinate node element.

Relation which is used for the link. The definition range of the
used relation type needs to comprise the type od the related
node element.

A script referenced here can be used to define the link. Return
value is a relation at the semantic element of the node.

If this option is enabled, the link will be expanded automatically
as soon as the node element is initially displayed.

If a node element has several links which are set to expand
initially, this option can be enabled for prioritizing one of the
links.

This configuration element outputs a simple text. This is either configured fixed or determined via a

script.

Setting options

183

Name

Configuration name

Label

Script for label
Text
Script for text

Script for visibility

1.3.4.12. Image

Technical Handbook 5.8 - 1.3. View Configuration

Value

The configuration name is used for identification and reuse of
the configuration.

A label is only output if this configuration is embedded in
another configuration, e.g. Alternative .

A script that returns the label instead of using the label attribute.
Text that is to be output.
A script that returns the text to be displayed.

A script that returns a Boolean value for whether the view is to
be displayed or not.

Static graphics can be integrated with the aid of this configuration element.

Name

Configuration name

Label

Script for label

Image

Script for image

Height/width

Script for visibility

Value

The configuration name is used for identification and reuse of
the configuration.

A label is only output if this configuration is embedded in
another configuration, e.g. Alternative .

Alternatively, this can be used to determine the label using a
script.

The image file that is to be output.

Alternatively, the graphics can be returned using a script. Not
applicable within the Knowledge Builder.

Scales the image file to the dimensions specified.

A script is used to determine whether the graphics are to be
displayed.

1.3.4.13. Script generated view/HTML

Script-generated view

A view created using a script saved in the Knowledge Graph. This is written in JavaScript and can use
a custom template (a Ractive.js “partial”). This allows complex views to be created, which extend

beyond the functionalities of the standard view configuration.

Setting options

184

Technical Handbook 5.8 - 1.3. View Configuration

Name Value

Configuration name The configuration name is used for identification and reuse of
the configuration.

Label A label is only used if this configuration is embedded in another
configuration, e.g. Alternative .

Script for label Script for determining the label.

Script Script for generating the view.

viewType Name of the partial.

Script for visibility Script for determining the visibility. Return value is a Boolean
value.

Script-generated HTML

This view configuration shows an HTML fragment that is generated using a script stored in the
Knowledge Graph. In it, the JavaScript API of i-views is used to access semantic elements and their
properties and an XML writer object generates an HTML structure and fills it with data.

Setting options

Name Value

Configuration name The configuration name is used for identification and reuse of
the configuration.

Label A label is only used if this configuration is embedded in another
configuration, e.g. Alternative .

Script for label Script for determining the label.
Script Script for generating HTML output.
Script for visibility Script for determining the visibility.

Example of a script that generates simple HTML output:

function render(element, document) {
var writer = document.xmlWritexr();
writer.startElement("div");
writer.startElement("h2");
writer.cdata(element.name());
writer.endElement();
writer.endElement();

Output:

185

Technical Handbook 5.8 - 1.3. View Configuration

<div>
<h2>Hermann</h2>
</div>

1.3.4.14. Label

The label configuration allows, for example, the labeling of a website or the labeling of a dialog
panel. The label configurations are managed in the category “Subordinate configuration” in the
Knowledge Builder. For example, labels are used in the window title panel; this requires creation of
a new object underneath “Label configuration:”

o)
| FOFY2 & B 4 @
4 View Configuration Mapper
o P:Main
4 Title
4 P:Title Configuration Context
@ YourApplication Configuration name = |P:Title .
P:Top _
P T = 7 7 e
" PHorizontal anel type Fixed View
» Dialog panels Label configuration = \label

]
Y%

Path pattern parameter

The entries can then be made under “Label” and “Image”:

Configuration Menus Styles Context

Configuration name = Vilabel

¥ Label YourApplication |

application.png i} D

Choose T}

Image

Script for image

The view configuration element (“Label”) is titled “Label - Object” by default in the
NOTE Knowledge Builder. If a string is entered under “Label”, then this appears as the
element name of the view configuration element. When a configuration name

(“Label”) is assigned, this appears as the element name.

If the label view is applied to the main window panel of the ViewConfiguration Mapper, the label
content will be displayed in forms of the <title> element in the <head> section:

186

Technical Handbook 5.8 - 1.3. View Configuration

<IDOCTYPE html>
chtml class="" xmlns="http://wew.w3.0rg/1939/html"™ lang="en"» |evert| scroll
w <head

meta utf-g
meta X-UA-Compatible IE=edge
meta viewport width=device-width, initial-scale=1

<titlexyourApplication</titlex

A comparison shows the different states of the website without a label (title = website path) or with
a label (title = label):

<~ G o © @ localhost:3815/viewconfig/

<« ¢ ﬁ} U @ localhost:68 15/ viewconfig/

1.3.5. Knowledge Builder configuration

The view configurations described here exclusively relate to Knowledge Builder. Additional view
configurations that affect Knowledge Builder are also described at other points in chapter 7 but can
then also relate to the output in JSON.

1.3.5.1. Folder structure

The left part of the main window in Knowledge Builder is used for navigating through the
Knowledge Graph. To do so, a hierarchical folder structure is displayed there. This can be split into
several main areas that are then displayed as bars. If you click on such a bar, the folder structure
underneath it is expanded. This then enables you to access the contents (elements, queries,
import/export mappings etc.). The contents are listed on the right side where they can be edited.

1.3.5.1.1. Default folder structure

The configuration of the standard folder structure provides folders, making it possible to navigate
the Knowledge Graph and store contents there. Three main areas are available to administrators.

The upper main area is “FOLDER” and provides folders for creating further folders and for managing
content. These are the working folder, the private folder, the “Most recently used objects” folder
and the “Query result” folder.

The second main area “ KNOWLEDGE GRAPH” makes it possible to navigate to the elements via the

187

Technical Handbook 5.8 - 1.3. View Configuration

hierarchy of the types. The elements to be reached here are types, objects, attributes and relations.
The area contains three folders:

¢ Object types for the hierarchy of object types and their concrete objects

¢ Relation types for the hierarchy of the relations

o Attribute types for the hierarchy of the attributes
The third main area is “TECHNICAL” ; it enables administrators to make changes, settings and

configurations of all kinds in the Knowledge Graph. These include, among others, registered objects,
the rights system and triggers.

—
p Application Graph-Configuration = Folder structure (KB) Panel Relation target search Start view (KB) Search field (KB) — ﬁ D
FOLDER -
3 i u . . E Q x = o " @
» & Working folder (workingFolder) (Organizer]
» & Private g
% Recently accessed objects -
Configuration name Part of (name/label) apply in
£ Query results
Organizer . Knowledge Builder

KNOWLEDGE GRAPH

+ () Object Types
¥ " Relation types - p x -

v [\ Attribute Types

W Organizer
TECHNICAL
“ W Folder Configuration Context
¥ Rights (deactivated) W Working folder _ —_
Configuration name = Organizer
» 42 Trigger W Private
» % Registered objects N Recently accessed of
» £} Printing component - Query results
» 4% ReST 4\ Semantic network
» W View configuration W Objects
» £F Entire Knowledge Graph W Relations
» £+ Core properties W Attributes
Community
< b3

The configuration of this standard folder structure can be viewed, modified and adapted to the
users’ needs in the Technical area >> View configuration.

Administrators always see the standard folder structure. If you configure a view
configuration for folders, these are displayed only to non-administrators. If an

NOTE administrator wishes to see the configured view of the folder structure, this can be
set in the personal settings for the Knowledge Builder: Under “Settings” >
“Personal” > “View configuration”, select the “Configured” option.

1.3.5.1.2. Configuration of the folder structure

The folder structure is configured in the technical area under View configuration >> Object types >>
Knowledge Builder configuration >> Folder structure . The admin is granted quick access to the
configurations by selecting the View configuration node in the technical branch, and then selecting
the Organizer object in the Folder structure tab in the pane to the right.

Folder structure elements are linked to each other as a hierarchy in the configuration. The root
node of this hierarchy is an object of the folder structure type. It initially contains a folder structure
called Organizer . All sub-nodes and their sub-nodes are of the folder structure element s type. The

188

Technical Handbook 5.8 - 1.3. View Configuration

hierarchy in the configuration shows the hierarchy shown in the main window directly. The direct
sub-nodes of the root node are shown as bars in the main window, resulting in a visual distinction
between the various folder hierarchies.

Label is a parameter that all configuration types have in common. A node that is described by a
configuration is labeled with this value. The content displayed in the right part of the main window
when a node is selected depends on the parameters of the folder structure element. To do so, a
type must be assigned to the parameter Folder type , for which a range of types is available. These
folder types and their additional parameters are listed in the following table.

Folder type Parameter Description
(obligatory)

Attribute types Type The attribute type specified, and all it subtypes,
are displayed in a hierarchy-based tree.

Private folder - Display of the folder that only the actual user
may view, and which is different to each user.

Relation types Type The attribute type specified, and all it subtypes,
are displayed in a hierarchy-based tree.

Organizing folder Organizing folder Any organizing folder can be added here.

Query result folder - Each user has a query result folder of their own
in which the user’s most recent query results
are saved.

Type-based folder “Without inheritance” The specified type and its subtypes are listed in

structure view, type a table. If the parameter “Without inheritance”
view is set, then only the specified type is
displayed.

In order to manage which table
configurations are used on the
right-hand side, the apply in
relation found there must be
linked to this folder structure
element .

NOTE

Virtual folder - A folder that is used for structuring the folders.

Last objects used - Each user has a folder of their own in which the
last objects used are saved for quicker access.

Only the configuration type Virtual folder can contain additional sub-configurations, and it is the
only one for which sub-configurations make sense.

” u

In the case of the folder type “Attribute types,” “Relation types” and “Type-based
NOTE folder structure,” the parameter “Type” is used for specifying the attribute type,

189

Technical Handbook 5.8 - 1.3. View Configuration

relation type or object type, and its subtypes, should be displayed in the folder.

1.3.5.2. Relation target search

The configuration of relation targets makes it possible to influence the strategy used to search for
possible relation targets.

is known by

i

Add relation

If a Knowledge Graph does not include a search for relation targets, entering “Egon” always results
in a search for objects named “Egon” (i.e. the respective defined name attribute is used). This

response can be modified by specifying a previously defined query. Ordinary queries rather than
structured queries are usually used for this purpose.

For example, to search for persons, you could define a query that searches both the first name and
the last name. If you then search for a target of a relation whose target domain is person, the first
names and last names of persons are searched for the entry “Egon.” A modified search for relation
targets also makes sense if you want to search for objects and object synonyms at the same time, so
that e.g. the “Architecture” object is also found if a user enters “the art of construction.”

—-—
Joke D Application Graph-Configuration Folder structure (KB) Panel Relation target search = Start view (KB} Search field (KB} — ﬁ' D

FOLDER
. o[- [0 AT
"= KNOWLEDGE GRAPH

TECHNICAL -
- Name/Label Part of (name/lakbel) Relation Target apply in
» g2 Rights (deactivated)
. nameSearch, Search for first name and second name ° is known by Person Knowledge Builder
¥ 4 Trigger
¥ b Registered objects
[&= Printing component
» 4% REST
» @ View configuration '
» £} Entire Knowledge Graph
» £ Core properties
Configuration ~ Context

nameSearch

Configuration name

Query £ Search for first name and second name
Ty

Relation target search configured to search for persons
As with all configurations, the context must be specified in which the relation target search is to be

used. To do this, the relation to which the relation target search is to be applied must be entered for
“apply to relation.”

190

Technical Handbook 5.8 - 1.3. View Configuration

Configuration = Context

Context

apply to relation = is known by

apply to target = Person

apply in = Knowledge Builder
Add relation

Usage

The properties “apply to target” and “apply in” can be used as well in any combination as required.

1.3.5.3. Home view

You can use the configuration Start view (KB) (available as a tab in the view configuration area) to
define which background image and which actions are supposed to be displayed on the start screen
in Knowledge Builder on the right side. The display can be highlighted by means of de-selection
(clicking on the selecting in the left navigation tree).

Setting options

Name Value

Background An image

Color value for font of an action Depending on the image selected, a different color must be
selected for labeling the actions in order to make the text
readable.

In addition to this, actions can be defined. Refer to the Action chapter. An action type can also be
specified. The following entries are available in this case:

Action type Action

Manual (specialized web link) ~ Web manual is opened in the browser

Home page (specialized web The home page is opened in the browser.

link)

Support email (specialized web A window opens for a new email to the email address of the
link) Support department.

Web link Freely definable web link

<no action type> Execute configured action (using a script)

191

Technical Handbook 5.8 - 1.3. View Configuration

A web link must be configured completely; otherwise it will not be displayed.

However, this is not necessary for the three action types (specialized web links) displayed above.
They use default values if a property is missing. It is possible to override the default values.

Possible configuration for a web link

Name Value

Label Display name after the icon

Symbol Icon that is displayed in front of the label
URL URL that is to be opened

1.3.5.4. Search field

The quick search field can be found in the upper left corner of the main window. This field provides
quick access to queries. These are provided by the administrator or can also be added by the user.
All queries that are used here may only expect a search string or no search input.

No search input makes sense for queries like this, the result of which changes from time to time.
Executing a search like this in the quick search field then shows the current result without the need
to look up the corresponding query in a folder, for example, every time. For example, there could
also be a search query that displays all songs that the active user has already listened to.

1.3.5.4.1. Search field configuration for administrators

The “Search field” configuration defines which queries are made available by the administrator in
the quick search field of the Knowledge Builder.

Newly created Knowledge Graphs feature a search field configuration that is the same for all users.
The administrator can expand this search field configuration to make other queries accessible to all
users. Moreover, each user can add further queries to their quick search field, which are then only
visible to this particular user.

A search field configuration is comprised of “Quick search elements” that must contain a reference
to a query and can optionally be given a label. The order of the quick search elements is determined
by the order of the menu entries at the quick search field.

1.3.5.4.2. Search field configuration for users
The user can add queries by dragging an existing query to the quick search field.

Adding can also take place via the Settings . The Search field item is available on the Personal tab.
On the right, in the User-defined section, the Add and Remove operations are available as well as
an option for changing the order.

192

Technical Handbook 5.8 - 1.3. View Configuration

Personal | System Index configuration

Folder Configured by the administrator User defined
Windows MName Type Marne Type Folder
Query Query Custom query Query Private

Editors

Structured query
Graph

Search field

Font size

Wiew configuration
Keyboard shortcuts
Timeline

Dev tools

Move up Move down E Add :] Remove

OK

1.3.6. Style

The view configuration is responsible for the structural formatting of elements of the Knowledge
Graph for the display. If purely visual properties or information without context is also be specified,
a “Style” element is used.

There are a number of Style elements that are already defined in i-views. The following section
explains what these elements are and how these style elements are created in Knowledge Builder
so that they can then be linked to individual elements of the view configuration of an application or
Knowledge Builder.

In the view configuration, you first have to select the element with which one or more style
elements are to be linked. AlImost every view configuration type has a “Styles” tab. There, you can

either define a new style element u or link an existing style element D If a new style element
is defined, this must first be given a configuration name. You can then configure it on the right side
of the editor.

A style element can be filled with any number of style properties. The style properties are always
distributed across several tabs, which are described in the sections below.

Not all properties of a style make sense for all configurations. The tables of the
following sections therefore contain a column called “Configuration type” which
shows which view configuration type is supported by the respective property. The
effect is described in the last column.

NOTE

1.3.6.1. Style properties in applications and in the Knowledge Builder

This chapter describes the “Configuration” tab of a style element, which contains the style
properties used in both the Knowledge Builder and the view configuration mapper.

193

Technical Handbook 5.8 - 1.3. View Configuration

O
| JOF> & & 4
N Instances of Subtype 1
4 [Alternative - Instance Configuration | KB | Menus(Styles)Context
» U Group - Instance
] o}
»] Group - Instance u p ox x |
¥ bGraph ExampleStyle

Configuration JKB View configuration mapper Context

Configuration name = | ExampleStyle
Script for activation = Choose o
Tree view =0Od
Vertical alignment =0
Style property Configuration type Effect
Configuration name All The configuration name is used for identification

and reuse of the configuration.

Script for activation All The style can be activated in dependence on the
active element by means of a script.

Tree view - Due to the deprecation of groups, this option is
no longer available.

Vertical alignment - Due to the deprecation of groups, this option is
no longer available. Use layouts with vertical
orientation instead.

1.3.6.2. Style properties in applications

The “ViewConfiguration Mapper” tab is only displayed when the component “ViewConfiguration
Mapper” has been installed. The style properties available for this component are included in the
chapter Style of the ViewConfiguration Mapper (chapter 3).

1.3.6.3. Style properties in the Knowledge Builder

This chapter describes the “KB” tab of a style element, which contains the style properties used
only in the Knowledge Builder.

194

WOEXE S

I Instances of Subtype 1
4 [Alternative - Instance
» 1] Group - Instance
v IO Group - Instance
W kbGraph

Style property

Configuration name

Show banner

Height

Show scrollbar

Property

Editor width (pixel)

Show meta properties

in context menu

Configuration

RIORK

ExampleStyle

Configuration type

All

Object configuration

Property

Object configuration

Property

(Meta-)
(properties)

property

Technical Handbook 5.8 - 1.3. View Configuration

U

KB Menus{ Styles }Context

| %

Configuration | KB } View configuration mapper Context
Sh =0
1 =
= (]
Sho properties tn= O
Table
Show p =01
Effect

The configuration name is used for identification
and reuse of the configuration.

Display banner, incuding object name and type
name as well as a buttons for the context menu
for editing. When created a new configuration,
the default false

(1)

value is

Height in lines for string attributes (not: "Text"
view).

If enabled, a scrollbar is shown if the respective
view is too large for being displayed in full size
within the given display area. This option is
useful for grouping view elements containing
than configuration,
"Properties" or "Layouts".

more one such as

Width in pixels of a property

Meta properties are shown in the context menu
of the property. You can thus show either
individual meta properties or all meta
properties in a meta properties configuration.

the Add meta properties menu

NOTE) .
option remains unchanged.

195

Technical Handbook 5.8 - 1.3. View Configuration

Style property Configuration type Effect
Table
Show preview Table Controls whether an editor is shown

underneath the table.

1.3.7. Detector system for determining the view configuration

View configurations can be linked to conditions using the detector system. The detector system
determines when which configuration should be displayed. The way the detector system functions
and the interplay with view configurations are explained in the following using an example.

Several displays can be created for objects of an object type using the settings in the view
configuration. They can be linked to conditions using the detector system — for example, to a
specific user. For the example described here, two views were configured for the objects of any type
using the view configuration.

Instances Subtypes Schema

Profession

Overview Details

Type View configuration : Instance : Details : Profession
Definition
4 Schema definition n
Instance Name Type Context Type
Type Detail view Properties Knowledge Builder Profession

4 Vi fi ti
1ew comnguration Detail view for admins Properties Knowledge Builder Profession

4 Instance
Details
Object list

4 Type
Details
Object list

Users who are administrators of the professions list which they wish to access should see the
“Detail view for admins”. All users who are not administrators of the professions list which they
wish to access should see the “Detail view”. The conditions that determine how the views are used
are defined in the detector system.

Creation of a view configuration determination

The detector system is located in the folder hierarchy on the left in the “TECHNICAL” section, and
has been designated as “View configuration detection” under “View configuration”.

196

Technical Handbook 5.8 - 1.3. View Configuration

TECHMICAL

P & Rights (deactivated)
P 37 Trigger
» & Registered objects
» £¥ Printing component
b 4% REST
4 View configuration
» %7 View configuration det-ectian)
» W Object Types
» & Relation types
» N\ Attribute Types
£ Not used
» £} Entire Knowledge Graph

» £¥ Core properties

By creating a new query filter g; (see the “Query filter” chapter) in the first step, the starting
point must be defined. This means that you have to define to what other things the following
settings are supposed to apply. In this example, our starting point is therefore a view configuration
(in this case: “Detail view for admins”), for which a condition is created at the same time. “View
configuration” must be selected from the list and be entered as the operation parameter. The query
filter then looks as follows:

Sa9OART
Operation parameters: Possible operation parameters:
View configuration H i ypes of "
> M
View configuration v
(® All parameters must match (O Any parameter must match

® Query must be satisfied
(O Query may not be satisfied

o Relation HF |&® apply to | @) has Target &

A new query filter must now be created under the query filter that is searching for the view
configuration “Detail view for admins” and which describes the condition for this view
configuration: the view configuration “Detail view for admins” should only be visible to users who
have the profession that they are currently viewing. The second query filter therefore checks
whether the active user is a person of the same profession. By clicking on k, the set of search

197

Technical Handbook 5.8 - 1.3. View Configuration

results is then permitted to view the configuration “Detail view for admins”. The following diagram
shows the query filter for users who are persons of the same profession that they are currently
viewing and the folder hierarchy that was created so far on the left-hand side.

o) =#0
: : P naart
4\ View configuration Q
Operation parameters: Possible operaticn parameters:
4\ view configuration detection N
4 LD AdminView L < | Types of
4 [0 DetectorTest o) (=
A Accept View configuration v
T Reject @ All parameters must match () Any parameter must match
A ok @® Query must be satisfied
» W Object Types O Query may not be satisfied
b " Relation types
Y i coccod oloment
v £ Attribute Types e " Accessed clement
£ Not used v o Relation R | has profession o has Target 48 ':' Access parameter Accessed element l:l

The view configuration “Detail view” is automatically used for those users who are not person of
the same profession that they are currently viewing.

Weighting of the configurations in the detector system

The configurations in the detector system “View configuration detection” are weighted from top to
bottom in the application. This means that access settings made closer to the top have a higher

weighting that those further down. In order to bypass this default setting, the authorizations or
denials can be given priorities.

4 [0 AdminView -
4 [DetectorTest
A Accept
T Reject
A ok

Pricrity 20

Priority 1 is the highest priority. If the condition instructions overlap, then the authorization or
denial conditions with the highest priority is implemented. If no specifications have been made for
priorities, or if all priority numbers have the same value, then the previous conditions are
implemented in the detector tree.

198

Technical Handbook 5.8 - 1.4. JavaScript API

1.4. JavaScript API

1.4.1. Introduction

The JavaScript APl is a server-side API for accessing a semantic Knowledge Graph. The APl is used in
triggers, REST services, view configuration etc.

By means of the API, the Knowledge Graph can be accessed with read operations (processing
queries, querying properties etc.) and modifying operations (creating objects, changing attributes
etc.).

The Knowledge Builder provides an integrated editor for editing, executing and debugging
JavaScript code. The editor is available when accessing the respective code snippet. Registered
JavaScript code can be accessed via TECHNICAL > Registered objects > Scripts. New JavaScript can
be created where needed (REST interface configuration, view configuration) or in the
working/private folder of the Knowledge Builder.

When commenting out references to queries or other elements of the Knowledge
NOTE Graph, the reference of the previously referenced element to the JavaScript will
not be listed anymore when invoking the "References" list for the element.

1.4.1.1. API reference

The API reference is available here:

https://documentation.i-views.com/5.8/javascript-api/index.html

1.4.1.2. The namespace Sk

Most objects are defined in the namespace Sk. The namespace object itself has a few useful
functions, e.g.

$k.rootType()
which returns the root type of the Knowledge Graph, or
$k.user()

which returns the current user.

1.4.1.3. Registry

Another important object is the Registry object Sk.Registry. It allows to access objects by their
registered key (folder elements) / internal name (types).

199

https://documentation.i-views.com/5.8/javascript-api/index.html

Technical Handbook 5.8 - 1.4. JavaScript API

Examples:

$k.Registry.type("Article")

returns the type with the internal name "Article".

$k.Registry.query("rest.articles")

returns the query with the registered key "rest.articles".

The Registry object is a singleton, similar to JavaScript’s Math object.

1.4.1.4. Working with semantic elements

Semantic elements are usually retrieved from the registry or by a query.

// Get the person type by its internal name
const personType = $k.Registry.type("Person");

// Perform the query named "articles",

// with the query parameter "tag" set to "Sailing"

const sailingArticles = $k.Registry.query("articles").findElements({tag:
"Sailing"});

The properties of an element can be accessed by specifying the internal name of the property type.

// Get the value of the attribute "familyName"

const familyName = person.attributeValue("familyName");
// Get the target of the relation "bornIn"

const birthplace = person.relationTarget("bornIn");

A shortcut to access the value of the name attribute is the function name()

const name = birthplace.name();

If an attribute is translated, the desired language can be specified, either as 2-letter or 3-letter ISO
639 language code or as locale with language and territory. The current language of the
environment is used if no language is specified.

const englishTitle = book.attributeValue("title", "eng");

200

Technical Handbook 5.8 - 1.4. JavaScript API

book.attributeValue("title", "sv_SE");
book.attributeValue("title");

const swedishTitle

const currentTitle

1.4.1.5. Transactions

Transactions are required to create, modify or delete elements. If transactions are controlled by the
script, a block can be wrapped in a transaction:

$k.transaction(() =>
$k.Registry.type("Article").createInstance()
)

It is possible to configure if the script controls transactions or if the entire script should be runin a
transaction. The only exception are trigger scripts, which are always run as part of a writing
transaction.

A transaction may be rejected due to concurrency conflicts. An optional function can be passed to
Sk.transaction() that is evaluated in such cases:

$k.transaction(
() => $k.Registry.type("Article").createInstance(),
() => throw "The transaction was rejected"

DE:

Transactions, like the ones described above, may not be nested. There are, however, cases in which
nesting is unavoidable; for example, because a script function is called both by functions that are
already encapsulated in a transaction and functions for which this does not apply. A so-called
“optimistic transaction” can be used in this case. This construction uses the external transaction if
there is one, or it starts a new transaction.

$k.optimisticTransaction(() =>
$k.Registry.type("Article").createInstance()
)5

Constructions like this should be avoided, because a transaction represents a practical operational
unit which is executed in whole or not at all. Either what is embedded makes sense and is complete
in itself, or is not.

A troubleshooting function in the event of failure of the optimistic transaction is
NOTE not available. If an external transaction exists, its troubleshooting function is
executed in the event of failure.

201

Technical Handbook 5.8 - 1.4. JavaScript API

1.4.1.6. Modify elements

1.4.1.6.1. Create elements

// Create a new instance
const person = $k.Registry.type("Person").createlInstance();

// Create a new type
const blogType = $k.Registry.type("CommunicationChannel").createSubtype();
blogType.setName("Blog");

1.4.1.6.2. Add and change attributes

Attribute values can be set with setAttributeValue(), which implies that a single attribute is either
already present or created. Existing attribute values are overwritten. An exception is thrown when
more than one attribute of a type is present.

person.setAttributeValue("familyName", "Sinatra");
person.setAttributeValue("firstName", "Frank");

// Overwrite the value "Frank" with "Francis"
person.setAttributeValue("firstName", "Francis");

createAttribute() allows to create more than one attribute of a type.

// Create two attributes
person.createAttribute("nickName", "Ol' Blue Eyes");
person.createAttribute("nickName", "The Voice");

The attribute values are represented by different object types depending on the type of attribute,
some of which are native to JavaScript while others belong to the Sk namespace:

Type of attribute Object type
Choice Sk.Choice
Boolean boolean

File Sk.Blob

Date Sk.Date

Date and time Sk.DateTime
Color value string (hex value)
Flexible time Sk.FlexDateTime

202

Technical Handbook 5.8 - 1.4. JavaScript API

Type of attribute Object type
Float number
Integer number

Geo position Sk.GeoPosition
Group (no value)
Internet shortcut string

Interval Sk.Interval
String string

Time Sk.Time

1.4.1.6.3. Add relations

A relation between two elements can be created with createRelation():

const places = $k.Registry.query("places").findElements({name: "Hoboken

"})
if (places.length == 1)
person.createRelation("bornIn", places[0]);

1.4.1.6.4. Delete elements

Any element can be deleted with the remove() function:

person.remove();

This also deletes all properties of the element.

1.4.2. Examples

1.4.2.1. Queries

Using the API, one can execute registered queries. Queries are represented by objects of the class
Sk.Query while for structured queries there is the subclass Sk.StructuredQuery.

Search for elements: Perform the query "articles" with parameter tag = "Soccer"

const articles = $k.Registry.query("articles").findElements({ tag:
Soccer" });
for (let a of articles) {

$k.out.print(articles[a].name() + "\n")

203

Technical Handbook 5.8 - 1.4. JavaScript API

Return hits: Perform the query "mainSearch" with the search string "Baseball"

const hits = $k.Registry.query("mainSearch").findHits("Baseball");
for (let hit of hits) {

$k.out.print(${hit.element().name()} (${Math.round(hit.quality() *
100)}%)\n")
}

A hit wraps an element and adds a quality value (between 0 and 1) and additional metadata.

Convert query results to JSON:

const elements = $k.Registry.query("articles").findElements({ tag:
"Snooker" })
const json = elements.map(element => ({
name: element.name(),
id: element.idString(),
type: element.type().name()
1))
$k.out.print (JSON.stringify(json, undefined, "\t"))

1.4.2.2. Runtime generated queries

The JavaScript APl also makes it possible to generate queries dynamically. Here are several
examples from a Knowledge Graph on films:

1.4.2.2.1. Search for films by year + name

const query = new $k.StructuredQuery("imdb_film")
query.addAttributeValue("imdb_film_year", "year")
query.addAttributeValue("name", "name")
query.findElements({ year: "1958", name: "Vert*" })

The domain is transferred to the constructor. In case of internal names, the search automatically
looks for objects of this type. The setDomains() function offers more options.

1.4.2.2.2. Year + number of directors >=3

const query = new $k.StructuredQuery("imdb_film")
query.addAttributeValue("imdb_film_year", "year")

204

Technical Handbook 5.8 - 1.4. JavaScript API

query.addCardinality("imdb_film_regisseur", 3, ">=")

query.findElements({year: "1958"})

1.4.2.2.3. Year + name of director

const query = new $k.StructuredQuery("imdb_film")

query.addAttributeValue("imdb_film_year", "year", ">=")

const directorQuery = query.addRelationTarget("imdb_film_regisseur"

) . targetQuery ()

directorQuery.addAttributeValue("name", "director")

query.findElements({ year: "1950", director: "Hitchcock, Alfred" })

1.4.2.2.4. Alternatives (OR conditions)

const query = new $k.StructuredQuery("imdb_film")
query.addAttributeValue("imdb_film_year", "year")

const alternatives = query.addAlternativeGroup()
alternatives.addAlternative().addAttributeValue("name", "name")
alternatives.addAlternative().addAttributeValue("imdb_film_alternativeTite

1"’ nnamell)

query.findElements({ year: "1958",

1.4.2.2.5. Operators

Operator name Short form

containsPhrase

covers

distance

equal ==
equalBy
equalCardinality
equalGeo
equalMaxCardinality
equalMinCardinality
equalPresentTime
equalselementOneWay

fulltext

name: "Vert*" })

Description

Contains phrase

Contains

Distance

Equal

Corresponds to

Equal cardinality

Equal (geo)

Cardinality smaller than or equal to
Cardinality greater than or equal to
Now (present)

Filter with

Contains string

205

Operator name Short form
greater >
greaterOrEqual >=
greaterOverlaps

greaterPresentTime

isCoveredBy

less <
lessOrEqual

lessOverlaps

lessPresentTime

notEqual 1=
overlaps

range

regexEqual

regexFulltext

unmodifiedEqual

words

1.4.2.3. Creating and changing elements

1.4.2.3.1. Creating a person

Technical Handbook 5.8 - 1.4. JavaScript API

Description

Greater than
Greater/equal
Overlaps from above
After now (future)

Is contained in

Less than

Less/equal

Overlaps from below
Before now (past)
Not equal

Overlaps

Between

Regular expression
Contains string (regular expression)
Exactly identical

Contains string

// Get the person type by its internal name

const personType = $k.Registry.type("Person");

// Create a new instance

const person = personType.createInstance();

// Set attribute values

person.setAttributeValue("familyName", "Norris");
person.setAttributeValue("firstName", "Chuck");

1.4.2.3.2. Setting the full name of a person

const familyName = person.attributeValue("familyName");

const firstName = person.attributeValue("firstName");

if (familyName && firstName) {
const fullName = familyName +

"

+ firstName;

person.setAttributeValue("fullName", fullName);

206

Technical Handbook 5.8 - 1.4. JavaScript API

1.4.2.3.3. Setting the value of an attribute

// Boolean attribute
element.setAttributeValue("hasKeycard", true);

// Choice attribute

// - internal name

element.setAttributeValue("status", "confirmed");

// - choice object

const choiceRange = $k.Registry.attributeType("status").valueRange();
const choice = choiceRange.choiceInternalNamed("confirmed");
element.setAttributeValue("status", choice);

// Coloxr attribute
element.setAttributeValue("hairColox", "723F10");

// Date / Time / DateAndTime attribute
element.setAttributeValue("dateOfBirth", new Date(1984, 5, 4));
element.setAttributeValue("lastModification", new Date());
element.setAttributeValue("teatime", new Date(@, @, @, 15, 30, 0));

// FlexTime attribute

// - $k.FlexTime (allows imprecise values)
element.setAttributeValue("start", new $k.FlexTime (1984, 6));
// - Date (missing values are set to default values)
element.setAttributeValue("start", new Date(1984, 5, 3));

// Number (integer / float) attribute
element.setAttributeValue("weight", 73);

// Interval
element.setAttributeValue("interval", new $k.Interval(2, 4));

// String attribute
// - untranslated

element.setAttributeValue("familyName", "Norris");

// - translated (language is an ISO 639-1 or 639-2b code)
element.setAttributeValue("welcomeMessage", "Welcome", "en");
element.setAttributeValue("welcomeMessage", "Bienvenue", "fre");

207

Technical Handbook 5.8 - 1.4. JavaScript API

1.4.2.3.4. Creating a new attribute

person.createAttribute("nickName", "Ground Chuck");

1.4.2.3.5. Creating a new relation

const places = $k.Registry.query("places").findElements({name: "Oklahoma
"});
if (places.length == 1)

person.createRelation("bornIn", places[0]);

1.4.2.3.6. Deleting an element, including its properties

person.remove()

1.4.2.3.7. Converting a string to an attribute value

The ValueRange of an attribute type knows the valid values of the attribute and can parse a string. It
throws an exception if the string is not valid.

const statusRange = $k.Registry.type("status").valueRange();
const statusConfirmed = statusRange.parse("Confirmed", "eng");

1.4.2.3.8. Setting change metadata

element.setAttributeValue("lastChangeDate", new $k.Date());
const userInstance = $k.user().instance();
// Ensure that a single relation to the user instance exists
if (element.relationTarget("lastChangedBy") !== userInstance) {
const relations = element.relations("lastChangedBy");
for (let relation of relations)
relation.remove();
element.createRelation("lastChangedBy", userInstance);

1.4.2.4. Date and time

Wenn man ein JavaScript-Date als Attributwert setzt, wird der Wert in der lokalen Zeitzone
gespeichert. Die Attribute selbst speichern keine Zeitzone, nur Datum/Uhrzeit.

208

Technical Handbook 5.8 - 1.4. JavaScript API

const task = $k.Registry.type('Task').createInstance()
task.setAttributeValue('dateOfCreation', new Date())

Wenn man dieses Script zum Zeitpunkt 20.6.2023 12:58 MEZ ausfiihrt, wird "20.6.2023 12:58" als
Attributwert gesetzt.

Um einen Attributwert unabhdngig von der lokalen Zeitzone zu speichern, kann man die
Sk.DateTime-AP| verwenden. Dieses hat eine mit Date verwandte API, kann aber zusatzlich mit
toUTC() die Zeitzone des Werts wandeln:

const task = $k.Registry.type('Task').createInstance()
task.setAttributeValue('dateOfCreation', new $k.DateTime().toUTC())

Dieses Script setzt zum selben Zeitpunkt "20.6.2023 10:58" als Attributwert.

Da das Attribut keine Zeitzone speichert, ist die Darstellung bei Clients unabhangig von der lokalen
Zeitzone.

Fur eine Darstellung in der lokalen Zeitzone kann S$k.DateTime mit toUTCDate() den in UTC
gespeicherten Attributwert in eine Date in der lokalen Zeitzone umwandeln.

task.attributeValue('dateOfCreation').toUTCDate()

e toUTC() ist nicht beim ECMAScript-Date definiert, nur bei Sk.DateTime und
Sk.Time

NOTE e toUTCDate() ist leider leicht mit toUTC() zu verwechseln.

e toUTCDate() liefert ein ECMAScript-Date, toUTC() ein Sk.DateTime / Sk.Time-
Objekt

Wenn man zu einem Datum/Uhrzeit-Wert nur das Datum oder nur die Uhrzeit ausgeben mochte,
kann man dazu Sk.Date und Sk.Time verwenden:

// Anlegezeitpunkt in lokaler Uhrzeit darstellen
new $k.Time(task.attributeValue('dateOfCreation').toUTCDate())

Im Gegensatz zur ECMAScript-APl ist Sk.Date nur das Datum ohne Uhrzeit.

NOTE
Sk.DateTime hat Datum + Uhrzeit.

209

Technical Handbook 5.8 - 1.4. JavaScript API

1.4.2.5. Sessions

To provide a semantic element or a specific value for a later accessed view, session variables can be
used.

The assignment of the session variable is done by

$k.Session.current().setVariable('nameOfVariable', elementOrValue)

Reading out the session variable works like this:

$k.Session.current().getVariable('nameOfVariable')

1.4.2.6. REST

A REST script must define a respond() function that receives the HTTP request, the parsed request
parameters and an empty HTTP response. The script then fills header fields and the contents of the
response.

function respond(request, parameters, response) {
response.setText ("REST example");

1.4.2.6.1. Restlet that returns a blob

function respond(request, parameters, response) {
const name = parameters["name"];
if (name) {
const images = $k.Registry.query("rest.image").findElements({"name":
name}) ;
if (images.length == 1) {
// Set the contents and content type (if known) from the image blob.
response.setContents(images[@] .value());
// Show the image instead of asking to download the file
response.setContentDisposition("inline");
} else {
response.setCode($k.HttpResponse.BAD_REQUEST) ;

response.setText(images.length + " images found");

}

} else {
response.setCode($k.HttpResponse.BAD_REQUEST) ;
response.setText("Name not specified");

210

Technical Handbook 5.8 - 1.4. JavaScript API

1.4.2.6.2. Restlet that creates an instance with an uploaded blob

function respond(request, parameters, response) {

const formData = request.formData();

const name = formData.name;

const picture = formData.picture;

if (name && picture) {
const city = $k.Registry.type("City").createInstance();
city.setAttributeValue("image", picture);
city.setName(name);
response.setText("Created city " + name);

} else {
response.setCode($k.HttpResponse.BAD_REQUEST) ;
response.setText("Parameters missing");

1.4.2.7. XML

1.4.2.7.1. Transforms query results into XML elements

function respond(request, parameters, response) {
const name = parameters["name"];
if (name) {
// Find points of interest
const elements = $k.Registry.query("rest.poi").findElements ({name:
name}) ;
// Write XML
const document = new $k.TextDocument();
const writer = document.xmlWriter();
writer.startElement("result");
for (let element of elements) {
writer.startElement("poi");
writer.attribute("name", element.name());
writer.endElement();
}
writer.endElement();
response.setContents(document);
response.setContentType("application/xml");
} else {
response.setCode($k.HttpResponse.BAD_REQUEST) ;

211

Technical Handbook 5.8 - 1.4. JavaScript API

response.setContents("Name not specified");

XML output

<result>
<poi name="Plaza Mayor"/>
<poi name="Plaza de la Villa"/>
<poi name="Puerta de Europa"/>
</result>

1.4.2.7.2. Using qualified names

const document = new $k.TextDocument();
const writer = $k.out.xmlWriter();

writer.setPrefix("k", "http://www.i-views.de/kinfinity");
writer.startElement("root", "k");
writer.attribute("hidden", "true", "k");

writer.startElement("child","k").endElement();
writer.endElement();

XML output

<k:root xmlns:k="http://www.i-views.de/kinfinity" k:hidden="true">
<k:child/>
</k:root>

1.4.2.7.3. Defining a default namespace

const document = new $k.TextDocument();

const writer = $k.out.xmlWriter();
writer.startElement("root");
writer.defaultNamespace("http://www.i-views.de/kinfinity");
writer.startElement("child").endElement();
writer.endElement();

XML output

<root xmlns="http://www.i-views.de/kinfinity">

212

Technical Handbook 5.8 - 1.4. JavaScript API

<child/>
</root>

1.4.2.8. HTTP client

A script can also be used to send HTTP requests

1.4.2.8.1. Loading a picture via HTTP and store it as a blob

const http = new $k.HttpConnection();

const imageUrl = "http://upload.wikimedia.org/wikipedia/commons/e/e7/2007-

07-06_GreatBriain_Portree.jpg";

const imageResponse = http.request(new $k.HttpRequest(imageUrl));

if (imageResponse && imageResponse.code() == $K.HttpResponse.OK) {
const portree = $k.Registry.type("City").createInstance();
portree.setAttributeValue("image", imageResponse);
portree.setName("Portree");

1.4.2.8.2. Updating the weather report of all cities

const instances = $k.Registry.type("City").instances();
const http = new $k.HttpConnection();
for (let instance of instances) {
const city = instance;
const weatherUrl = "http://api.openweathermap.org/data/2.5/weather";
const weatherRequest = new $k.HttpRequest(weatherUrl);
weatherRequest.setQueryData({q: city.name()});
try {
const weatherResponse = http.request(weatherRequest);
if (weatherResponse.code() == $k.HttpResponse.OK) {
const json = JSON.parse(weatherResponse.text());
const weather = json.weather[@].description;
city.setAttributeValue("weather", weather);
}
} catch (e) {
}

1.4.2.8.3. Basic authentication

In the following example, a username and password is extracted from an encrypted string. These
strings can be created using the admin tool, navigating to System configuration > Access

213

Technical Handbook 5.8 - 1.4. JavaScript API

authorisation and using the "Encrypt name/password" button. They are only valid for the
Knowledge Graph for which they were created.

const http = new $k.HttpConnection()

const account =
"GH1Z4FXWrCdEoiDS1CVMZJQ6QaBZ4rfAcJdD1iUHN8ep@@ZKmUR+T8NVAFEObB1pjrQId@Bn9
rjmasSZJtz4X6RSAGONTHRX1WG62V3itUPeHzqs7DE9@/ jG+cv/TVKNrxcdFGRja6cjnHOTK4ALG
jZiuUV313GsC1EDr8GEctfeo="

http.authenticateFromEncrypedAccount (account)

const request = new $k.HttpRequest('http://example.org/restricted')

const response = http.request(request)

1.4.2.8.4. Sending JSON object as query data via POST request

const http = new $k.HttpConnection();

const objectToPost = [{foo: 'bar'}, 'baz'l];

const destinationURL = 'http://upload-via-post.domain.com';
const postRequest = new $k.HttpRequest(destinationURL, 'POST');
postRequest.setText(JSON.stringify(objectToPost))
postRequest.setHeaderField('Content-Type', 'application/json');
const response = http.request(postRequest);

1.4.2.8.5. Sending a blob via PUT request

const blob = $k.Registry.elementAtValue('isbn', '978-0544003415'

) .attributeValue('coverPicture')

const http = new $k.HttpConnection()

const request = new $k.HttpRequest('http://mybookservice/cover/978-
0544003415', 'PUT')

request.setContents(blob)

const response = http.request(request)

The content type is taken automatically from the blob.

1.4.2.8.6. Sending two blobs via POST request as multipart/form-data

const book = $k.Registry.elementAtValue('isbn', '978-0544003415")
const pdfBlob = book.attributeValue('pdf')

const previewBlob = book.attributeValue('preview')

const http = new $k.HttpConnection()

const request = new $k.HttpRequest('http://mybookservice/ebooks/978-
©544003415', 'POST')

214

Technical Handbook 5.8 - 1.4. JavaScript API

request.setContentType('multipart/form-data')

const pdfPart = new $k.NetEntity()
pdfPart.setContentDisposition('form-data; name="ebook"")
pdfPart.setContents(pdfBlob)

request.attach(pdfPart)

const previewPart = new $k.NetEntity()
previewPart.setContentDisposition('form-data; name="preview"')
previewPart.setContents(previewBlob)
request.attach(previewPart)

const response = http.request(request)

The filename of the form data is taken from the blob. If another filename is needed, it can be set
using setFilename(string).

1.4.2.8.7. Sending an URL encoded form via POST request

const data
const http

{ name: 'Gandalf', occupation: 'Wizard' }

new $k.HttpConnection()

const request = new $k.HttpRequest('http://mybookservice/user', 'POST')
request.setFormData(data)

const response = http.request(request)

The data is send with Content-Type application/x-www-form-urlencoded.

1.4.2.8.8. Restricting outgoing domains
To prevent scripts from sending requests to arbitrary hosts, a whitelist can be defined in the

configuration file of the application.

[script]
allowedOutgoingDomains=*.i-views.de,*.intelligent-
views.com,ivinternal: 8080

The comma separated strings are compared to the domain part of the URL. "*" can be used as
wildcard character. Optionally, a port can also be specified. If domain or port do not match,
executing the request throws an URIError. If no specific port is defined, every port is accepted.

1.4.2.9. Sending mails

Mails can be sent with the MailMessage object. To do so, an SMTP server must be configured in the
Knowledge Graph (Settings = System - SMTP).

const mail = new $k.MailMessage();

215

Technical Handbook 5.8 - 1.4. JavaScript API

mail.setSubject("Hello from " + $k.volume());
mail.setText("This is a test mail");
mail.setSender("kinfinity@example.org");
mail.setReceiver("developers@example.org");
mail.setUserName("kinf");

mail.send();

The user account “kinf” is used for authentication. The password is saved in the SMTP settings. ===
Sending a mail via Sk.SmtpConnection

In the following example, a username and password is extracted from an encrypted string. These
strings can be created using the admin tool, navigating to System configuration > Access
authorisation and using the "Encrypt name/password" button. They are only valid for the
Knowledge Graph for which they were created.

const mail = new $k.MailMessage()

mail.setSubject('Hello from ' + $k.volume())

mail.setText('This is a test mail')
mail.setSender('kinfinity@example.oxg')

mail.setReceiver('developers@example.org')

const smtp = new $k.SmtpConnection()

smtp.setHost('mailgateway.local', 22)

smtp.authenticateFromEncrypedAccount ('Qi3Eky7itkf2NckwgcKemiZvNGGoXcbo4302
/nZ5RvoRvV7AukUMOLIVUwW1WJ+uMDgzxw7JA5gtYyLgNg7fHaC4wJCQIgnIfXVPSW6U391NmUq
nZkcuc@nl4u2nPymAmcqzoUDJRSHrMVylqEsbxXtfhsJzh7e4EDKIAeJ75BxE=")
smtp.send(mail)

1.4.2.9.1. Sending a mail with attachment

const mail = new $k.MailMessage()
mail.setSubject('Daily report')
mail.setText('Here is the daily report')
const attachment = new $k.NetEntity()
attachment.setContentType('text/html")
attachment.setText('<html><body><h1>Daily report</h1>No problems
found</body</html>")
attachment.setContents(report)
mail.attach(attachment)
mail.setSender('kinfinity@example.oxg"')
mail.setReceiver('developers@example.org')
mail.setUserName('kinf')

mail.send()

216

Technical Handbook 5.8 - 1.4. JavaScript API

1.4.2.10. Data source mappings

Per APl kann man registrierte Abbildungen von Datenquellen ausfiihren. Die Abbildungen werden
durch Objekte der Klasse Sk. Mapping reprasentiert. Abbildungen zur Laufzeit zu generieren ist
derzeit nicht moglich.

Einen Export mit einer registrierten Abbildung mit dem Registierungsschlissel
"products"durchfihren:

const mapping = $k.Registry.mapping("products")
mapping.runExport ()

Bei dateibasierten Datenquellen verwendet die APl standardmafig die konfigurierten Ein-
/Ausgabedateien. Alternativ kann von/in eine Sk.NetEntity im-/exportiert werden:

const mapping = $k.Registry.mapping("products")
const productskEntity = new $k.NetEntity()
mapping.setParameter("netEntity", productsEntity)
mapping.runExport ()

Dadurch kdnnen die Inhalte per HTTP oder E-Mail transportiert werden. Derzeit werden die Inhalte
der NetEntity im Hauptspeicher abgelegt, fiir groRe Datenmengen ist diese Methode deshalb nicht
geeignet.

1.4.2.11. ZIP files

Zip files can be read and written. Both the zip file and the contained files are represented by
Sk.NetEntity objects, but it is also possible to add Sk.Blob objects as zip content.

1.4.2.11.1. Return a zip file as response to a REST request

function respond(request, parameters, response) {
const zip = new $k.Zip('avatars.zip')
$k.Registry.type('account').allInstances().forEach(account =>
zip.addEntry(account.attributeValue('avatar'))

)

response.setContents(zip)

1.4.2.11.2. Read out contents of a zip file in a POST request body

The constructor is called with a Sk.NetEntity object.

217

Technical Handbook 5.8 - 1.4. JavaScript API

function respond(request, parameters, response) {

if (request.contentType() !== 'application/zip') {
response.setCodeBadRequest().setText('Zip expected')
return

}

const zip = new $k.Zip(request)
zip.filenames().forEach(filename => {
const entityInZip = zip.entry(filename)
const account = $k.Registry.type('upload').createlInstance()
account.setAttributeValue('file', entityInZip)

})

1.4.2.12. Mustache templates

The following restlet function renders a document using the Mustache template library. It expects
the following schema of a template document:

e astring attribute (internal name "template.id") to identify a template

¢ a document blob (internal name "template.file") containing the template, e.g. an HTML
document

e arelation to a media type(internal name "template.contentType")

A query ("rest.articles") returns the elements that should be rendered. The Mustache library is
registered as "mustache.js".

function respond(request, parameters, response) {
// Include Mustache library
$k.module("mustache.js");

// Get template

const templateld = parameters["templateId"];

const templateelement = $k.Registry.elementAtValue("template.id",
templateld);

const templateText = templateelement.attributeValue("template.file"

). text("utf-8");

// Find elements
const elements = $k.Registry.query("rest.articles").findElements

(parameters);

// Prepare template parameters
const elementsData = elements.map(element => ({
name: element.name(),
218

http://mustache.github.io/

Technical Handbook 5.8 - 1.4. JavaScript API

id: element.idNumber(),
type: element.type().name()
1))

const templateParameters = {
elements: elementsData

}

// Render with Mustache
const output = Mustache.render(templateText, templateParameters);

// Return the rendered document
response.setText(output);
response.setContentType(templateelement.relationTarget (
"template.contentType").name());
}

1.4.2.13. Java native interface

Java can be accessed via JNI (Java Native Interface).

JNI is an experimental feature and has several restrictions:

e JNI cannot be used in triggers
e |tis not possible to define classes (e.g. for callbacks)
WARNING * Generics are not supported

¢ INI allows accessing system resources (files etc.), so take care when using
JNI in REST services

e NI has to be enabled and configured in the configuration file of each
application. The classpath cannot be changed during runtime.

1.4.2.13.1. Configuration

[JNI]
classPath=tika\tika-app-1.5.jar
libraryPath=C:\Program Files\Java\jre7\bin\server\jvm.d1ll

1.4.2.13.2. Basic example

A list of classes is imported using the function Sjni.use(). For each class, a function object of the
same name is created and can be instantiated with new. All static properties are transferred to the
function object. The java class namespace can optionally be omitted.

219

Technical Handbook 5.8 - 1.4. JavaScript API

// Import the StringBuilder class, without namespace
$jni.use(["java.lang.StringBuilder"], false);

// Create a new instance

const builder = new StringBuilder();

// Javascript primitives and Strings are automatically converted
builder.append("Welcome to ");

builder.append($k.volume());

// tolJS() converts Java objects to Javascript objects
$k.out.print(builder.toString().toJS());

1.4.2.13.3. Text/metadata extraction with Apache Tika

$jni.use([
"java.io.ByteArrayInputStream",
"java.io.BufferedInputStream",
"java.io.StringWriter",
"org.apache.tika.parser.AutoDetectParser",
"org.apache.tika.metadata.Metadata",
"org.apache.tika.parser.ParseContext",
"org.apache.tika.sax.BodyContentHandler"
1, false);
// Get a blob
const blob = $k.Registry.elementAtValue("uuid", "f36db9ef-35b1-48c1-9f23-
1€10288fddf6") .attributeValue("ebook") ;
// Blobs have to be explicitely converted to Java byte arrays
const bufferedInputStream = new BufferedInputStream(new
ByteArrayInputStream($jni.toJava(blob)));
// Parse the blob
try {
const parser = new AutoDetectParser();

const writer new StringWriter();

const metaData = new Metadata();

parser.parse(bufferedInputStream, new BodyContentHandler(writer),
metaData, new ParseContext());

const string = writer.toString().toJS();

// Print extracted metadata

const metaNames = metaData.names().toJS().sort((a, b) => a.
localeCompare(b));

for (let name of metaNames)

$k.out.print(${name} = ${metaData.get(name)}).cx();

// Print extracted text (first 100 chars)

$k.out.cxr().cr().print(${string.substring(1l, 100)} [...]1\n\n(${string
.length} chaxrs)");
} catch (e) {

220

Technical Handbook 5.8 - 1.4. JavaScript API

$k.out.print("Extraction failed: " + e.toString());
} finally {
bufferedInputStream.close();

1.4.2.14. Parsing XML

The experimental DOMParser API offers a subset of the web API functionality for parsing XML
content.

1.4.2.14.1. Read XML as DOM

const xml = '<rootNode><nodel>Some text</nodel><node2>More
text</node2></rootNode>"'

const dom = new $dom.DOMParser().parseFromString(xml)
$k.out.print(dom.firstChild.children[@] .nodeName)

1.4.2.14.2. Address nodes using XPath

const xml = '<rootNode><nodel>Some text</nodel><node2>More
text</node2></rootNode>"'

const dom = new $dom.DOMParser().parseFromString(xml)
$k.out.print(dom.evaluate('//node2").stringValue)

1.4.3. Modules

1.4.3.1. Define modules

A module is defined with the define() function. The argument is either a module object or a
function that returns an module object. A module should contain only a single definition.

Example: Define a module with a function jsonify())

$k.define({
/*
* Create a JSON object array for the elements
%3/
jsonify: function(elements) {
return elements.map(element => {
name: element.name(),
id: element.idString(),
type: element.type().name()
1)
221

Technical Handbook 5.8 - 1.4. JavaScript API

)

define() allows to specify dependencies from other modules. The following script defines a module
that uses another module ("rest.common").

$k.define(["rest.common"], function(common) {
return {
stringify: function(elements) {
return JSON.stringify(common.jsonify(elements), undefined,

\t")

)

1.4.3.2. Use modules

A module can be used either with require() or module().

require() expects an array of module names and a callback function. The arguments of the callback
function are the module ojects. require() returns the return value of the callback function.

const elements = $k.Registry.query("rest.poi").findElements ({name:

Madrid"});

const json = $k.require(["rest.common"], function(common) {
return common.jsonify(elements);

3
$k.out.print(JSON.stringify(json, undefined, "\t"));

module() expects the name of a module and returns the module object.

const json = $k.module("rest.common").jsonify(topics);
$k.out.print(JSON.stringify(json, undefined, "\t"));

module() can also be used to include scripts that doe not define a module at all. The script is
evaluated and all declared functions are instantiated. These functions can then be called.

1.4.3.3. AMD

To integrate JavaScript libraries that support the AMD standard, you first have to globally define
require() and define().

222

https://github.com/amdjs/amdjs-api/wiki/AMD

Technical Handbook 5.8 - 1.4. JavaScript API

this.define = $k.define;
this.define.amd = {};
this.require = $k.require;

If a library defines a module with a certain ID and you want to register this library under a different
name, you can map the module IDs to registry IDs.

$k.mapModule("underscore", "lib.underscore");

You can now register underscore.js as "lib.underscore" and use the "underscore" module defined
there.

1.4.4. Editor and debugger

The editor itself provides the four tab-separated sections:

1.4.4.1. Script

Functionalities: Importing, editing and exporting scripts

JavaScript
& = echo/{string}

Script Executescript Debug Combined

Scit

]

function respond(request, parameters, response)

{

response.setText(parameters[“string”]);
response.setCharset("utf-8");

}

W

CRC C47A2D1E

| impot || Eport | | Swe | Dserd |

223

Technical Handbook 5.8 - 1.4. JavaScript API

Function Description
Import/Export Allows importing/exporting of *.js files from/to the file system of the PC.
Functions Lists all used and named function calls within the code. When selecting a

function out of the list, the editor jumps to the line where the function
call is located.

Save Saves the changes made to the code (shortcut: Ctrl + S).

Discard Discards all changes since the last time of saving.

1.4.4.2. Execute script
Functionalities: Executing script, displaying output, implementing test script for debugging.

The wrapper script shown in the following image is an example for testing a restlet in the
Knowledge Builder. The test script can be defined in the script editor on the "Execute script" tab as
"Additional test script".

Breakpoints can be set on the "Debug" tab.

Script Executescript Debug Combined
Execute script Transaction | Controlled by script ~
Output / Errors Variables and values
Not yet run ﬁ @
Variable Value Semantic element deactivated
string Test
Value set/edit String Semantic element
Additional test script Seript
Rem // Prepare request and response
Copy to clipboard Save W ove P g ? " "
var testRequest = new $k.HttpRequest(“http://localhost™);

var testResponse = new $k.HttpResponse();

// call the function respond() with the testbench parameters
\ respond(testRequest, $k.testbenchParameters, testResponse);
// Print the response.
Test script for evaluation; $k.out.print(testResponse.debugsString());
to be used for debugging
by invokingthe function
of the script.

CRC E2CCESC6

Import Export Save Discard

Function Description

Execute script Execute the script in one cycle, without interruption.

224

Technical Handbook 5.8 - 1.4. JavaScript API

Function Description

Transaction Writing actions (e. g. creating or deleting objects) from within the script
require a transaction. When the script is executed within an action of the
web frontend, it will automatically be surrounded by a transaction. If the
script is executed or debugged without being initiated by the web
frontend, a transaction needs to encapsulate the script by using one of
the following options:

e Controlled by script: In this case, the script needs to contain code
which encapsules actions within a transaction. For creating a
transaction, see the i-views JavaScript APl reference.

¢ Read only: Allows executing/debugging of the script as long as no
writing actions are being executed on the graph.

e Read and write: Allows reading and writing of graph structures,
without explicit transaction control in the script code.

Copy to clipboard Copies the output to the clipboard.

Save Stores the output to the filesystem.

The configuration for custom variables and the additional test script has been

NOTE . .
removed in version 5.7

1.4.4.3. Debug

Functionalities: Setting of breakpoints, stepping through code, evaluating expressions

| Stepping through the code |
L

ptyyExecutescript Debug Combined

Scri
’lL‘_:' E-:' t--:—ll l . Transaction | Controlled by script v

Status Paused, Line 3 Variables and values
- function respond(request, parameters, response) Name Value ~ I . f
Setting the { this [object JSEGIobalObject] Evaluation o
breakpoint @ ° response.setText (parameters[“string"]); “ ":PIW'" [object Function] === current values
- "y, @ Fclass “Function” .
by clicking on , response.setCharset("utf-8"); #oroto [object Function] 5 of variables
the margin < >
Evaluate expression Edit Search for
Call stack expression or
ARET T e variable to be
Test script @ 5 evaluated

225

Function

Start/Resume (F4)

Single step (F5)

Single step (entire
block) (F6)

Return from context
(F7)
Suspend (F9)

Terminate (F10)

Evaluate expression

Edit

1.4.4.4. Combined

Technical Handbook 5.8 - 1.4. JavaScript API

Description

This action starts executing the script, if no breakpoints are set or it starts
debugging the script (step-by-step) if at least one breakpoint has been
set before. Caution: When a breakpoint is set at a code line which only
includes a comment, the breakpoint will be ignored.

Executes the next logical step.

Executes the current block completely.

Executes the referenced code and returns to the originally invoked code.

Suspends (pauses) executing the code. When debugging, the debugger
goes on to the next breakpoint nevertheless.

Terminates executing or debugging the script.

Serves for evaluating the value of a variable after the debugger has
reached the next breaktpoint.

If a variable is selected that points to an element of the knowledge graph,
this button opens the editor window on the element.

Functionalities: Combines Script execution and output into one view

Script Executescript Debug

Combined

Script

function respond(request, parameters, response)

{

response.setText(parameters[“string"]);
response.setCharset("utf-8");

}

Import Export

Qutput / Errors

Content-type: text/plain;charset=utf-8

Test

CRC C47A2D1E

226

Technical Handbook 5.8 - 1.4. JavaScript API

1.4.5. API extensions

1.4.5.1. Additional functions

The API can be extended by adding functions to the prototypes. The following example extends
schema prototype objects to print schema information.

// Print the schema of the instances and subtypes of a type
$k.Type.prototype.printSchema = function () {

this.typesDomain().printSchema("Type schema of \"" + this.name() + "\"
") E

this.instancesDomain().printSchema("Instance schema of \"" + this.name()
+ U\

this.subtypes().forEach(subtype => subtype.printSchema());

// Print information about a property type
$k.PropertyType.prototype.logPropertySchema = function () {
$k.out.print("\t" + this.name() + "\n");

// Attribute types print their type

$k.AttributeType.prototype.logPropertySchema = function () {
$k.out.print("\t" + this.name() + " (Attribute of type " + this

.valueRange().type() + ")\n");

}

// Relation types print their target domains
$k.RelationType.prototype.logPropertySchema = function () {
$k.out.print("\t" + this.name());
const inverse = this.inverseRelationType();
if (inverse) {
const inverseDomains = inverse.domains();
if (inverseDomains.length > @) {
$k.out.print(" (Relation to ");
let separate = false;
inverseDomains.forEach(function (inverseDomain) {
if (separate)
$k.out.print(", ");
else
separate = true;
$k.out.print("\"" + inverseDomain.type().name() + "\"");
3
$k.out.print(")");

227

Technical Handbook 5.8 - 1.4. JavaScript API

$k.out.cx();

// Print all properties defined for a domain
$k.Domain.prototype.printSchema = function (label) {
const definedProperties = this.definedProperties();
if (definedProperties.length > 0) {
$k.out.print(label + "\n");
definedProperties.sort((pl, p2) => pl.name().localeCompare(p2.
name()));
definedProperties.forEach(propertyType => propertyType
.logPropertySchema());
}

// Print the entire schema
$k.rootType().printSchema();

1.4.5.2. Define your own prototypes

The prototype of a semantic element is usually one of the built-in prototypes (Instance, Relation
etc.). It is possible to assign custom prototypes to instances of specific types with the function
maplnstances(internalName, protoype).

Example: A basket prototype

// Define a Basket prototype with a function totalPrice()
function Basket() { }

Basket.prototype.totalPrice = function() {
return this.relationTargets("contains").reduce(
(sum, item) => sum + item.attributeValue('"price"),
0
)5

// Set the prototype of instances of the basket type
$k.mapInstances("Basket", Basket);

// Print the total price of all baskets

const baskets = $k.Registry.type("Basket").instances();

for (let basket of baskets)
$k.out.print(basket.totalPrice() + "\n");

228

Technical Handbook 5.8 - 1.4. JavaScript API

For using within other scripts, the module needs to be loaded first:

$k.module('myBasketSkript');
const basket = $k.Registry().elementWithID('ID_123");
$k.out.print(basket.totalPrice() + "\n");

229

Technical Handbook 5.8 - 1.5. REST services

1.5. REST services

The REST interface can be used for read and write access to the Knowledge Graph. To do so,
resources and services need to be defined. Resources describe the interface behavior when
accessing a specific path. The behavior of a resource is controlled using scripts. In addition,
predefined resources may also be used. Services bundle resources of a common path together.

Access takes place via HTTP requests that are structured according to the pattern

https://<hostname>:<port>/[<service-path>||<service-id>]/<resource-path-
and-parameter>

1.5.1. Configuration

The REST component must be added in the Knowledge Graph. It defines the necessary schema,
which is found in the “Technical” area - “REST” in the Knowledge Builder.

The REST interface is usually provided by the bridge service. This responds to HTTP prompts using
the REST configuration in the Knowledge Graph. The interface is already included in the tryout
version of the Knowledge Builder, and no bridge service is required.

Changes to the configuration in the Knowledge Graph do not automatically affect interfaces that are
already running. This only happens when the menu item “Administrator - Update REST interface”
is executed in the main menu of the Knowledge Builder.

The bridge service requires a suitable configuration file (bridge.ini). The name of the server (host),
the Knowledge Graph (volume) and the REST service ID need to be specified there. The line with
“services” can be omitted entirely to automatically activate the resources of all existing service
objects.

[Default]
host=localhost
loglevel=10

[KHTTPRestBridge]
volume=demo
port=8086
services=core,extra

1.5.2. Services

Services combine several resources. Resources may be contained in several services.

The service editor in the Knowledge Builder shows the resources in its structure view. A new

230

https://en.wikipedia.org/wiki/Representational_State_Transfer

Technical Handbook 5.8 - 1.5. REST services

resource can be created using “Link new” and is added to the service. A resource that has already

been defined can be added to the service using “Link existing”.

1.5.3. Resources

Resources describe the response in the event of an HTTP request to the interface. There are the
following types of resources:

Resource

Script resource

Built-in resource

Static file resource

Description

Resources that can be defined by scripts.

Predefined resource with a response that is defined by the system. These
resources are created by the component.

Serves files from the file system.

A resource has the following configurable properties:

Property

Path pattern

Part of service
Description

Requires
authentication

Description
Defines the URL of the resource relative to the address of the service.
The path can be parameterized by adding parameters in curly brackets:

albums/{genre}

Several parameters can be specified. Each parameter must, however, be a
part completely separated by /:

albums/{genre}-{year}

is not valid,

albums/{genre}/{year}

is valid

Services that use this resources

Description for documentation purposes

Authentication is required for access to the resource

231

Technical Handbook 5.8 - 1.5. REST services

1.5.3.1. Methods

A resource is linked to one or more methods . This defines the response as well as the supported
input and output types (content types). The methods and types of the HTTP request are used to
select a suitably configured method.

In the structure view, methods are displayed as subelements of resources and can be
created/deleted there.

Property Description

HTTP method Supported HTTP methods (GET, POST, PUT, DELETE). Multiple
entries are possible.

Input media type Only POST/PUT: expected content type of the content of the
request.

Output media type Content type of the response. If the request specifies an
expected content type via Accept, the output media type must
match this.

Script Registered script for the definition of the response (only relevant

for script resources)

Transaction Transaction control (only relevant for script resources)

Transaction control is relevant for write accesses to the Knowledge Graph because these are only
possible within a transaction.

Transaction control Description

Automatic For GET read access only; for POST/PUT/DELETE the script is
executed in a transaction. This is the default setting.

Controlled by script No transaction; the script must control this itself.

Read Read access only; the script cannot start a transaction.

Write The script is executed in a transaction.

1.5.3.2. Script resource

A script is used to define the response to an HTTP query for a method of a script resource. For this
purpose, the respond function (request, parameters, response) that must be defined in the script is
called from the interface.

Argument Type Description

request Sk.HttpRequest Request (URL, header etc.)
parameters object Parameter extracted from the request
response Sk.HttpResponse Response

232

Technical Handbook 5.8 - 1.5. REST services

The function then fills out the header and content of the response. There is no return value.

If a type has been defined for a parameter (e.g. xsd:integer), then the converted value is
transferred. If not, a string is transferred. Parameters that can occur more than once by definition
are always transferred as an array.

If an output content type was defined for the response in the method, this is set automatically.
Alternatively, it is also possible to define the content type in the script.

The following script searches for albums and converts them into JSON objects. The parameters of
the resource are transferred to the query as search parameters.

function respond(request, parameters, response) {
const albums = $k.Registry.query("albums").findElements(parameters);
const albumData = albums.map(album => ({
name: album.name(),
id: album.idString()
});
response.setText(JSON.stringify(albumData, undefined, "\t"));
response.setContentType("application/json");

This script could be used, for example, in the resource

albums/{genre}/{year}

and use the search parameters "genre" and "year" as the search conditions in the "albums" query.

1.5.3.3. Built-in resources

Built-in resources are predefined resources with a response specified by the system. Each
predefined response can be assigned using an assigned value of the string attribute Rest resource
ID.

Rest resource ID Method Description

BlobResource GET Returns the binary content of an
existing blob attribute. The blob
attribute is identified using the query
parameter blobLocator. Optionally,
the parameter allowRedirect can
be used to define that blobs may not
be obtained directly by the blob
service (fixed value: false).

233

Technical Handbook 5.8 - 1.5. REST services

Rest resource ID Method Description

BlobResource POST, PUT Changes the binary content of a blob
attribute. The blob attribute s
identified using the query parameter
blobLocator. Depending on the type
of the blobLocator, a new attribute
is created or an existing one changed.

EditorConfigResource GET, POST, PUT Output and import of an XML
representation of a semantic element.

ObjectListResource GET Returns a table of instances or
subtypes of the specified type. The set
of objects can optionally be filtered,
sorted or be defined directly.

ObjectListPrintTemplateResource GET Returns a table of instances or
subtypes in printed form. The print
template must be specified.

ObjectListPrintTemplate GET Returns a table of instances or

ResourceWithFilename subtypes in printed form. The print
template must be specified. The
parameter (filename) is not evaluated,
and is only used to improve its use in
the browser.

TopiclconResource GET Returns the icon or image of the
specified semantic element.

Version 4.1 or higher of i-views allows a JavaScript (rest.preprocessScript) to be attached to
the resource. The function it contains (preprocessParameters(parameters, request)) can
provide the parameters. Any blobLocator (or the associated blob attribute) still missing can, for
example, be determined from the parameters transferred, which would otherwise require an
additional script resource call.

1.5.3.3.1. BlobResource

This built-in resource allows contents of file attributes to be loaded and saved.

Download

The GET method can be used to download the binary content of an existing file attribute. The file
attribute is then identified by means of the query parameter blobLocator.

Upload

In the case of an upload, the parameter blobLocatoxr either identifies an existing file attribute or a
potential file attribute (i.e. new one to be created). The syntax for a potential attribute has the

234

Technical Handbook 5.8 - 1.5. REST services

following form: PP~ID1_115537458~ID36518_344319903, whereby the first ID represents the
semantic element and the second ID the attribute prototype.

The binary data can optionally be transmitted as a multipart or single part. In the case of multipart,
several files can potentially be uploaded at the same time, which, of course, only makes sense when
each file is written to a newly created file attribute. In any case, the file name must be set for every
file transmitted.

The optional parameter binaryKey defines the form key used to transmit the binary data in
multipart.

If the optional Boolean parameter uploadOnly is set to true, then the binary data are uploaded
only, and are not written into the file attribute. This mode is used in interplay with the
ViewConfiguration Mapper. The JSON value is returned in this case (fileName, fileSize,
binaryContainerld), which can be written into the attributes using the mapper in a second step. The
content type of the returned JSON value is normally application/json, however can be set to
another value using the parameter overrideContentType should the browser (e.g. IE) encounter
problems doing so.

1.5.3.3.2. Topic icon

The following path can be used to load the image file to a given topic. If an individual does not have
an image file of their own, the image file of the type is used, which is, in turn, inheritable. The
optional parameter size can be used to select the image file with the size that is most suitable,
providing several image sizes are saved in the Knowledge Graph.

http://{server:port}/baseService/topicIcon/{topicID}?size=10

1.5.3.3.3. Object list

The following path can be used to request an object list in the JSON format:

http://{server:port}/baseService/{conceptLocator}/objectList

The object list type is referenced via the conceptLocator parameter, which is followed by the
format for topic references in the remaining URL (see link).

Alternatively, the conceptLocator can also reference the single prototype (individual or type) of
the type to be used.

The optional name parameter determines the object list to be used for the output.

235

Technical Handbook 5.8 - 1.5. REST services

Filter

The optional and multi-value query parameter filter can be used to filter the object list. A filter
can take two different forms:

1. <column name/column no.> ~ <operator> ~ <value>

2. <column name/column no.> ~ <value>

The available operators are: equal, notEqual, greater, less, greaterOrEqual, lessOrEqual,
equalCardinality, containsPhrase, covers, isCoveredBy, distance, fulltext, equalGeo,
equalPresentTime, greaterOverlaps, greaterPresentTime, lessOverlaps, lessPresentTime,
equalMaxCardinality, equalMinCardinality, overlaps, unmodifiedEqual.

Sorting

The optional and multi-value query parameter sort can be used to sort the object list. The order of
sorting parameters determines the sorting priority. Sorting can be specified in two forms:

1. <column name>

2. {-}xcolumn no.>

If you prefix a minus sign in variant 2, sorting is performed in descending order, otherwise it is in
ascending order.

Setting the starting set of the list

The optional elements query parameter can be used to transmit a comma-separated list of topic
references to be used as list elements.

As the list of elements can be very long, the request can also be sent as POST and the parameters
can be transferred as form parameters.

Inheritance

Inheritance can be suppressed via the optional query parameter disableInheritance. The
parameter only makes sense if no elementsPath is set.

JSON output format (example)

{
"rows": [
{
"topicID": "ID123_987654321",
"row": [
"MM",
"Mustermann",

236

}’
{

}
1.

"Max",
"111",
"m.mustermann@email.net",
"10",
"en
"2000-01-01",
"project A, project B"
1

"topicID": "ID987_123456789",
"Tow": [
"MF",
"Musterfrau",
"Maxine",
222",
"m.musterfrau@email.net",
"10",
g
"2000-01-01",
"project X, project Y, project

"columnDescriptions": [

{

}’
{

"label": "Login",
"type": "string",
"columnId": "1"

"label":
"type": "string",
"columnId": "2"

"Last name",

"label":
"type": "string",
"columnId": "3"

"First name",

"label": "Telephone extension",
lltypell : llstring"’
"columnId": "4"

Zn

Technical Handbook 5.8 - 1.5. REST services

237

Technical Handbook 5.8 - 1.5. REST services

"label": "email",
"type": "string",
"columnId": "5"

Bo

{
"label": "Availability",
"type": "number",
"columnId": "6"

b,

{
"label": "Expenditure",
"type": "string",
"columnId": "7"

o

{
"label": "created on",
"type": "dateTime",
"columnId": "8"

iz

{

"label": "Project",
"type": "string",
"columnId": "9"

1.5.3.3.4. Object list print template

The following path can be used to fill an object list in a ‘print template for list" and download the
result:

http://{server:port}/baseService/{conceptLocator}/objectList/printTemplate
/

{templatelLocator}/{filename}

The service functions exactly the same way as retrieving an object list, however, as an additional
parameter, features a reference to the individual of the type print template for list in the Knowledge
Graph.

templatelLocator must have one of the formats described under General

238

Technical Handbook 5.8 - 1.5. REST services

The optional path parameter filename is not evaluated, and is used to improve browser
performance.

The header field Accept is used to control the output format into which conversion occurs. If there
is no header field, or the value is */*, no conversion occurs. Accept with multiple values is not
supported and will result in an error message.

The optional query parameter targetMimeType is used to overwrite the value of the Accept

header field. This is necessary when the user would like to call the request from a browser, and has
no influence on the header fields.

1.5.3.3.5. Print topic

The following path can be used to fill out a topic in a print list template and download the result:

http://{server:port}/baseService/{topiclLocator}/printTemplate/

{templatelLocator}/{filename}

templatelLocator must have one of the formats described under General

The optional path parameter filename is not evaluated, and is used to improve browser
performance.

The header field Accept is used to control the output format into which conversion occurs. If there
is no header field, or the value is */*, no conversion occurs. Accept with multiple values is not
supported and will result in an error message.

The optional query parameter targetMimeType is used to overwrite the value of the Accept
header field. This is necessary when the user would like to call the request from a browser, and has
no influence on the header fields.

1.5.3.3.6. Document format conversion

You can use the following path to convert a document to another format (e.g. odt in pdf):

http://{server:port}/baseService/jodconverter/service

The service maps the JOD converter (see http://sourceforge.net/projects/jodconverter/) and is used
for downward compatibility for installations that used to be operated with the JOD converter.

For the service to work OpenOffice/LibreOffice (version 4.0 or above) must be installed and the
configuration file "bridge.ini" must have an entry that refers to the "soffice" file.

239

http://sourceforge.net/projects/jodconverter/

Technical Handbook 5.8 - 1.5. REST services

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0@\program\soffice.exe"

1.5.3.4. Static File Resource

Delivers files from the file system.

With this type of resource, you merely use Path pattern to specify the directory under which the
files are delivered. The directory is addressed relative to the content directory of the REST bridge.

Example:

Enter an icons directory with the file bullet.png . The path pattern of the resource is icons, the
corresponding service has the Service ID test. The file bullet.png is thus accessed via:

http://localhost:{bridge-port}/test/icons/bullet.png

1.5.3.5. Resource parameters

The parameters for the resource can be defined below methods. This is not absolutely essential,
does, however, have a number of advantages:

e The parameters can be checked and converted by using type specifications (e.g. in numbers or
objects)

e Documentation for customers

The following parameter properties can be configured:

Property Value

Style Type of parameter

e path (part of the path of the URL)
e query (query parameter of the URL)
e header (HTTP header)

Type Data type of the parameter. Parameters have been validated and
converted when passed to the script.

Repeating Parameters may occur multiple times. When this is activated, an array of
values is always passed to the script, even if there is only one parameter
value in the request.

Required Parameter must be provided.

Fixed value Default value when no parameter was provided.

240

Technical Handbook 5.8 - 1.5. REST services

1.5.3.6. Authentifizierung

Each resource can be assigned to an authentication object to restrict the access and to bind the
request to a user object.

Authentications are defined as objects of type "Authentication” in the "REST" area. Resources are
assigned to an authentication object with the relation "Authentication" of the resource.

The kind of authentication is defined by the attribute "Authentication type" of the authentication
object. Some configuration values are only available for specific authentication types.

Configuration Description
Authentication name Arbitratry name to distinguish configurations
Cache duration The user lookup is cached for this amount (in

seconds). See chapter "Login confguration".

Trusted login Credentials (e.g. the password) are not validated
when enabled

1.5.3.6.1. Authentifizierungsverfahren

No authentication

As the name says, no authentication is performed and thus no user is activated by default. If a REST
resource using this authentication defines a fallback user instance, then the request is bound to this
object.

Basic authentication

Authenticate a user with the Basic scheme defined by RFC 7617. Requires identiying a user object
with a matching password. See the chapter "Login configuration".

Bearer authentication
Uses JSON Web Tokens defined by RFC 7519 to authenticate requests.

Users are identified by the subject claim. The value of this claim is the element ID of the user
object, unless a "Token subject attribute" is specified in the authentication configuration that
specifies the value of an attribute of the user objects. The login configuration is not used here.

By default, the token can be passed as header, cookie or query paramerer. This can be restricted by
setting the attributes "Allow authorization header" / "Allow cookie" / "Allow query parameter" to
false.

The "Allow cookie" attribute can be set to define additional cookie parameters, which can be
specified as a meta attribute. The vaue is added to the "Set-Cookie" header in the response.

The "Cookie/Parameter name" attribute defines the name of the cookie / query parameter.

241

Technical Handbook 5.8 - 1.5. REST services

"Token expiry interval" and "Token renew interval" define the lifespan of new tokens.
Negotiate

Uses Windows Negotiate defined by RFC 4559 to authentication requests. This authentication type
is only supported on Windows platforms.

It is not recommended to use this authentication scheme. Negotiate authenticates connections, not
requests, which is not suitable for load balancing.

Scripted

This authentication type uses a script with four custom definable functions to handle user
authentication. This is useful to outsource authentication to third party central authentication
providers like OpenlD Connect, or to implement custom authentication schemes.

Note: While the all script functions have sensible default implementations that prevent any
unauthorized access, it is easily possible to expose parts of the REST service due to careless
implementations.

Each function receives the request object, an object with the request’s query parameters and a
response object as input. The main authentication function that is evoked with each request is
called authenticate :

function authenticate(request, parameters, response) {
const encryptedToken = request.cookies().access_token
if (encryptedToken) {
const token = $k.JWT.parse(encryptedToken)
try {
token.verify()
return $k.Registry.elementWithID(token.payload().sub)
} catch (e) {}
}
response.setCode(302)
response.setHeaderField('Location',
"http://auth.example.com?return_url=' + request.url())
}

In this example, the authentication routine expects an encrypted JWT token called access_token
that is sent as cookie with the request. If the token is present and successfully verified, a user object
can be derived from the token’s payload. The request is then executed under this user. Otherwise, a
redirect (HTTP 302) to an external authentication provider is triggered. It is implicitly assumed that
the authentication provider will set the access_token cookie after successful authentication, such
that the next request to this endpoint will succeed.

Note that if the authenticate function does not return a user instance or null, the authentication is

242

Technical Handbook 5.8 - 1.5. REST services

considered failed and the actual request handler is not evoked. The function may return null to
indicate a successful authentication from which no user can be derived. The request handler is then
evoked without an active user.

The functions login , logout and renew can be implemented for more sophisticated authentication
schemes that support user logout etc. They are evoked when the respective built-in request
(accessToken/login, accessToken/logout, accessToken/renew) is called. These are also used to
handle the authentication flow of the View Configuration Mapper and therefore need to be
implemented to ensure smooth interaction.

1.5.3.6.2. Login-Konfiguration
The Basic authentication looks up user objects with a login search.

If no login query is configured, then the user object is determined by searching for the value of the
attribute "login" of the user objects. This attribute is defined when the user type is defined in the
access rights settings.

The login query can be defined by creating a query with the registry key "login". If the query is a
structural query, then the identity is passed to each defined query parameter.

The type of the user objects is defined by the access rights settings. The found objects must match
the specified type, otherwise the authentication fails.

If no or more than one user object is found for the identity, then the authentication fails.

The hash value of the provided password is checked against the hash value stored in the
corresponding attribute of the user object. The authentication fails if they do not match. The
password check is skipped if "trusted login" is activated in the authentication configuration.

The request is then bound to the user, e.g. access rights are checked for this user.

1.5.4. CORS

In the case of OPTIONS requests, the REST interface responds by default with

Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,Content-Type,
Accept

These headers can be configured in the configuration file (bridge.ini):

[KHTTPRestBridge]
accessControlAllowOrigin=http://*.i-views.de
accessControlAllowHeaders=0rigin, X-Requested-With,Content-Type, Accept

243

Technical Handbook 5.8 - 1.5. REST services

1.5.5. OpenAPI documentation

i-views offers the possibility to generate OpenAPI-3.0 documentation for configured services. For
this purpose, service configurations and resource configurations can be enriched with

documentation data.

1.5.5.1. Configuration
1.5.5.1.1. Service

Property

Service Description

Service Version

Service ID

OpenAPI components

1.5.5.1.2. Resource

Property

Resource Description

1.5.5.1.3. Method

Description Mapping to OpenAPI
3.0
Free text description of the service; supports
GitHub Flavored Markdown info.descripti
on

Version specification which is interpreted as

Semantic Version. info.version

info.title
Script which generates reusable OpenAPI-3.0
components in forms of a JSON object. components
Description Mapping to OpenAPI
3.0
Free text description of the resource, supports
GitHub Flavored Markdown paths. {path}.d
escription

The mappings to the OpenAPI elements are specified relatively to paths.{path}.{method}

Property

Method description

Description Mapping to OpenAPI
3.0

Free text description of the resource; supports
GitHub Flavored Markdown -description

244

https://semver.org/

Technical Handbook 5.8 - 1.5. REST services

Property Description
Request Body See section Request Body
Response See section Response

1.5.5.1.4. Parameter

.requestBody

.responses. {co
de}

The mappings to the OpenAPI elements are specified relatively

paths.{path}.{method}.parameters.{index}

Property Description

Parameter Description Free text description of the parameter; supports
GitHub Flavored Markdown

Parameter name

Repeating In case of path parameters, this option MUST
NOT be enabled.

.description

.name

.explode: true

.schema:
{ll.type" :
narrayn}
Required In case of path parameters, this option MUST be
enabled. .Trequired
Style
.in
Type
.schema
1.5.5.1.5. Request Body
The mappings to the OpenAPI elements are specified relatively

paths.{path}.{method}.requestBody

Mapping to OpenAPI
3.0

to

Mapping to OpenAPI
3.0

to

245

Property

Request Body
Description

Required

Media type

1.5.5.1.6. Response

Technical Handbook 5.8 - 1.5. REST services

Description Mapping to OpenAPI
3.0
Free text description of the body; supports
GitHub Flavored Markdown -description
.required

Replaces the Input media type which could be
stored at the method regarding i-views 5.3. i-
views 5.4 supports description of several ~2aType}
possible request formats. See section Media

Type .

.content. {medi

For a valid OpenAPl documentation, a response needs to be documented for each request. The

specified mappings relate to their response object, respectively.

Property

Response Code

Response Description

Media type

1.5.5.1.7. Media Type

Description Mapping to OpenAPI
3.0
HTTP status code of the response Key

Free text description of the response; supports
GitHub Flavored Markdown -description

Replaces the Output media type which could be
stored at the method regarding i-views 5.3. i-
views 5.4 supports description of several =~ a@Type}
response formats. See section Media Type .

.content. {medi

From OpenAPI 3.0 and on, the support for several input formats and output formats by a request

can be documented by specifying several media types.

Property

Media Type Name

OpenAPI schema

Description Mapping to OpenAPI
3.0

The MIME string which defines the Media Type. Key

Script which generates a JSON schema object,
which in turn describes the format of the
structure with this Media Type.

.schema

246

Technical Handbook 5.8 - 1.5. REST services

1.5.5.1.8. JSON schema definitions

For creating JSON schema for further descriptions of input and output, scripts can be defined at
different locations. The scripting supports a subset of the JSON schema standard which can be seen
in the OpenAPI specification.

Example script for OpenAPl components :

function openAPIComponents() {
return {
"schemas": {
"Example": {
"properties": {
"id": { "type": "integer" 1},
"name": { "type": "string" }

Exmaple script for OpenAPI schema with reference to the definition above:

function swaggerJSONSchema() {
return {
"$ref": "#/components/schemas/Example"

1.5.5.2. Generating the APl documentation

1.5.5.2.1. Manual generation within the KB

For generating a .json file manually by means of the OpenAPI documentation within the Knowledge
Builder, a button Export as OpenAPI 3.0 is provided above the list of the services.

1.5.5.2.2. CLI

The same export also is provided by means of the command line interface:

bridge-64.exe -exportBuiltInRequestAPI {filename} {serviceID}

247

https://spec.openapis.org/oas/v3.0.3#schema-object

Technical Handbook 5.8 - 1.5. REST services

1.5.5.2.3. As REST API endpoint

In i-views 5.4, a built-in resource called APIResource is available, which provides the API
documentation. It can be added to the respective service by means of the button and it is available
at /api or at the configured path accordingly.

248

Technical Handbook 5.8 - 1.6. Reports and printing

1.6. Reports and printing

You can use the printing component to use document templates (ODT/DOCX/XLSX/RTF files) with
KPath expressions on objects or object lists and then use them to generate an adapted output file,
which can be either printed or stored.

The adding of the printing component via the Admin tool creates configuration schemas for objects
(“print template”) and lists (“print template for lists”) in the Knowledge Graph. The existence of this
component is prerequisite for the print function being available in Knowledge Builder or via the
REST interface.

1.6.1. Create print templates

In Knowledge Builder, print templates are created in the “Technical = Printing component” area.
Each print template object contains a print template document (ODT, DOCX, RTF) and a relation that
specifies to which objects the print template is to be applied.

The following example shows an ODT print template for objects of the “Task” type.

—
p Print template Print template for lists — ﬁ' D
W/ FOLDER =
= KNOWLEDGE GRAPH @
TECHNICAL ~
- Name Print template for
¥ @@ Rights (deactivated)
» 47 Trigger Performance record
Print t late for task Task
» ko Registered objects rint tempiate for tas as
» L} Printing component
» 4% REST
» W View configuration
» L} Entire Knowledge Graph
» £} Core properties
Configuration
» Configuration name = | Print template for task
4 Document (template) = |taskodt ﬁ D
Document (template) = |taskodt ﬁ D
Document (template) = ‘} D
a = Print template for = Task
Community Print template for = 4
Template data script = Choose *e

The following chapters explain how print template documents are created.

1.6.1.1. Create RTF templates

The RTF template files can contain evaluable KPath expressions with the key words KPATH_EXPAND
and KPATH_ROWS as well as calls for registered KScripts with the key words KSCRIPT_EXPAND and
KSCRIPT_ROWS . The path expressions or the name of the script to be called are always placed

249

Technical Handbook 5.8 - 1.6. Reports and printing

between angle brackets and after the key word, separated by a space.
KPATH_EXPAND

The KPath expression after this key word should return a single semantic object or a simple value
(date, string etc.). In the evaluation the original expression is replaced by the result. The formatting
of the expression is retained, and breaks in the value are converted into line breaks.

e Example: ** The template is:

Sender:
<KPATH_EXPAND @%$address$/rawValue()>

After the evaluation the output file says:

Sender:
intelligent views gmbhJulius-Reiber-Str. 1764293 Darmstadt
KSCRIPT_EXPAND

As an alternative to the path expression, KSCRIPT_EXPAND can be used to call a registered KScript.
The output of this script (script elements with <output>) is transferred to the document. Scripts are
registered in the Knowledge Builder in the folder TECHNICAL/Registered objects/Scripts

e Example: ** The template is:

<KSCRIPT_EXPAND aScriptWithOutputlto9>

After the evaluation the output file says:

123.456.789

KPATH_ROWS

This expression must be in a table. The KPath expression after this key word must return a list of
semantic objects. During evaluation the table row of the KPATH_ROWS expression is evaluated once
for each result of the KPath expression. This allows tables to be completed dynamically. By the way,
it does not matter which column contains the KPATH_ROWS expression.

KSCRIPT_ROWS

In case of KSCRIPT_ROWS the objects for the table rows are determined via a registered KScript.
The name of the registered script is specified directly after KSCRIPT_ROWS. The script must be of

250

Technical Handbook 5.8 - 1.6. Reports and printing

the KScript type and return the objects for output.

Example: The template is:

Columnl Column2

<KSCRIPT_ROWS allPersons><KPATH_EXPAND <KPATH_EXPAND @SfirstnameS>
@SlastnameS$>

After the evaluation the output file says:

Columnl Column2
Meier Peter
Schulze Helmut

1.6.1.2. Create ODT documents (OpenOffice)

Printing using the ODT format (Open Document Text, open standard) has many advantages
compared to the RTF format:

The embedded script instructions are not part of the text, and are instead filed in special script
elements. This ensures that the formatting is not destroyed by lengthy scripts.

The ODT format supports a large set of format instructions (comparable with MS Word) that
RTF cannot process.

As a format, RTF does not have a uniform standard (MS Word can, for example, “do more” than
the standard).

Editing of the RTF templates is highly fragile. MS Word, above all, tends to ‘supplement’ the
templates with control elements (for example, the cursor position current during the most
recent editing), preventing the scripts from being reliably identified.

ODT templates can be created using OpenOffice or LibreOffice. They are created the same way as

RTF templates are created, with the only difference being that the path/script instructions are saved
in script elements, as the following diagram shows.

251

Technical Handbook 5.8 - 1.6. Reports and printing

File Edit ﬁw‘n&u‘t Format Table Tools Window Help

‘R-E8-4
@ Default .
v

15 14°13 12° 1110 9 8 76 5 a3 2 1 [

Manual Break...
Fields

Special Character...
Formatting Mark

Section...

Hyperlink

Header

Footer
Footnote/Endnote,..
Caption...

Bookmark...
Cross-reference...
Comment Strg+Alt+C

Indexes and Tables
Enyelope...

Frame...

Table... Strg+F12
Horizontal Ruler...
Picture

Moyie and Sound
Object

Floating Frame

Eile...

— Y- - @HE-rv #2868 9Q
— Ml [B7 U ===s|i-:e4

343607 890 A0 A A2 13 1415 .15‘...3 . ‘13...|

C
§¢npttypg kPath I#
ow [
®ex T
@Sfamilyname$ ~
_
< > ’

The script field can no longer be integrated in LibreOffice 5. As an alternative to this, the “Input

field” can be used:

Insert > Field command > Other field commands (alternative keyboard shortcut Ctrl+F2)

The input field is found there on the “Functions” tab.

252

Technical Handbook 5.8 - 1.6. Reports and printing

File Edit Viewg Insert | Format Styles Table Form Tools Window Help

B e o B s | ¢ e g BRI E B0 R 00 B

-

More Breaks »
Defaut Sty | [\ 12 [v T USIX2X, A A~"#~
e 1y Chart.. L4 5 8, 7 8 12

[Media v
B Object »
[+ Shape »

14

8 L9 19 1,

Lﬁ 1]

Section...
Text from File...
E Text Box
Comment Strg+Alt+C
Frame »
F Fontwork...

Caption...

() Hyperlink... Strg+K.

Bookmark...

Cross-reference...

Q Special Character...
Formatting Mark »

Horizontal Line

Page Number
Page Count
Date

Time

Title

First Author
Subject

Document Crussfrefemn@odnfurmalion Variables Database

Format Name

|—"1 Footnote and Endnote »
|;'l Table of Contents and Index »

r& Page Number Placeholder

© Field » I More Fields... Strg+F2 Combine characters
[Header and Footer » Hidden text

Hidden Paragraph

Reference

Execute macro ScriptFunction

Il omON#EE

Macro...

Envelope...
Signature Line...

“Note” is equivalent to the previous “Script type”; after clicking on insert, another window opens in
which the script can be entered.

Reference: ScriptFunction

aScript->aFunction()

Help Previous Next OK Cancel

Available script types
There are the following script types:

¢ KPath : analogous to KPATH_EXPAND
e KScript : analogous to KSCRIPT_EXPAND
e KPathRows : analogous to KPATH_ROWS

253

Technical Handbook 5.8 - 1.6. Reports and printing

e KPathimage : for embedding images

e ScriptFunction : Calls a function of a registered script. A string with the following format is
expected as text:

ScriptID->Functionname()

The function call is automatically expanded by two arguments: the semantic element and the
variables determined by the environment

An example of a script that was called:

function headerLabel(element, variables)

{

return element.name().tolLocaleUpperCase();

e ScriptRowsFunction : Analogous to ScriptFunction. Table rows are generated for the returned
objects, analogous to KPathRows.

¢ ScriptimageFunction: for adding bitmap images

¢ ScriptSVGImageFunction: for adding SVG drawings * DataPath: The “script for generating
JSON contents” must be set on the print template. The corresponding key can now be used to
access the values of the JSON object.

Example of generating the JSON object:

function templateData(element)

{
return {
name: element.name(),
idNumber: element.idNumbex (),
someData: { idString: element.idString() }
}
}

To access the value idString, for example,

someData.idString

must be set as text. * DataRowsPath: In table rows or sections (Libre Office only), DataRowsPath
can be used to transform an array of objects in the templateData JSON to a table or sequence of
sections in the printed document. Each object in the array is transformed into a new row with

254

Technical Handbook 5.8 - 1.6. Reports and printing

identical formatting as the row the DataRowsPath element is placed in. This allows having lists of
variable length in the printed document. DataPath and DataConditionPath elements in the same
table row or section as a DataRowsPath element are interpreted relative to the path of the
DataRowsPath element.

function templateData(element) {
return {
rowData: [
{ name: "Element 1", someValue: 123 },
{ name: "Element 2" }

¢ DataConditionPath: Like DataRowsPath elements, DataConditionPath can be placed in table
rows or sections. Unlike DataRowsPath elements, DataConditionPath can reference anything in
the templateData JSON, not only arrays of objects. When the referenced property in the
templateData JSON is a JavaScript falsy value (false, undefined, null, 0 or an empty String) or an
empty Array, the table row or section the DataConditionPath element is placed in is removed
from the printed document.

File attributes or URLs can be used for embedding images. When URLs are used, an attempt is made
to load an image from the address specified.

Embedded images are always sourced in their original size (at 96d dpi). If another size should
appear in the printout, a frame with the required dimensions (absolute dimensions in cm must be
used!) must be built around the script element. The resulting embedded image is then fit into the
frame so that the frame dimension is not exceeded while retaining the image aspect ratios.

1.6.1.3. Create DOCX documents (Micrsoft Word)

DOCX templates can be created using Microsoft Word 2007 or higher.

They are created the same way as RTF templates are created, with the only difference being that
the path/script instructions are saved in text content control elements.

To insert the control elements, it is first necessary to activate the developer tools in Word. To do so,
go to the Office menu, open the Word options , go to the Popular commands category and activate
the option Show Developer tab in the ribbon . Now go to the Developer tools tab and activate
Design mode .

255

File

Visual
Basic

sl 2

o430 -2

Home Insert

F== ﬁ@ Record Macro

@l

Macros

& Macro Security

Code

P2l

L
)

Technical Handbook 5.8 - 1.6. Reports and printing

Design Layout References Mailings Review View Help ¢35 Share J Comments
O % B (g um— o O
=& o El Properties . B
Add- Word COM . XML Mapping Restrict | Document
ins Add-ins Add-ins ,g=|a BY - = v Pane Editing Template
Add-ins Controls Mapping Protect Templates ~
1+11 e300 300040051 plie Teut Content Control 1 +12+ 0 13+ 1 1400 - 150 0 ¢ ARTEEIEE 18

klick or tap here to enter text,,

Insert a plain text content control,

To add KScript/KPath expressions, insert a Text-only content control element . The text of the
control element is replaced by the calculated text. Go to the properties of the control element (via
the context menu on the closing bracket) and specify the KScript or KPath under Title . If you leave
the title empty, the text of the control element will be used instead. Enter the script type under Tag
. The available script types are all the types available in ODT, with the exception of KPathlmage .

256

Technical Handbook 5.8 - 1.6. Reports and printing

General
Title: name{]|
Tag: KPath

Show as: Bounding Box|

Color: 2 b

[] Usea style to format text typed into the empty control
Style: |Default Paragraph Font| v
f’-\\ MNew Style...
|:| Remove content controal when contents are edited

Locking

|:| Content control cannot be deleted

|:| Contents cannot be edited

Plain Text Properties

[] Allow carriage returns (multiple paragraphs)

QK Cancel

1.6.2. Create print templates for lists

Print templates for lists are saved in the “TECHNOLOGY/Print components” area in the Knowledge
Builder. Each “Print template for lists” object contains a print template document (XLSX) and a
relation that specifies to which objects the print template is to be applied. Optionally, an object list
can be specified that should be used for generating the output. This allows the format of the list
that the user sees on the screen, and the format of the list that was output, to be different.

When the attribute “Document (print template)” was not created, then when a document is
generated, an Excel file is generated that contains one spreadsheet with the data in the object list
and the column headings from the object list configuration, i.e. an Excel file does not necessarily
have to be specified as the print template.

The following example shows a print template for lists with objects of the “Task” type.

257

W/ FOLDER

= KNOWLEDGE GRAPH

TECHNICAL

3 a Rights (deactivated)
» 4 Trigger

» b Registerad objects
» LI Printing compaonent
» 4% REST

» Wl view configuration

» L¥ Entire Knowledge Graph

» L} Core properties

Community

Technical Handbook 5.8 - 1.6. Reports and printing

p Print template Print template for lists

20
s

DEEER - -
|

&

Name

Task-List

Configuration
¥ Configuration name
¥ Document (template)
Object list
Print template for

Print template for

Print template for

Task

= |Task-Li5t

| task-templatexlsx

Fm

List for printing

Task

e

XLSX templates can be created using Microsoft Excel 2007 or higher. These templates only function

with object lists.

Creating the Excel file

A standard Excel file is used as a template, and must include an additional spreadsheet called
“data”. This spreadsheet is subsequently filled with the object list data, and this without headings
and beginning with cell Al.

File Home Page Layout Formulas Data Review View Developer Help g W
Ifl’j X A = % fEf conditional Formatting ~ i) o) &
v 7 F Table ¥
Paste @ Font | Alignment | Number FE Format o5 Table Cells | Editing | Ideas
. v v v [iZZ cell Styles ~ v v
Clipboard & Styles Ideas Sensitivity ~
122 - f v
| A B c | D E F G H |) K~
1 Bill
2 Joe
3 John
4 Mary
5 Alfred
6_
7
8
9 iy .
Sheet1(| data | Jcharts | (& i 4] >
Ready [® C& Display Settings H b -——h—+ 100%

The other spreadsheets can reference data from the “data” sheet in formulas. i-views ensures that
all formulas are calculated again as soon as the completed Excel file is next opened using Excel.

258

Technical Handbook 5.8 - 1.6. Reports and printing

1.6.3. Document format conversion with OpenOffice/LibreOffice

The output format of the print operation corresponds to the template used. If you would like to
receive a different output format, you have to set up a converter.

To do so, you need an installation of LibreOffice or OpenOffice Version 4.0 or above on the
computer that is to perform the conversion. This is usually located in the same place as the bridge
or Job-Client that also executes the print operation.

In the configuration file (bridge.ini, jobclient.ini, etc.) you also have to specify the path to the
"soffice” program which is part of the LibreOffice/OpenOffice installation and located in the
"program" subdirectory there. This must be specified as an absolute path; relative paths
(..\LibreOffice\etc.) are not possible here.

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0@\program\soffice.exe"
Conversion service

If you do not want to keep a LibreOffice/OpenOffice installation on all workstations or server
installations from which formats are to be converted, an appropriately converted REST bridge can
perform the conversion.

To do so, the .ini file of the REST bridge must have the following format:

[Default]
host=localhost

[KHTTPRestBridge]
port=3040
volume=cardAdmin
services=jodService

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0@\program\soffice.exe"

In the Admin tool, you enter the address at which the conversion service can be reached under
system configuration/components/conversion service.

Example:

http://localhost:3040/jodService/jodconverter/service

Document formats
259

Technical Handbook 5.8 - 1.6. Reports and printing

To ensure output formats are available, appropriately configured objects of the “Converter
document format” type must be available in the Knowledge Graph.

The important thing is that not all formats can be converted into all formats. The most important
ones are:

Name Extension Mime type

Portable Document Format pdf application/pdf

OpenDocument Text odt application/vnd.oasis.opendocument.
text

Microsoft Word doc application/msword

260

Technical Handbook 5.8 - 1.7. Tagging

1.7. Tagging

The tagging component allows objects from the Knowledge Graph (persons, topics, etc.) to be
found or be created in documents.

Tagging requires:

¢ A configured tagging component in the Knowledge Graph

¢ A tagging software (Intrafind, OpenNLP) that finds potential objects in a text
Tagging is performed in three steps

1. The document text for tagging is defined (e.g. the value of a text attribute)

2. The text is passed on to the tagging software, which analyzes the text and delivers a series of
tags

3. The configuration is used to search for existing objects in the Knowledge Graph for each tag,
and to create any potentially new objects. The objects are linked with the document by means
of a relation.

1.7.1. Configuration

To use tagging, you need to use the Tagging component which can be added in the Admin tool. This
component sets up the required schema.

|II

Following that, you can configure it in Knowledge Builder under “Technical” > “Tagging.”
Every tagging configuration consists of:

¢ An interface configuration of the tagging software to be used (Intrafind, OpenNLP)
e Configuration of the text extraction that determines the text to be tagged in a document

e Tag configurations that determine how objects are found, created and linked in the Knowledge
Graph

1.7.1.1. Tagging configuration
The tagging configuration bundles all the information required for tagging.
It is however mandatory to specify the tagger interface to be used.

Specification of the text extraction to be used is optional. Alternatively this can also be determined
dynamically (see the corresponding sub-chapter).

261

Technical Handbook 5.8 - 1.7. Tagging

@ NLP-tagger config Tagging configuration
® person NLP-tagger config

@ location

@ generic Configuration

‘ MNLP-tagger config |

NLP-tagger interface

Configuration name

Customization script

project identifier

Uses tagger interface

news-extractor

Uses text extraction

Uses text extraction = ‘ | .’:

Furthermore, it is possible to specify an adjustment script that can be used to influence tagging.
Additional adjustments can also be made in the configurations for tags and for text extraction.

Newly created adjustment scripts contain commented-out function bodies. In order to activate
them you only need to remove the comment signs.

1.7.1.2. Interface configuration

The Intrafind interface has the following settings:

Configuration name Freely selectable name

Parameter (optional) This is transferred to Intrafind using the interface and
it controls tagging

URL URL of the Intrafind tagger

Update-URL (optional) URL of the Intrafind List Service, used for export of
known tags, see also 1.7.1.5

In the case of OpenNLP, only the URL of the REST service is required along with the optional
configuration name.

The interface “Internal tagger” is only intended for test purposes / internal demos for which
connecting an external system is unwanted. This tagger makes no claim to returning results that
make sense.

OpenNLP REST interface
NLP-tagger interface

Configuration
Configuration name = | NLP-tagger interface
URL = ‘http:/ﬁvtagging:9802ﬂson{tagger | D

262

Technical Handbook 5.8 - 1.7. Tagging

1.7.1.3. Text extraction

If the text to be tagged is not determined dynamically, e.g. because only the text of a very specific
attribute type or the text of a document is to be extracted, text extraction must be configured.

This configuration can be added on the “Text extraction” tab.

Configuration name Freely selectable name

apply to Object type to which this configuration applies. Is used if no
explicit text extraction is specified during the tagging
configuration.

Script for text extraction Optional script for determining text
To specify the attribute types to be tagged, one or more text part extractions (hierarchically sorted

on the left side) are added to the text extraction. In each text part extraction, the attribute type to
be tagged is stored under “extracts text from.”

© news-extractor Text extraction
® headiine news-extractor

@ documenttext

Configuration

‘ news-extractor

Configuration name

MNews

apply to

apply to

"
S

Index filter

]
(]
=
Q

I
m

Text extraction script (11}

In addition to strings, blobs can also be used as text part extractions. Text is extracted from these
and forwarded to the tagging interface. To do this, text extraction must be configured in the client
(bridge or KB) (see chapter i-views services > Text extraction).

The optional script has three arguments

textDocument Sk.TextDocument Outputs the text to be tagged
element Sk.SemanticElement The element whose text is to be extracted
attributes Sk.Attribute [] Array of attributes of the element. The

attributes are collected according to the
configuration.

The following example writes the values of the attributes in sequence:

function extractText(textDocument, element, attributes)

{

263

Technical Handbook 5.8 - 1.7. Tagging

attributes.forEach(function(attribute) {
textDocument.println(attribute.valueString());
1)

1.7.1.4. Tag types

The tag type configuration determines how objects are found, created and linked in the Knowledge
Graph. To do this, you can specify a separate configuration for each tag type provided by the tagging
interface. You can create a new configuration for the tagging configuration in the hierarchy view on
the left side.

By default, the interfaces provide the following tag types:

Intrafind PersonName, Location, TFIDF

OpenNLP NP

A tag configuration can apply to one or more tag types.

@ MLP-tagger config Tag type configuration
® person person

@ location
® generic

Configuration

‘ person |

Configuration name

apply to = Person
apply to = ‘ | 4
Create tag instances automatically = 7
Customization script = [=] tagging.custom.persan "o
overlap filter group = ‘ |¢=
Query for existing instances = [personSearch ee
Query for existing instances = —on
Tag relation type = ‘ | s
Tag type = ‘Persaname |
Tag type = ‘ |
Uses export = ‘ | ¢=

The configuration offers the following settings:

Adaptation script Script to affect tagging. The template contains a row of functions

that are commented out and can be activated.
Apply to Type in the Knowledge Graph that corresponds to the tag type. If

objects are to be searched/created and no additional
configuration information is specified, this type is used.

Configuration name Freely selectable name

264

Search for existing objects

Create tag
automatically

Tag relation type

Tag type

Uses export

objects

1.7.1.5. Export of known tags

Technical Handbook 5.8 - 1.7. Tagging

Search that contains the text of the tag as the searchString
parameter and searches for one suitable object in the
Knowledge Graph.Several searches can be specified, e.g. to keep
the individual searches more compact.If there are several hits,
query search must return the suitable hit. If several hits of
different quality are found, the highest quality hit is used. If no
best hit can be determined, no object is assigned.

If no object was found and this option was activated, new
objects are created.You have to ensure that the search for
existing objects find these as new objects are created every time
tagging takes place.If no adaptation script applies here, an object
of the specified type is created for “apply to” and the text of the
tag is set as its name.

This relation type is used to link documents to the objects found
by the tagger.

The tag types specified above. If no tag type is defined, the
configuration applies to all types of tags.

Here, an export configuration can be specified which can be used
to export all tags of the type or a subset thereof. Refer to the
next section for details.

There is an export function used to save information from the Knowledge Graph in a tagging
service, e.g. Intrafind. This is currently only supported for Intrafind, where it performs the following:

One, or several, lists can be generated that are then saved to the tagging interface. Each list export

assigns naming attributes (e.g. name, synonym) to the semantic elements for export. The tagger
then searches for these names in texts, and can deliver the suitable semantic element as well. For
example, the list of known organizations can be exported this way, and the tagger can identify them

reliably.

265

Technical Handbook 5.8 - 1.7. Tagging

Intrafind list export
Organization Export

Configuration All

Configuration name Organization Export

| P

Name

element filter

export is used by

Identifying attribute

Identifying attribute synonym

| &

Identifying attribute

Matching options

match case-sensitive

match diacritic-insensitive

Ooo0ooad

match phonetic

match language-dependent =

The Intrafind list export is configured for every tag type and is also influenced by the tag type
configuration . Generation configuration options:

Configuration name Freely selectable name

Naming attribute (Optional) attribute that identifies the object. Multiple
specifications possible. If no attribute has been specified, the
name attribute is exported by default.

Object filter (Optional) A search can be specified here that specifies the set of
objects. If no search has been specified, all types that are
assigned in the tag type configuration by means of Apply to are
exported.

Intrafind-specific matching options . These have a direct influence on the performance of the
tagging service:

Observe upper/lower case Case-insensitive matching is activated by default. Case-sensitive
matching can be activated here.

Ignore diacritics (umlauts, etc.) [Presumably] This option is used to ignore characters with
accents or umlauts, e.g. ‘Gerate’ will match with ‘Gerate!

Phonetic matching [Presumably] For example, match “photography” with
“fotografie.”

Language-dependent matching This option activates the linguistic processing of the names
transferred. In doing so, it is important that the data is
maintained correctly according to language in the Knowledge
Graph, as every language must be processed using its own
linguistics.

Performing the export

266

Technical Handbook 5.8 - 1.7. Tagging

There are three relevant buttons to performing the export:

e the zigzag arrow (found at the export config or the "top" tagging configuration) "refreshes" the
configuration cache, such that the newly changed configuration will have an effect

e the floppy disk symbol found at the export config opens a dialog to save the exported list to a
directory. The same symbol found at the top tagging configuration will export all lists at once.
(hint: you have to select an existing directory , and the files will be written into it)

e the up-pointing arrow (found at the top tagging configuration if configured) is used to upload
all lists via the Intrafind list service. This option is only possible, if the list service was installed
for the given environment, i.e. if the list service is configured. See also "Interface configuration"
- "Update-URL" above on how to configure that. After entering the correct credentials, the
upload will take place (this may take a while with spinning cursor as feedback). On success, the
response will indicate whether the service was restarted and how many files were uploaded.

1.7.1.6. Overlapping filter group

The tagger may deliver several tags for one text passage. In some cases, the user explicitly allows
this overlap and have several tags displayed.

The overlap filter group does the following:

o All tags types that are summarized into a group like this must be free of overlaps.

e Within a group, a script can be used to specify a prioritization to influence the decision about
which tag is displayed in the end

¢ In order to allow overlaps, at least two groups like this must exist

¢ All tag types without a group are summarized in the “Default” overlap filter group.

Prioritization with script

/**

* When there are conflicting tags (e.g. overlapping), this function can
influence the conflict resolution by building a sort key.

* The sortOrder compares the array from left to right, lower numbers are
sorted before higher ones. If something larger is to have a higher
priority, it therefore needs to be negated.

*e.g.: [-1, 3] < [0, 0] < [1, -3] < [1, -2]

*

* @param {$k.Tag[]} tags

* @param {$k.TaggingContext} taggingContext

* @returns {integer[]} an array of numbers that is used to sort the
conflicting tags.

**/
function tagSortOrder(tag, taggingContext)

{

267

Technical Handbook 5.8 - 1.7. Tagging

var smallestSpanReducer = function(minPos, span){return Math.min
(minPos, span.start)};

var positionMinimum = tag.spans().reduce(smallestSpanReducer, Number
.MAX_VALUE) ;

return [-tag.tagTypePriority(), -tag.canonicalText().length,
positionMinimum];

}

A script must return a list of integers, whereby the first element in this list has the most influence.
In principle, it functions the same ways as sorting by several columns, meaning that the second
element is only used when the same value occurs in the first element.

Default prioritization

If no script has been specified, or the tag type is grouped in the implicit “Default” group, then the
following prioritization is used:

e Order of the tag types — higher priority first
e Longer tags given preference

e Position within the overlap (meaning in the case of “a red wall”, “a red” is given preference over
“red wall”, because it is closer to the front)

Also compare the script template.

1.7.2. View configuration

Two views are available for the display:

e Markup view
e Tag list

The markup view can be used in both the Knowledge Builder and in the ViewConfiguration Mapper.
The view can be used everywhere that other views such as properties or hierarchies can be used.

The view has a permanently integrated tag button in the Knowledge Builder. There is an integrated
action type “Tag” in the ViewConfiguration Mapper, which can also be used in a custom button.

The tag list is only available in the View-Configuration Mapper and is the content of a panel (e.g. as
a sub-configuration of a panel with a fixed view) there. If a markup view with tag buttons was
configured in another panel, its panel should be linked to the tag list panel using the relation
“Influenced” so that the tag list is updated after tagging.

268

Technical Handbook 5.8 - 1.7. Tagging

Dialog
Tagging popup dialog panel
r EE— o o T Panel
3 Start taggin ! .
; . : View
(uses tagging configuration XY) :

/Shom result in panel J

- Here you can see the continuous text which is going to be tagged. The text is shown in a

execute in ! . . i
iew ' markup view inside a panel.

New tags
1 (uses tagging configuration XY)
] “influences” panel
‘nown tags (activation mode
1 " “aisp
il O continuous text & panel in both directions

Here you can find the tag list view which lists known and new (unknown) tags. By
' selecting manually, you assign tags individually.

Apply changes Reset

Both views have the obligatory configuration setting “Tagging configuration used”, which connects
the view to the tagging configuration.

1.7.2.1. Debug Log

The KB can output debug information during the tagging process. The information is written to the
#tagging channel (see manual for documentation regarding channels) and can be output to a file,
for example.

To do so, create a .txt file in the directory of the KB and rename it “kb.ini”. Then add the following

content:

[Default]
logtargets=tagging
[tagging]
type=file
format=plain
channels=tagging
loglevel=DEBUG
file=tagging.log
maxLogSize=10
maxBacklogFiles=1

This creates a “tagging.log” file where you can view the tags found by Intrafind for the tag types.
This makes it possible to identify which strings are suggested by Intrafind as tags, and also which tag
types (e.g. signifterm/tfidf or organization) are used to find them.

269

Technical Handbook 5.8 - 1.7. Tagging

1.7.3. Tagging by Script

Tagging can also be performed by script. To do so, create an object of the type
Sk.TaggingConfiguration.

The tag(context) function is used to perform the tagging. Tagging is controlled by an object of the
type Sk.TaggingContext. Because it is stateful, a new one must be created every time tag() is called.
The TaggingConfiguration object is stateless and can be reused.

var document = $k.Registry.elementAtValue("RDF-ID", "opennlp-testdocument
")

var configElement = $k.Registry.elementAtValue("tagging.name", "opennlp
tagger config");

var tagger = $k.TaggingConfiguration.from(configElement);

var context = new $k.TaggingContext();

context.setSource(document) ;

tagger.tag(context);

$k.out.print("Found " + context.tags().length + " tags");

1.7.4. Required software

The Intrafind tagger must be purchased and installed separately. The corresponding Intrafind List
Service can be provided by i-views.

The OpenNLP connection is made using a REST interface to OpenNLP provided by i-views.

270

Technical Handbook 5.8 - 1.8. Development support

1.8. Development support

1.8.1. Dev tools
Different tools are available to facilitate development.

e K-Infinity plug-in: Offers support or JetBrains’s products This includes the synchronization of
source files, KJavascript and KPath support.

1.8.2. Dev service

The Knowledge-Builder provides the option of allowing access from external applications. This
allows, for example, synchronization with development environments or specific elements of an
application to be opened from the browser.

The Dev service must be started in the Knowledge-Builder for this. To do so, start by opening the
Settings and in the Personal tab, going to Dev tools . A port can now be specified here at which the
service should be able to be reached. The service can be started and stopped manually using the
buttons next to it. If the “Automatic start” checkbox is activated, then the service is automatically
started with the Knowledge-Builder.

If the Knowledge-Builder features an ini file (the default name is “kn.ini”), then it can save the

settings permanently. The settings can also be entered manually in the ini file:

[DevService]
autostart=true
port=3050

271

Technical Handbook 5.8 - 1.9. KB plugins and components

1.9. KB plugins and components

1.9.1. Units component

The units plugin serves for adequate display of values of scale units - consisting of the numeric
value and its appended unit symbol. For different decimal prefixes, multiple entries with relative
factors can be defined for one and the same scale unit type. The output of the values and their
units takes effect within the Knowledge Builder and the web frontend via the view configuration
mapper. For example, an export can use the information to convert the values of an attribute into
another unit required by a target system (unit conversion).

Since 5.4, the units engine is an integrated component of the Knowledge Graph. After installation
by means of the Admin Tool, the units component is available within the Knowledge Graph in the
section "TECHNICAL" > "Scale units". It contains the required object types "Kind of Quantity" and
"Scale Unit".

Examples:

e Kind of Quantity: length, voltage, temperature

e Scale unit: meter, inch, millivolts, Kelvin
A kind of quantity is related to the respective scale unit via the relation "measured in", whereas a
scale unit can be related to one kind of quantity only. Via the relation "Base unit of", a scale unit is

assigned to an attribute type. Attributes of this attribute type then are entered and displayed in
forms of the related scale unit.

The units component "ETIM" comes with standard units of the ETIM classification. These units can
be supplemented with customized units.

Configuration:
¢ " Unit symbol ": string which is going to be appended to the value. For a value of "1", the "Unit
symbol (singular)" attribute is used instead.

o Example: "2.5 cm", "4 minutes", "1 minute".

e "Factor": factor of the value in relation to the base value. The scale unit with factor "1"
represents the base value in which the attribute value is going to be stored.

o Example: "Unit (distance)" has the scale unit "mm" with factor "1", the scale unit "cm" has
factor "10" and the scale unit "m" has the factor "1000". The 'raw value' stored in a related
attribute therefore represents the value in millimeters, "mm".

¢ "Fraction": fraction of the value in relation to the base unit. By using factor and fraction, a
higher accuracy is achieved when converting units.

272

Technical Handbook 5.8 - 1.9. KB plugins and components

Kind of Quantity: voltage

Voltage max.
— e
,»f/ T - — — —_—
" — - T 690
. Unit: Kilovolt ‘ Unit. Volt Unit: Millivolt . Unit: Mikrovolt
Symbol: kV Symbol-V Symbol: mV Symbol: uV
Factor: 1000000000 Factor: 1000000 Factor: 1000 Factor 1

When displaying attribute values by means of virtual property scripts, value() will
NOTE return the attribute value itself whereas valueString() will return the value and its
unit according to the units plugin.

For more information about the units plugin, please contact empolis intelligent views: support@i-
views.com.

1.9.2. Custom components

Custom components are bundles of semantic elements, queries, scripts and other elements. These
can be transferred to other Knowledge Graphs. Common usage scenarios:

e Define a component that acts as the base for specialized components

e Develop components and transfer them to integration and production systems
A component is an object that consists of

® aname

e 3 version

an URI that is used as a base for RDF-URIs

e astring prefix that is used as a base for configuration names

optional rules that define which objects are part of the component

To simplify and shorten this chapter everything that can be assigned to a component will be called
an element. This includes:

¢ Object-concepts

e Objects

¢ Relation-concepts

e Attribute-concepts

e REST elements

¢ ViewConfig elements

e Data sources

e Mappings of data sources

273

mailto:support@i-views.com
mailto:support@i-views.com

Technical Handbook 5.8 - 1.9. KB plugins and components

e Queries

Topic collections

Folders
e Scripts
e Triggers

e Accessright-paramerters

The actual property-objects themselves are not to be assigned to a

WARNING
component. They will be transfered along with their object(s).

When exporting folders or topic collections, they will only know their elements
(including subfolders), but not what folder they are a subfolder of. Therefore, after
an import, these folders can’t be found in the folders section but instead under
TECHNICAL - Registered objects - Folders/Topic collections.

This also means that only the top folder of a hierarchy needs to be reassigned to
the folders section after import since it still knows its subfolders.

NOTE

If folders or topic collections contain elements which are neither part of the component nor exist in
the target graph, they can still be exported but will produce warnings on import since their
elements can’t be found.

When exporting a property that uses an index, the index itself will also be
exported. If the target graph does not have an index with the same name and
configuration, it will be created. Otherwise the imported elements will be assigned
to the existing one. If the import results in multiple indexes with the same
configuration, they can be merged in the KB options via Index configuration -
Indexes.

NOTE

1.9.2.1. Configuration

Add the software component Custom components in the Admin Tool. This component adds the
required schema. Components can then be managed at: Technical > Custom components

All defined components are listed here and new components can be created.

There are additional hidden columns for this table showing the Assignment-style
and the Handling of surplus elements, that can be enabled via the Choose

NOTE columns option in the table settings. The table settings need to be enabled in the
KB settings under Personal - Editors -> Show table column settings. The table
settings can then be found in the top right of the table after reloading it.

A component is an object that consists of:

274

Configuration value

Name

Description

Prefix

Base URI

Select elements based on
prefix/URI/Relation

Include dependencies

Handling of surplus elements

Technical Handbook 5.8 - 1.9. KB plugins and components

Description

The name of the component.

A short text that should describe the use or content of the
componet.

A short string that can be used to identify elements of this
component.

An URI that can be used to identify elements of this component.

See the chapter Choosing prefix and base URI

NOTE
for more information on valid base URIs.

Boolean value. If true, elements of this component are identified
by using its base-URI and prefix.

Boolean value. If true, when exporting this component, all
elements, that this component is dependent on, will be exported
aswell, regardless of wether they are assigned to this component
or not.

Choose how elements that are part of the component in the
target Graph but aren’t part of the exported file will be handled
when importing this component into the target Graph.

o Keep: Keep the surplus elements as part of the component

e Put in the bin: Remove the surplus elements from the
component and save them in the bin section of the cutom
components

¢ Execute script: Send them to a java-script which has to be
specified before the export

¢ Delete: Delete the surplus elements from the graph

When importing a component the settings and
script of the imported component will be used
regardless of what options were chosen for the
same component in the target-graph.

NOTE

Script to process surplus The java-script which will be called with the surplus elements on

elements

Keep additional translations

import if the Execute script option was selected for the handling
of surplus elements.

Boolean value. If true, don’t overwrite any additional
translations that are configured for attributetypes in the target-
graph when importing this component.

275

Configuration value

Read only

Deactivate 'Read only' after
import

Attribute for identification
during transfer

Assignment-style

Requires component

Overwrites component

Version

Technical Handbook 5.8 - 1.9. KB plugins and components

Description

Boolean value. If true, it prevents the user from editing anything
related to this component except the component object itself.
Nothing can be added or removed from the component and its
elements cannot be edited. It is however still possible to draw
relations to and from elements of the component. It is also still
possible, although not recommended, to manually add the base-
URI or prefix to an unrelated topic making it a part of the
component. This only allows you to add the element in one way
though since after that it is write protected.

Boolean value. If true, the Read only attribute of this component
will be set to false after being imported.

Declares a userdefined attribute to be used as an identifier for
elements on transfer.

The attribute needs to have an uniqueness

NOTE
index and should be a string-attribute.

Defines how elements are assigned to this component:

¢ Relation: A one-way-relation is drawn from the element to
the component.

¢ Relation (Adjust internal name): A one-way-relation is
drawn from the element to the component. Additionally the
internal name of the element will be adjusted with the prefix
where possible.

e Prefix/Base-URI: The configured prefix and base-URI are
used to mark the name, internal name and RDF-URI of the
element.

Declare other components as necessary for this one to work.

Boolean value. If true, an element that is part of this component
and of one that is necessary for it, it will only belong to this
component.

The version of the component consisting of major version, minor
version and patch.

There are some more options to select elements to be part of a component. For more information

see the chapter Additional selection and configuration of specific elements.

1.9.2.2. A minimal example

Open the Custom components area and create a new component topic. It will ask for a name, which
can be freely chosen and changed at any time and another three mandatory values:

276

Technical Handbook 5.8 - 1.9. KB plugins and components

¢ Prefix : A string prefix that is used to select objects that have a configuration name starting with
this string. It will also be used to suggest a configuration name when creating new elements.
Use 'accounting' for example.

e Base URI : A URI that will be used as base for creating RDF URIs. It should end with the prefix,
e.g. 'http://example.org/accounting'.

¢ Handling of surplus elements: This specifies what happens when a component is imported and

the same component is already part of the graph but has elements which are not in the import.

Now that the component is set up you can start assigning elements to it. To do so navigate to any
element you want to assign and open its context-menu. There you should see the Custom
components submenu which contains three ways to assign the element:

1. Assign element directly assigns the element to the chosen component.

2. You can also choose Open assignment-tool to get an overview of what elements are connected
to this one and then assign any element you deem necessary for the component.

3. Additionally there is the option Assign to x aswell, which assigns the element to the last

component that an element was assigned to.

When looking at the assigned element you should see its assighment noted on the right side of its
banner region as well as the updated RDF-URI and internal name or registry key depending on what
kind of element you assigned.

1.9.2.3. Choosing prefix and base URI

Although there are no technical restrictions when specifying a prefix or a base URI, there are a few
rules that make it easier to handle custom components:

¢ Only use alpha-numerical characters and periods.

¢ Do not add a period at the end of the prefix as it is automatically used as a separator.

e Do not add a '#' at the end of the base-URI as it is automatically used as a separator.
WARNING In version 5.4 the '#' still needs to be manually added to the base URI.

e Do not use generic names that can be mistaken for built-in components, e.g. 'viewconfig' or
'rest’.

e Use a prefix that makes it obvious which component it belongs to.

e Use the prefix as the last part of the base URI, as shown in the minimal example in the
preceding chapter.

An URI (unique resource identifier) is usually used to precisely locate a resource in
the internet and is thus a web address. Since our base-URI is a namespace using
NOTE that concept, it should also start with http:// or https:// followed by a domain
representing your company or project. After that should come another '/ and the
prefix of the component. This would lead to something like:

277

Technical Handbook 5.8 - 1.9. KB plugins and components

https://example.org/accounting with the project being to provide examples and
the component for accounting elements.

Since we are just using the URI to identify elements and their assigned component
in the graph, it does not need to actually lead to anything when looked up in a web
browser.

1.9.2.4. Changing prefix and base URI

Manually changing the prefix or base URI does not carry these changes to the selected elements
thus deselecting them.

You can change the prefix or base URI and update the selected elements with the new values by
pressing the edit icon in the detail-view of the component. In the custom components section
select the component and in the bottom left the specific object you want to update. Then click the
edit icon above the banner section of the component.

_ Jersh HO Y MPPeX

Adjust prefix and base URI of the component and all its elements
@ Musidians

Configuration = All

4 Mame = | Musicians

In the dialog you can change existing values and new ones but not remove existing ones. Changed
or new values will immediately be used to update the elements that are selected by the edited
object.

When changing the component-object itself only the elements that are selected exclusively by said
object will be affected. The elements that are also selected by sub-objects will not be updated as
the sub-objects override the component selection because of their additional options.

If the prefix and base URI of the component and its sub-objects are the same
WARNING all objects will select all the elements and it will be impossible to
automatically separate them again.

Should a problem occur during the overwriting process, the elements that were
already overwritten will keep their new values while the component still has the

NOTE old ones. While this means that those elements are temporarily not part of the
component it also makes it easy to just restart the overwriting after fixing the
problem to adjust the rest of the elements.

278

Technical Handbook 5.8 - 1.9. KB plugins and components

1.9.2.5. Assignment of Elements

How an element is assigned to a component depends on the assignment-style chosen for the
component.

If the chosen style is Relation, semantic elements will be assigned by drawing a one-way-relation
from the element to the component.

There is also a variation of this style that will adjust internal names additionally to the relation in
order to prevent confusion because of no or wrong prefixes.

If the chosen style is Prefix/Base-URI, the assignment of an element is signaled by some of its
identifing attributes:

e RDF-URI starts with the base-URI specified by the component

¢ Internal name starts with the prefix specified by the component

e Registry key starts with the prefix specified by the component

¢ Name starts with the prefix specified by the component

The name is only used by custom components for specific elements that follow naming conventions
like for example view-config elements.

Only one of these attributes is needed to recognize the assignment, but a RDF-URI
is necessary to export elements. If no RDF-URI is set before export it will be

NOTE
created automatically by combining the base-URI of the component and the name

of the element.

Usually these attributes are edited automatically when using the provided tools to assign or
unassign elements, but they can also be adjusted manually.

The name of the component that an element belongs to is shown on the right side of its banner
region. This can be deactivated in the Knowledge-Builder settings via the menu Editors.

It’s also possible to view which elements are part of a component by clicking the right magnifying
glass in the detail view of the component.

279

Technical Handbook 5.8 - 1.9. KB plugins and components

| JORu$ HO) ool da? ¢

Show all parts of the component

@ Musidans

Configuration All

4 Name = | Musicians

1.9.2.5.1. Assigning elements

For most elements, the Ul displays a list of available components in form of a drop-down field upon
creation. When selecting a component, the prefix of that component is used to fill in the name of
the new element. The Ul also tries to automatically select a component based on the context. For
example, when creating a subtype of a type that is part of a component, then that component will
be selected.

Under certain circumstances however, some elements are assigned automatically:

e When creating a new mapping using an existing data-source, that is unassigned and unused,
assign the data-source to the same component as the mapping.

e When registering the unregistered data-source used by an assigned mapping, assign the
data.source to the same component.

e When linking a previously unused and unassigned data-source to an assigned mapping, assign
the data-source to the same component.

e When adding an extension to a topic, assign the extension to the same component that the
topic is assigned to.

The Ul does not force providing an internal name or registry key for new elements. When an
element is created without a registry key and a component is selected, the registry key will be
created by combining the prefix of the component and the name of the element. Internal names
are not created from scratch and only existing ones get adjusted by adding the prefix. This can be
adjusted in the settings.

After creation, single and multiple elements can easily be assigned to a component via the context
menu options in the custom components submenu: Assign element, Assign to x as well, with x
being the last assigned component, or via the assignment-tool.

The exact behavior when assigning elements can be adjusted as described in the

NOTE .
chapter System settings.

The context menu additionally allows you to open the current component of single elements, to
avoid having to navigate to the custom components section, and to open the assignment-tool which

280

Technical Handbook 5.8 - 1.9. KB plugins and components

is also used to assign elements but provides a lot more options and insights than the regular assign
dialog.

When assigning a relation concept to a component both of its directions will be

assigned. The custom component logic always treats the two halfs of a relation
NOTE concept as one element.

When assigning an element whose RDF-URI does not match the base URI of the

component, it will get an RDF-URI-Alias using the base URI.

Additionally, there are two options which are only available for ViewConfig elements that can be
used to replace an element of the component with another external element and prevent future
updates from overwriting the replacement.

This feature should only be used as a last resort, as it is potentially very prone

WARNING S . .
to errors because of the many possible interactions with replaced elements.

1.9.2.5.2. The assignment-tool

The assignment-tool is used to get a good overview of how the elements you want to assign are
connected and what layering issues they have.

§'§E§ Assigning elements _ O %
Show v iy Type [Musicians] Person Custom components

All MNone Attribute [-] Shoe size [
Instances (1142) Artribufe[Musician.s]. Date of birth Musicians

328 Instances [Musicians] Works

Types (13) . ;
Attributes (19) v My Query [Works] Bass Guitarists Playing Progressive Rock Accounting

rhutes & ViewConfig [-] Query - Instance Company

Relations (233)

Relation [-] changed by
Data sources (0]

Relation [-] Contains Guest Appearance By

Mappings (0) Relation [-] has changed

Scripts (4) Relation [-] Has Guest Appearance On

[Queries (46) Relation [-] is kown by

View configuration (33) Relation [-] knows

Actions (0] Ay Relation [Company] has superior

Styles (0) My Relation [Company] is superior of

Roles (0) Relation [Musicians] Has]‘[C b Tras the follom tered d decies: [Musici]|
REST(4) m Relation [Mus|c|ar‘|s] IsM DI’T'IElJElI"Iy as € Tollowing unregistere EpEndecies: usiclans,
Folders (0) My Type [Musicians] Actor Role

Already assigned (974)
Mot assigned (332)
Properly layered (1304)
The selected elements are dependent on:
v Relation [Cormpany] is superior of
Relation [-] User relation
&y Type [Musicians] Person

Assign Close

Total unique elements: 1506 Layering errors: 2 Selected nodes: 1

The left side provides filters for the top tree view to remove specific types of elements. It also has
special filters to only see elements that have no assignment, have an assighment or have layering
issues. Every filter shows how many unique elements of that category are in the top tree view.

281

Technical Handbook 5.8 - 1.9. KB plugins and components

When toggling off a filter the corresponding elements will be hidden, except if there are other
elements below them that shouldn’t be hidden. In that case the node will just be greyed out as
seen in the picture above. In the upper section of the filters, thats about the types of elements,
there are buttons to toggle every filter of that section on or off.

The top middle has a tree view of the element(s) that the tool was opened on with all the elements
that somehow depend on that element. This does not apply to ViewConfig-elements as it makes
more sense also show things like used scripts instaed of just dependents.

Each node shows what type of element it represents, what custom component that element is
assigned to and the name of the element. If any element produces layering issues due to its
assigned component or because it is assigned to multiple components at once, the component(s)
will be highlighted in bold, red letters and a warning symbol is displayed in front of the node. When
hovering a node with a layering issue a tooltip will appear describing the cause of the layering issue.
Elements with sub-nodes that have layering issues will also have the same icon to indicate a
problem further into the tree.

These tooltips are only meant to explain the current situation that causes the
NOTE layering issue, not as a prompt to add nonsensical dependencies between
components to remove these layering issues.

For better visibility instances are bundled under a special node that shows the number of instances
below it and up to 5 components that some of the different instances are assigned to. If the setting
the use instances is disabled these nodes will not exist as no instances that are only there through
their concepts will be displyed.

The bottom tree view contains all elements that the currently selected element(s) from the top tree
view are dependent on. If a selected element from above has a layering issue the cause will be
highlighted here.

Example: In the picture above you can see that the selected relation 'is superior of' has a
layering issues because it belongs to the 'Company' component, but is dependent on the type
'Person’ which is assigned to the 'Musicians' component, as you can quickly see in the list of
dependencies. This means that the 'Company' component is dependent on the 'Musicians'
component which should not be the case which is why it is not configured and thus causes a
layering issue. As suggested on the right side, the only components that this relation can
currently be assigned to without issues are the Musicians and Works components.

On the right side is the custom component selection. By default it shows all components that the
currently seleted element(s) in the top tree view can be assigned to without causing layering issues.
To see all components Show all can be selected. The additional components that will then be
displayed are highlighted in red. Doubleclicking a component open a new window to edit the
component.

At the bottom you can see how many unique elements the top tree view contains, how many
layering issues these have and the number of currently selected elements in the top tree view.

282

Technical Handbook 5.8 - 1.9. KB plugins and components

Unique elements means that if the top tree view shows two types that can both have the same
relation, that relation will be shown below both types but will only count as one unique element.

The context menu of elements in the tree-views have the options to open a new assignment-tool
window with the selected elements as the roots and to edit a single selected element by spawning
a new window of that element. Additionally there is an option to expand and select all sub-nodes of
the selected nodes.

In case of looping dependencies all sub-elements will be selected exactly once
NOTE even if not all nodes can be expanded. So after using this option on the root
node(s) there will always be one selected node for every unique element.

Once at least one element of the top tree view and a component are selected the Assign button in
the bottom right can be pressed which opens a list of all elements that will be assigned to confirm
the assignment. After confimation the assigning process starts and in the end all elements that
couldn’t be assigned along with the reason for the failure will be displayed.

In both lists you can double click an Element to open and edit it.

Having an assignment-tool window open while assigning an element will
automatically update that element if present. This does not work if the element is
assigned by manually editing its attributes.

NOTE
When changing components while having an assignment-tool open, you can press
F5 to refresh the tool. This will update the list of components, their dependencies
and all layering errors. Holding down the 'Ctrl' key while pressing F5, will also
reload the assignments of all elements in the tool.

If you just want a quick overview for the direct dependencies of an element, you can open its
context-menu and select Custom components - Show dependencies. This will open the graph
editor for this element along with its dependencies.

1.9.2.5.3. Assign with regex search

Another way to assign elements is to define a regular expression and assign all matching elements
to the selected component. This feature can be found under TECHNICAL - Custom components by
navigating to the desired component.

| JORP - HESP I P,

Find elements with a regular expression and assign to this component

@ Musidians

Configuration All

4 Name = |Musicians

283

basics-en.adoc#graph-editor
basics-en.adoc#graph-editor

Technical Handbook 5.8 - 1.9. KB plugins and components

The first thing to choose here is wether to check elements by all attributes that are used for the
prefix or by their RDF-URI. Next you define the regular expression used to search for elements to
assign. This regular expression needs to contain at least one group part which will then be replaced
by what is written in the second textfield. By default this is the prefix of the component with a dot.

If the group defined in the expression is not at the beginning of the found value it
NOTE will not be assigned to the component as the prefix/base-URI will not be at the
start of the value either.

X

Identify elements by:

Regular expression

match case-sensitive
Replace first group by

example.

QK Cancel

Example: Using the regular expression *(oldPrefix\.).* will match everything that starts with
'oldPrefix.".

1.9.2.5.4. Component suggestions

The list of available components only shows components that won’t cause layering issues for the
element and thus follows some rules to ensure that:
e Write-protected components are never suggested.

e Only components that are dependent on all components of the most direct elements needed
for this element to work (e.g. the type of an object; a relation used by a query) that have a
component will be suggested.

e Only components that are depended on by all components of the most direct elements that
need this element to work (e.g. an object of a type; a query using a relation) that have a
component will be suggested.

e If no restrictions are found, all non-write-protected components are suggested.

284

Technical Handbook 5.8 - 1.9. KB plugins and components

1.9.2.5.5. Unassigning elements

To unassign an element from its current component you can open the context-menu of the element
and select custom components - Remove element.

Unassigning an element will delete its RDF URI, deregister the registry key and remove the prefix
from the normal and internal Name. Additionally, the element will be added to a bin folder that is
located under TECHNICAL - Custom Components - Removed elements.

When un- or re-assigning an element, it keeps its name and its internal name
without the prefix or with a new prefix. If an element is renamed and the internal

NOTE name and URI need to use the new name as well, they need to be either adjusted
manually or deleted before reassigning the element, otherwise they still use the
old name.

1.9.2.5.6. The bin folder

The bin-folder is located under TECHNICAL - Custom components - Removed elements. It has
two subfolders for semantic elements and registered objects.

Elements are added to their respective bin-folder in these two situations:

1. They get unassigned from their component
2. They are surplus elements after an import and the imported component has the surplus
handling option set to Put in the bin

There are three ways for elements to be removed from their bin-folder:

1. The element gets assigned to a component
2. The element gets restored via right-clicking it or its bin-folder and selecting the restore option
3. The element gets removed via right-clicking it or its bin-folder and selecting a removal option

that applies to it

Restoring an element will set its internal name and RDF-URI or its registry key to the value they had
when the element was put in its bin folder.

It is possible to see the references to the element before it was removed from its component via its
context-menu.

If the component that the element was unassigned from has changed its prefix or
NOTE base-URI before the element is restored, the changes will not apply to the restored
element which will still have the exact values from when it was unassigned.

Danger of loss of data!
WARNING Unlike schema elements such as object types or property types, registered
objects will be deregistered on removing their assignment. Deregistration

285

Technical Handbook 5.8 - 1.9. KB plugins and components

leads to deletion if the object is not located in at least one folder.

Thus, removing registered objects from the bin folder will most often delete
them.

Accidentally deleted elements cannot be restored. In that case the elements
must be recreated.

References to the registry key of deleted objects will not work anymore and
must be fixed manually.

- To prevent accidental deletion, make sure that such objects are registered
or that they at least are located in some different folder.

1.9.2.5.7. Finding layering issues

Apart from looking at the assignment-tool there is another way to quickly find all layering issues of
a component.

<

_JORER # ols¥
Show dependencies

@ Company

Configuration Context All

4 Name = | Company

After choosing a component under TECHNICAL - Custom components and clicking the Show
dependencies button on the left, you get a lists of all components that the analyzed one is
dependent on.

‘12 Dependencies of 'Company’ — O ot

Required components: Referenced components:

Accounting (2)

Musicians (3) _ _

Works (1) *These are components with a connection
to 'Company’, that does not enforce a
dependency direction (e.g. certain
view-configuration relations).

Show referenced components™

Warning: If 'Company’ contains a lot of
ohbjects, this may take some time,

286

Technical Handbook 5.8 - 1.9. KB plugins and components

Every component shows the number of dependencies to itself in brackets.
Highlighted components are not declared as a dependency, but still have elements that the
analyzed component needs, thus causing a layering issue.

When clicking Show referenced components* on the right, another list will be shown. This list
contains components with a connection to the analyzed one, that does not enforce a specific
dependency direction.

‘12 Dependencies of 'Company’ — O >
Required compenents: Referenced components:

Accounting (2] Accounting (1)

Musicians (3) Works (1)

Waorks (1)

Open graph editor

Show dependencies

Register dependency

Refresh list

If the component to analyze contains a lot of objects, the analysis of the right list

NOTE .
may take some time.

Both lists have the same context-menu with the following options:

e Open graph editor: Opens the graph editor on all elements connecting the selected component
with the analyzed one. This also happens when double-clicking a component. This will not close
the window.

¢ Show dependencies: Opens this window for the selected component.

* Register dependency: Draws the Requires component relation from the analyzed component to
the selected one.

e Refresh list: Refreshes the list by analyzing the component again. This only analyzes what is
necessary for the selected list. Presing F5 will refresh both lists, unless the right one is not
shown, in which case only the left one is refreshed.

NOTE Refreshing a list takes as long as it did when opening them the first time.

Pressing the F5 key will reload all shown lists.

1.9.2.5.8. Changing the assignment-style
There are two ways to change the assighnment-style of a component:

1. You can just directly change the configuration of the component. From that point on all

287

basics-en.adoc#graph-editor

Technical Handbook 5.8 - 1.9. KB plugins and components

elements will use the chosen style for assignment. Previously assigned elements however are
not changed by this.

2. You can use the tool acccessed by clicking the Changing assignment-style button at the
component, as shown below. In the dialog that opens, you can choose which assignment-style
the component should use from now on. This method will also adjust all assigned elements of
the component to use the new assignment style. Additionally the dialog offers the option to
remove all previously used means of assignment (the assignment-relation and RDF-URI-aliases).

£

@O 2% MO SR

| Changing assignment-style|

@ Musidans

Configuration All

4 Name = | Musicians

1.9.2.6. Access Rights and Trigger Definitions

Component-specific rules for access rights or triggers can be defined directly for the respective
component. The two attributes Access rights and Trigger at the component definition object are
used for this purpose.

Rules defined here are automatically inserted into the rights or trigger decision tree. Custom
component-specific rules are inserted after the system component-specific rules and before the
general user-defined rules. Within the custom component-specific rules, the ordering is determined
by the component dependency.

To assign existing rights and trigger definitions to a component, you can simply use

NOTE
drag & drop to move them under a new Konfiguration, that is part of a component.

Make sure that all registered objects referenced by component-specific rules
WARNING are either assigned directly to the same component or to one of the
components in the dependency chain.

1.9.2.7. Additional selection and configuration of specific elements

By default, the prefix and base URI define which objects are selected when determining the
contents of the component. This default can be turned off by deselecting the option Select
elements based on prefix/URI.

Using an assign function after disabling the selection via prefix and URI will still

NOTE
add the prefix and base URI to the element but without recognizing it as part of

288

Technical Handbook 5.8 - 1.9. KB plugins and components

the component.

Even after disabling that it is still possible to add elements of the component and even give them
special configurations. This can be achieved by using the left part of the detail-view of a component
to add the following sub-objects:

¢ Selection of semantic elements
¢ Selection of registered objects

These objects have options to select and configure elements separately from the component. The
configurations of these objects only apply to elements that are selected by the respective objects.

Apart from those configurations there are no differences between elements selected by the
component itself or by these sub-objects. They are all part of the component and are presented
and exported as one set.

If an element is assigned via the option in its context menu, the prefix and base URI of the
component itself and not the ones configured in these sub-objects are used.

1.9.2.7.1. Selection of semantic elements

This sub-object can select elements using a prefix, base URI or query to be part of the component.
Using a query will select the elements without changing them (e.g. no specific URI or internal Name
needed).

Configuration value Description

Include dependencies Boolean value. If true, required elements of selected elements
are selected as well. This is limited to certain built-in
dependencies, e.g. selecting a ViewConfig table also selects its
table columns.

Select all instances of Boolean value. If true, all elements of selected types are
component types selected, too.
Prefix Optional prefix; used to select elements for this object. If not set,

the prefix of the component itself will be used.

Select by internal name Boolean value. If true, elements are selected if their internal
name match the prefix. Overrides the choice made in the
component object itself.

Base URI Optional URI used to select elements for this object. If not set,
the base URI of the component itself will be used.

Select by RDF URI Boolean value. If true, elements are selected if their RDF-URI
match the base URI. Overrides the choice made in the
component object itself.

Query for semantic elements A query that defines which additional semantic elements should
be selected.

289

Technical Handbook 5.8 - 1.9. KB plugins and components

If the selection via internal name or RDF-URI is enabled without specifying a prefix or base-URI
respectively, they will use the prefix and base-URI provided by the component-object itself. Doing
so means that the additional options from these sub-objects will apply to all elements selected by
the component-object itself since they will also be selected by this sub-object.

1.9.2.7.2. Selection of registered objects

This sub-object can select elements using a prefix and restrict in which registries will be searched.

Configuration value Description

Include dependencies Boolean value. If true, elements that are required by selected
elements are selected as well.

Examples: Scripts referencing queries; queries containing query
macros

Prefix Optional prefix used to select elements for this object. If not set,
the prefix of the component itself will be used.

Covers registry Selects which registry types these configurations apply for. If
none are selected, they apply for all registry elements that are
part of the component.

If no prefix is specified, then the prefix of the component-object itself will be used. Doing so means
that the additional options from these sub-objects will apply to all elements selected by the
component-object itself since they will also be selected by the sub-object.

1.9.2.8. Adding custom dependencies of elements

Using the dependency-definement-tool you can designate any relation to be a dependency-relation.
These relations will tell the custom components that their sources are dependent on their
respective targets and will be used to, for example, build the tree of the assignment-tool or find
possible components for elements.

| JORED P i Ap K

efine dependency-relations

@ Musicians

Configuration All

4 Name = | Musicians

The tool can be opened by clicking the relation icon of a component under TECHNICAL - Custom
components.

290

Technical Handbook 5.8 - 1.9. KB plugins and components

‘3t Defining dependency-relations — O *
The sources of these Relations are dependent on their respective targets. Show [Show all
Relation Component [Mo component
Edit relation [Company
Edit component Musicians
Open assignment-tool Works
Add Remove

On the left is a table of all relations that have been designated as a dependecy-relation along with
the component they are assigned to. The table is sorted alphabetically by components and then the
name of the relations.

If the table contains a relation and its inverse relation their names will be highlighted in bold, red
letters. Additionally, if a relation is assigned to more then one component, those components will
also be highlighted in bold, red letters.

The context-menu of table-rows allows you to open new windows to edit the relation or the
component as well as open an assignment-tool on the relation. Double-clicking will also open a new
window to edit the relation.

To the right are filters for every component in the graph as well as one for relations that are not yet
assigned. There is also a checkbox at the top to show every relation regardless of the filters. At the
start the only active filter will be the one of the component that was selected when opening the
tool.

At the bottom are two buttons to add new relations as dependency-relations or remove some of
the current ones. When adding a new relation the corresponding filter will automatically be
activated.

1.9.2.9. Settings

To get to the custom component settings click on the cog icon in the top right of the KB.
There are two types of settings:

e Settings regarding the appearance of custom components in the Personal tab

e Settings regarding assignment of custom components in the System tab

291

Technical Handbook 5.8 - 1.9. KB plugins and components

1.9.2.9.1. Personal settings

These settings are used to customize how custom components are shown to a user. They are tied to
that user and have no influence on other users.

e Show assignment in banner-region: If true, each element will have its assigned component
shown on the right side of its banner region.

e Show column with assignment in tables: If true, most default tables in the KB will have an
additional column containing the components assigned to the elements in the table.

Regardless of the enablement of this setting, the custom component column
can still be configured for individual tables under Personal - Editors by
enabling the Show table column settings option and then clicking the menu to
the top right of the chosen table. There you can choose which columns should
be displayed. These settings override the settings to display the custom
component column.

NOTE

¢ Use instances for component calculation: If true, every time the recommended components of
an element are computed concepts of instances will take their instances into consideration.
Additionally, instances will be shown the assigment-tool.

This is disabled by default because having to go through a lot of instances
WARNING can have a huge impact on the performance, especially when opening the
assignment-tool, and usually does not change the result much.

e Show dialog to override handling of surplus elements: If true, before every import a dialog
will ask if you want to handle surplus elements differently than configured at the component
that is about to be imported. This override only applies to this specific import and is not saved.

1.9.2.9.2. System settings

These settings are used to customize the behavior of custom components when assigning elements.
These changes are system-wide and thus effect other users.

¢ Add the prefix to configuration-names on assignment: If true, configuration-names of view-
configuration elements will have the prefix added when assigned to a component.

¢ Create missing configuration-names on assignment: If true, the assigned component will try to
create a configuration name for its newly assigned view-configuration element if it didn’t have
one before.

¢ Create mising internal names on assignment: If true, the assigned component will try to create
an internal name for its newly assigned topic if it didn’t have one before.

¢ When assigning a mapping also assign the used data-source: If true, data-sources will also be
assigned when the mapping that uses them is assigned to a component.

¢ Only when the data-source is unassigned: This is a restriction for the prior setting. If true, data-
sources will only be assigned with the mapping if they are not already assigned to another

292

Technical Handbook 5.8 - 1.9. KB plugins and components

component.

¢ When assigning a data-source use the registry key of the sole mapping using it as fallback: If
true, a data-source that only has one mapping using it and no way to create a registry key other
than its private id, will copy the registry key of said mapping.

e When assigning an object also assign all of its extensions: If true, assigning an object will
automatically assign all of its extension-objects to the same component.

¢ Not if the extensions are assigned to a different component than their core-object: This is a
restriction for the prior setting. If true, the extension-objects will only be assigned with the
core-object if they are not already assigned to another component.

1.9.2.10. Transfer

When transfering components from one graph to another, all instances of types that exist and can
be identified in both graphs will be synced as follows:
e Attributes will always be overwritten by the import.

¢ For relations the behavior depends on the component of the relation target.

Component of relation target Overwritten on import

The imported component Yes

A component, that the imported one is Yes
dependent on

A component, that is dependent on the No
imported one

A component, that is independent of the No
imported one

No component No

If a concept of the component is a subconcept, its superconcept needs to be either
in the same component or in a component that is configured as a dependency of
the compenent of the subconcept. Otherwise the subconcept will turn into an
independent concept after importing the component. The only exception to this is
if the superconcept is part of a software component, as it is currently impossible to
configure the dependency of a custom component of a software component.

NOTE

1.9.2.10.1. Export

A properly configured component can be exported at any time by opening the component object in
the Knowledge-Builder and pressing the button Export component in the detail editor.

293

Technical Handbook 5.8 - 1.9. KB plugins and components

®O.2% @O #2%

Export component
@ Musicians

Configuration All
4 Name = | Musidans
When exporting a component all semantic elements will be given a RDF-URI if they

NOTE don’t have one already. If the component has an ID-attribute defined, it also tries
to generate missing IDs for all semantic elements.

When clicking export you can choose between to options:

1. All: Export the whole component includeing all assigned elements

2. Definition: Export only the component itself and its sub-objects without any assigned elements

When choosing to only update the definition of a component, the Handling of
NOTE surplus elements attribute will have no effect, as it would apply to all elements of
the component.

Before a component can be exported some conditions need to be fulfilled:

e The component needs a name.
e The component needs a prefix.

e The component needs a proper base-URI.

The graph needs a proper base-URL (Can be set in the KB options under System - RDF).

The component needs to know how to handle surplus elements.

The component cannot be part of a dependency loop.

If the component has an ID-attribute defined, it needs to have a uniquness index, an internal
name and a RDF-URI.

Additionally there are some conditions which are not mandatory but very helpful:

e If the component has an ID-attribute defined, it should be a string attribute, as otherwise
missing IDs will not be generated on export.

e If the component has an ID-attribute defined, the attribute should be assigned to the
component.

294

Technical Handbook 5.8 - 1.9. KB plugins and components

1.9.2.10.2. Import
An exported component can be imported via the Admin Tool or via the Knowledge Builder.
Import via Admin Tool:

1. Open System configuration - Components.
2. Press Add model component and choose Import custom component.
3. Select the exported file or specify a file URL.

4. Choose wether to use or override the handling of surplus elements configuration of the
component for this import.

5. Result: The imported component appears in the list of components. Note that the import also
adds the required software component Custom components in case it hasn’t already been
added.

The component object can be opened in the Knowledge-Builder under Technical - Custom
components

Import via Knowledge Builder:

This requires the software component Custom components to be added to the
system beforehand.

DOBBAR =0+ ¢ =@s

Import component

NOTE

o

Name Prefix Base URI
Musicians musician https://i-views.de/Musician
Works work https://i-views.de/MWaork

1. Navigate to TECHNICAL - Custom components.

2. Press the Import component button which is the rightmost icon at the top.

3. Select the exported file directly or specify a file URL.

4. Choose wether to use or override the handling of surplus elements of the component for this
import.

Warnings after the import:

If the the import had no problems and there were no surplus elements, a Close button will appear
below the loading bars. It will complete the import.

Otherwise a new window will open. On its left side will be a table containing all warnings that
occured during the import. The right side will show all surplus elements and how they were
handled.

If one of these lists is empty, it will not be shown.

295

Technical Handbook 5.8 - 1.9. KB plugins and components

These warnings can include things like syncing indexes or that some domains could not be removed
because they are still in use in the target-graph. Mostly it will be warnings about Elements not being
found though. These can usually be fixed by looking up the missing elements in the source graph
and assigning them to the desired component.

- o x
The following 1" elements are not part of the imported component anymore:
Source Warningtype Property Target/Value Description v Bin
- Other - - Domain "Instances of Place” cannot be removed from "Profile”, a5 long as properties exist at this domain Company 02
George-Green Attribute Shoe-size) Attribute ‘Shoe-size’ cannot be added to “George Green” [Object of type *Person"]: Schema of attribute 'S
Rick-Astley Attribute Shoe-size 2 Attribute ‘Shoe-size’ cannot be added to “Rick Astley" [Object of type "Person": Schema of attribute ‘Sho.
‘George-Green' -= 'Shoe-size' -» 40’ Attribute changed-on 2017-02-13T00:00:00 "'changed-on 120]" could 3 object""Shoe-size [RO4149305:
< >
Export toble Copy descriptions to clipboard Save descriptions
Imported component: Musicians v0.0.1 Shown Warnings: 4/4 Import-clate: May 27, 2025 1:57:47 PM

In this table all elements are displayed using their RDF-name as they might not exist in the target
graph and just use the import identifiers. The highlighted elements could not be found in the target
graph.

To help fix these problems, the table of warnings can be exported via the button in the bottom left.
It can then be read from the source graph to show the same table.

BEBEExz042 2¢®

ﬁead importwarningsl

Name Prefix Base URI
Musicians musician https://i-views.de/Musician
Works work https://i-views.deMWork

From there you can fix the problems directly at the source by editing the elements via right clicking
them. In this table the elements will also be displayed by their actual names unless they were
deleted before opening the table, in which case it will say Element not found. You can also hide
rows that are already fixed using their context-menu.

‘32 Import-warnings - o x
Source Warningtype Property Target/Value Description
- Other - Domain "Instances of Place” cannot be removed from "Profile”, a5 long as properties exist at this domain (Line 206)
George Green Attribute Element not found) Attribute 'Shoe-size’ cannot be added te *George Green” [Object of type "Person’: Schema of attribute ‘Shoe-size’ not defined (Line 10123)
Rick Astley Attribute Element not found 42 Attribute " o ley" [Object of type "Person’]: Schema of attribute ‘Shoe-size' not defined (Line 10154)
‘George Green' - > ‘Element not found' -= *40' Attribute Element not found 2017-02-13T00:00:00 *changed Lizmmez eated, because the parent object” Shoe-size [R0414920536823]"" could not be created (Line 10132)
Edit property
Edit target
N it targ R
= Hide selected warnings
port table Copy descriptions to clipboard Save descriptions
Show all hidden warnings
Imported component: Musicians v0.0.1 Shown Warnings: 4/4 Import-date: May 27, 2025 1:57:47 PM

In case there are no Elements to be edited in the table you might be able to find the ID of relevant
elements in the description on the right. These IDs can be looked up in the KB by clicking on the
menu in the top right selecting Administrator - Lookup semantic element with ID.

296

Technical Handbook 5.8 - 1.9. KB plugins and components

— O X
-—
Change password — ﬁ
Tools -]
Flush client caches Adrninistrator *
Revoke admin rights About
Lockup sernantic element with 1D Exit

Lockup registry key

Audit log analysis

Update REST interface
Rebuild view configurations
Edit configured editors

Tool window

1.9.2.10.3. Removing an imported component

An imported component can be removed from within the Knowledge Builder by selecting the
component under TECHNICAL -> Custom components and clicking the Delete button on the right
side of the detail view of the component.

®O.2% HYOR PP LY

Delete all parts of the component
@ Musicians

Configuration Al

4 Mame = | Musicians

When deleting a component you can choose wether to only delete the component and its sub-
objects for additional selection or the entire component including all assigned elements (semantic
elements, queries, etc.).

Any additional property-concepts which are defined exclusively for elements that
NOTE will be removed will also be deleted as they cannot exist without a defined
domain.

Warning: If you try to remove a component like other objects via its context-menu or the buttons

above the table it will only remove the component-object and its sub-objects without the assigned
elements.

297

1.9.2.11. Commandline commands

Technical Handbook 5.8 - 1.9. KB plugins and components

The Batch-tool provides the following commands for custom components:

Command

ImportCustomCo
mponent

ExportCustomCo
mponent

Parameter

file

surplusHandling

file

uri

Value Optional

filename of the component to import No

keep, bin or delete to override the Yes
handling of surplus elements of the
component to import

filename for the exported component No

the base-URI of the component to No
export

298

Technical Handbook 5.8 - 1.10. External Index

1.10. External Index

In contrast to internal indexing, external indexing involves transferring data from the knowledge
graph to a third-party system so that its features can be used in the search. The tools for mapping
data sources are used to transfer the data. Triggers are used to update the external data, and
specialized implementations are available for the third-party system for the search functionality.

1.10.1. Application Areas

¢ Realization of functions (aggregation, linguistics, path algorithms, etc.), which are not offered
by i-views.

Acceleration of the search, result display and faceting (especially for large data volumes)

¢ Decoupling in the architecture of the application (e.g. Ul directly on external index)

"Overhang" data - i.e. there are more objects in the external index than are known to the
K.Graph

Coupling/data exchange with other systems

299

Technical Handbook 5.8 - 2. Admin Tool

2. Admin Tool

You can use the Admin tool to create new Knowledge Graphs, manage all Knowledge Graphs of a
mediator and configure individual Knowledge Graphs.

The Admin tool is invoked by default with the following:
® Windows: admin.exe

® Mac OS: admin

® Linux: visual admin-64.im

It is safe to rename the files.

2.1. Admin tool configuration

Like the Knowledge Builder, the admin tool can be startet with English or German user interface
(UI). The preset Ul language ist German. To start the admin tool with English Ul, a configuration
needs to be done using the selection dialog, an ini file or a command line argument. The language
selection dialog is available via the start dialog:

Server III |Administlate|
Knowledge Graph |I| | Mew |
User admin
Password

&

Ul language ™

German

] Remember at u: English

. Discard | Apply

If a new Knowledge Graph is created using the admin tool, the system attributes
NOTE and system relations are created in the same language as the admin tool has been
started with.

300

Technical Handbook 5.8 - 2.1. Admin tool configuration

Besides setting the Ul language of the admin tool using the selection dialog, setting the Ul language
of the (initial) default Ul language can be set using the ini file or a command line argument.

The content of the ini file "admin.ini" for starting the admin tool with English Ul is as follows:

[Default]
language=eng

The command line argument to switch the language is:

-language eng

Please note that without further configuration, the ini file needs to be located in the same directory
as the admin tool itself to take effect.

301

Technical Handbook 5.8 - 2.2. Launch window

2.2. Launch window

After the Admin tool has started, the Start window appears.

Server https://demoserver:30123/ v | Adrministrate
Knowledge Graph | pyGraph Mew
User Susan

Password m-nm-nﬂm-rl

2.2.1. Server

The URL of the server is entered in the free text field Server. Valid URLs use one of the protocols
cnp://,cnps://,http:// or https:// followed by [<hostname or IP address>[:<port
number>]]. If no protocol is specified, the protocol cnp:// is used. If not port is given, the
standard port for the protocol is selected. This format corresponds to the interface setting on the
mediator.

If the mediator that is used to administrate the Knowledge Graphs is running on the same computer
as the Admin tool, it can also be addressed using the computer name localhost.

If the field remains blank, then the Knowledge Graphs are accessed which are in the direct
subfolder volumes relative to the position of the Admin tool. No mediator is required for this type
of access.

Entries entered once in the free text field are saved. The ... button allows them to be selected from
a list in a separate window.

The Administrate button is used to access the server administration, for a subsequent dialog
requires the servers password.

2.2.2. Knowledge Graph

The Knowledge Graph that is to be administrated is specified in the free text field Knowledge Graph

Entries entered once in the free text field are saved. The ... button allows them to be selected from
a list in a separate window. To display all Knowledge Graphs, the user may be prompted to enter the
server password.

2.2.3. Administrate, New and Start
Administrate is used to access the server administration, for which authentication using the server

302

Technical Handbook 5.8 - 2.2. Launch window

password is required.

New forwards to Knowledge Graph generation.

Start forwards to the individual graph administration. The entries user name and password are
used for this for logging in with an administrator account.

2.2.4. About

You can use the About button to retrieve version-specific information in a separate window via the
Admin tool.

-\._..I . .
Oee i-views

oee
(S18

(C) intelligent views gmbh

Build:

Build 20423

Release state:

Preview

Knowledge Graph version:

unknown

Knowledge Graph information:

Memory bound:

unknown @ unknown

Copy R34 key i Copy OK

Specifically, you can retrieve:

the version number of the Admin tool (Build),

the publication status of the Admin tool (Release state),

the maximum system memory in bytes that can be used by the Admin tool (Memory bound),
the amount of memory used at which the process will start reclaiming memory (GC threshold),

the version number and the digital finger print of the execution environment used by the
Admin tool (VM version),

the active HTTP proxy configuration (HTTP Proxy),

the external libraries present and their versions (External Libraries),
the language setting active in the operating system (Locale),

the fonts used in the Admin tool (Fonts),

the software components including version numbers present in the software (Software

303

Technical Handbook 5.8 - 2.2. Launch window

components) and
¢ the core packages including version number used in the Admin tool (Packages).

Information on the License, Knowledge Graph version and Knowledge Graph information is not
decisive here.

The information is shown in an invisible text field, which has a context menu that can be activated
by right-clicking:
e Copy copies the selected text area to the clipboard of the operating system.

e Find allows a string to be input in a separate window, and its next occurrence in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse. The
query is case-sensitive.

¢ Find Again searches for the selected text area and finds its next occurrence in according to the
read direction.

e Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text
segment.

The Copy button at the bottom copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for this build of the Admin tool to the clipboard of
the operating system. This key can be used in the configuration of a mediator to restrict the tool
build versions allowed to access the mediator.

The OK button enables you to return to the start window.

304

Technical Handbook 5.8 - 2.3. Create a new Knowledge Graph

2.3. Create a new Knowledge Graph

A new Knowledge Graph is created via a separate Knowledge Graph creation window . It can be
reached via the New button on the start screen . Any inputs in the Knowledge Graph free text field
of the start screen is ignored.

Server

Mew Knowledge Graph ||

Server password

License | Licencekey

Administrator

User name | Administrator

Password

Mame of Knowledge Graph is missing

Ok Cancel

2.3.1. Server

The name or the IP address of the computer on which the mediator is running is specified in the
free text field Server. The value is copied from the start screen. If you use the server field in this
dialog the same conditions as in the start screen apply.

If the field remains blank, the Knowledge Graph is generated in the volumes subfolder relative to
the location of the Admin tool.

2.3.2. New Knowledge Graph

The name of the Knowledge Graph is specified in the free text field New Knowledge Graph. The
characters allowed for this purpose are specified by the file system of the operating system on
which the Knowledge Graph is to be stored. To ensure that the data can also be stored in different
file systems, consider the following best practices:

64 characters maximum

No blank spaces at the start or end

Characters used: Upper and lower case ASCII letter characters, numbers, space and -+.
Permitted are also all Latin letters, !@#$%&'()+-.[]"N{}*CEoe and ASCII
characters 160-255 but not advised

The following character sequences are not allowed: AUX, CON, NUL, PRN as well as COMO-

305

Technical Handbook 5.8 - 2.3. Create a new Knowledge Graph

COM9 and LPTO-LPT9
A name must be specified.

The name can subsequently be changed only during copy processes of the Knowledge Graph or by
changing file and directory names. If you make a change, keep in mind that the name of the
Knowledge Graph might be referenced in initialization files and that the license might have been
adapted to the name.

2.3.3. Server password

The mediator server supports authentication via a password. If a password has been set for the
mediator it will be used to create the new Knowledge Graph. The server password must be entered
in the Server password free text field. If no password has been assigned, the field must remain
empty.

2.3.4. License

A Knowledge Graph must have a valid license so that Knowledge Builder and other software
components (with the exception of the Admin tool) can access it. Use the ... button to access the
file system of the operating system in order to load a license key (file name: <License
name> . key).

2.3.5. User name

The name of the first user registered in the Knowledge Graph is specified in the User name free text
field. The type and quantity of permitted characters is not restricted. The Administrator default
setting is simply a suggestion. This field must not remain empty.

The name can be changed later on in the Admin tool or the Knowledge Builder. The user created in
this way automatically is granted administrative rights.

2.3.6. Password (user)

In the Password free text field, you should enter a password for the first user registered in the
Knowledge Graph. This password will be required later on when this user attempts to log in to the
Knowledge Builder or the Admin tool for the new Knowledge Graph.

2.3.7. Ok and Cancel

The OK button creates the Knowledge Graph, factoring in the data entered. The Cancel button
cancels the process. In both cases, the system returns to the start screen.

306

Technical Handbook 5.8 - 2.4. Server administration

2.4. Server administration

The overall Knowledge Graph administration allows the administration of all Knowledge Graphs of a
mediator, or the local subfolder volumes respectively. It can be reached via the Administrate button
on the start screen. A corresponding entry in the Server field is necessary for this. Any entries in the
Knowledge Graph field of the start screen are ignored. If the Knowledge Graphs to be
administrated are addressed using a mediator, the correct mediator password must also be
specified in a separate window.

File Server Transfer Administrate Garbage collection

Yolume Clients last backup Status
business-graph 0
expert-net 0
music-example 0

The overall graph administration window is comprised of a graph overview in the form of a table,
a message area and a menu line at the top.

2.4.1. Graph overview

The graph overview in the form of a table provides details about

the name (Volume)

the number of clients currently connected (Clients),

the date and time of the last backup (last backup) and

the last status message (Status) of the respective Knowledge Graph.
The individual columns can be sorted by clicking on the head of the column.

The data is only updated when triggering operations, and therefore is not always up-to-date. A
manual update can be forced at any time using the menu item Server - Refresh Knowledge Graph

307

Technical Handbook 5.8 - 2.4. Server administration

list .

2.4.2. Message area

The Message area outputs all status reports for all Knowledge Graphs. Status reports are created
when activities are triggered in the Admin tool. They are not saved when the Admin tool is closed.
To prevent this, they can be exported via the menu option File --> Write administration log . The
Message area can be edited, but changes are ignored during export.

2.4.3. Menu line

The menu line consists of the following menu tabs:

File
Save administration log

saves all entries in the message window in a text file (default file name: admin.log). You can
freely choose the name and storage location in a saving dialog. This operation requires the
Admin tool to be connected to a mediator.

Reset session password
Log off

Closes server administration and opens the log-in window again.

Exit

Closes server administration

Server
Refresh Knowledge Graph list

Reloads the data collected in the graph overview in the overall graph administration
window.

Re-import ini file
Triggers the server to reload its ini file. Note, that not all options can be updated during
operation. The server outputs a message about updated options.

Download log

Downloads a copy of the mediator log file if present on the server (default file name:
mediator.log) to the local machine. You can freely choose the name and storage location of
the file in a saving dialog. The mediator log file keeps a log of all the mediators activities
from its first commissioning.

Server connections

Shows the client id and individual IP address of all software clients currently connected to
the mediator in the message field. The output contains a total count and is grouped by
Knowledge Graph. The client id is generated sequentially by the mediator and assigned

308

Technical Handbook 5.8 - 2.4. Server administration

(reusing free ids) whenever a new software component registers.

Transfer
Download Knowledge Graph

Creates a copy of the Knowledge Graph selected in the graph overview and saves it locally in
the volumes subfolder that is located relative to the location of the Admin tool. A new name
can be assigned to this copy in a separately appearing dialog.

Copy Knowledge Graph

Creates a copy of the selected Knowledge Graph and saves it on the same server as the
original Knowledge Graph. A new name must be assigned to this copy in a separate dialog.

Upload Knowledge Graph

Uploads a local Knowledge Graph to the server. In a separate dialog, a local graph can be
selected from a list, which is filled from the volumes directory relative to the Admin tools
directory location. A new name can be assigned to this copy and it must differ from all graph
names already present on the server.

Replace Knowledge Graph

Exchanges the contents of a selected Knowledge Graph with the contents of a locally present
graph. In the process, the uploaded copy is given the name of the Knowledge Graph it has
replaced. The local Knowledge Graph, which must be stored in the volumes subfolder that is
relative to the position of the Admin tool, is selected in a separate selection window.

As a result of the copy processes initiated by transfer operations, the block allocation of the clusters
and blobs within the Knowledge Graph copies is redefined, and their space consumption is
optimized in the process. The resulting compression effect is identical to the one achieved by the
operation Manage - Compress volume.

With the exception of the Copy volume operation, all these operations require the Admin tool to be
connected to a mediator.

Administrate
Open Admin tool

Opens the Admin tool on the selected Knowledge Graph. Since this administration interface
used authentication on the server level, no further authentication is required. In a separate
window a list of accounts with administrative access in the selected Knowledge Graph is
presented. Here the account to use when opening the Admin tool in "per graph" mode can
be selected.

This makes it possible to access the user management of the volume if the administrator
password has been lost.

Create backup

Creates a backup of the Knowledge Graph selected in the Knowledge Graph overview and
saves it in the backup folder on the server. Every backup is a full copy of the original
Knowledge Graph.

309

Technical Handbook 5.8 - 2.4. Server administration

When the backup is initiated, a separate window asks whether the user wants to wait until
the copy process is complete. If applicable, further use of the Admin tool is blocked until this
time. Otherwise the copy process starts in the background, and there is no message
regarding the process or completion of the copy process.

Restore backup

Offers a list of available Knowledge Graphs with backups present on the server. After picking
a knowledge graph a second dialog offers the list of timestamps for backups of that graph.
When selecting a timestamp, a new name must be assigned for the backup to be restored
to.

Delete backup

Deletes a selected backup. To select this backup, two separate selection windows must be
navigated: in the first, the Knowledge Graph must be selected; in the second, the backup
timestamp must be selected from a list sorted by creation date.

The block assignment of clusters and blobs within the original Knowledge Graph is not
modified when a Knowledge Graph copy is created. The copy process initiated by the backup
operations therefore creates no compression effect.

Delete Knowledge Graph

deletes the Knowledge Graph selected in the Knowledge Graph overview.

Compress Knowledge Graph

Remove free blocks in the files comprising the selected Knowledge Graph. Free blocks
originate from changed data freed by the garbage collection.
The copying processes for clusters and blobs first move all unused blocks to the file end and
then release them in the file system of the operating system.

Update volume version

Updates the version of the internal file system of the Knowledge Graph selected in the
Knowledge Graph overview. If the Knowledge Graph is addressed via a mediator, the version
it contains is used; otherwise, the version included in the Admin tool is used. The update
should be performed, when upgrading from previous i-views versions.

Garbage collection

Garbage collection is a procedure that deletes objects that are no longer referenced (according
to a programming terminology reading) from the Knowledge Graph. It thereby minimizes
reduces the storage usage of the Knowledge Graph. Use of the garbage collection requires that
the Knowledge Graph that is to be cleaned up is accessed via a mediator.

Start

Initiates a new garbage collection run for the Knowledge Graph selected in the Knowledge
Graph overview or continues a garbage collection paused for it. No confirmation is sent
when the process is completed. You can determine its progress via the Status menu option.

310

Technical Handbook 5.8 - 2.4. Server administration

Pause

Halts the execution of the active garbage collection for the Knowledge Graph selected in the
Knowledge Graph overview.

Stop

Terminates the execution of the active garbage collection for the Knowledge Graph selected
in the Knowledge Graph overview.

Status

Fetches the status of the current garbage collection process for the Knowledge Graph
selected in the Knowledge Graph overview and displays it in the status column of the
Knowledge Graph overview and in the message field. If garbage collection is active,
feedback on its progress is provided in percent.

311

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

2.5. Individual Knowledge Graph administration

Individual Knowledge Graph administration allows you to manage an individual Knowledge Graph. It
can be reached via the Start button on the start screen. This requires the corresponding entries in
the fields Server , Knowledge Graph , and authentication field combination, by default
Authentication set toName and password, User and Password of the start screen.

2.5.1. User authentication

To access the Knowledge Graph administration window a user account with administrative rights
needs to be authenticated.

If you no longer have access to the Knowledge Graph, you can access the Knowlede Graph through
authentication on the server by logging on to the Server administration.

Valid authentication methods for logging in to a specific Knowledge Graph depend on the
configuration of the mediator and the graph. These details need to be provided to the users of the
Admin tool.

Possible authentication methods are:

Name and password

The fields User and Password are used to authenticate against accounts defined in the
Knowledge Graph

JSON Web Token

(experimental) A valid JWT needs to be pasted into the Password field. The token issuer needs
to include the allowed operations as claims in the token. The User field contents are ignored.

OAuth

To log in the user is redirected to the configured OAuth authentication provider service in the
browser. After successful authentication and if the users account is authorized to log in to the
installation, the Admin tool opens.

Windows negotiate

Use the Windows negotiate API to authenticate the user with the Knowledge Graph.

2.5.2. Individual Knowledge Graph administration window

312

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

4 Database
Administrate
Developer
4 |nformation
Johclient
4 Performance
Client
Server
Wersion information
4 Maintenance
client caches
Garbage collection
Maintenance infarmation
Maintenance message
Maintenance script
4 System configuration
Access authorisation
Audit log
Elob storage
Cormponents
JavaScript engine
License
Systemn accounts
User
4 XML import £ export

Scherna and configuration

Back Exit

The Knowledge Graph administration window has a menu list with a multilevel structure on the
left, and an operation window on the right. The content of the operation window depends on the
menu option selected in the menu list.

The Back button returns you to the start window.
The Exit button closes the Admin tool.

If the Knowledge Graph to be administrated is addressed without a mediator, other clients cannot
access the Knowledge Graph via the Knowledge Builder or another instance of the Admin tool for as
long as the Knowledge Graph administration window is open.

313

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

Administrate
4 Database Backup
Administrate ;
. Replace with backup
¥ Information
b Maintenance Delete Backup
P System configuration Download
¥ XMLimport / export Replace Knowledge Graph

Back Exit

2.5.2.1. Database

2.5.2.1.1. Administrate

Backup

Creates a backup of the Knowledge Graph on the server. Every backup is a full copy of the
original Knowledge Graph.

Before the backup is created, a separate window asks whether the user wants to wait until the
copy process is complete. If applicable, further use of the Admin tool is blocked until this time.
Otherwise the copy process starts in the background, and there is no message regarding the
process or completion of the copy process.

The block assignment of clusters and blobs within the original Knowledge Graph is not modified
when a Knowledge Graph copy is created. The copy process initiated by the backup operations
therefore creates no compression effect.

Replace with backup

Allows to replace the current Knowledge Graph with one of its backups created earlier on. A
dialog with available backups offers the selection of a specific backup set. If performed all
connected clients (including this Admin tool) will shortly lose the connection and reconnect
again.

314

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

Delete backup

Deletes an individual backup of this Knowledge Graph from the list of available backups.

Download

Downloads a copy of the Knowledge Graph and saves it locally to the volumes subfolder that is
located relative to the location of the Admin tool. A new name can be assigned to this copy in a
separately appearing free text field.

Upload volume

Transfers a locally stored Knowledge Graph and replaces the current Knowledge Graph with this
Knowledge Graph (afterwards you are logged off automatically).

2.5.2.2. Information

2.5.2.2.1. Jobclient

In order to relieve the workload on the Knowledge Builder for specific, processor-intensive
processes such as indexing, querying Knowledge Graphs and executing scripts, these processes can
be performed by Job-Clients. Some are optionally executed by Job-Clients while others are
exclusively performed them. The use of jobs is usually configured in the graph, but the user
interface of the Knowledge Builder offers the execution as job in several locations. To perform these
jobs at least one Job-Client must be configured and running for the intended kind of job. The Admin
tool largely functions as an observer in this case. Jobs not completed appear in the Knowledge
Builder under the entry Tasks in the Technology category. In order to use the Admin tool to manage
Job-Clients, the Admin tool must be connected to a mediator.

Jobclient

-

Database Job clients

.

Information Mame D P Server Process Pool Status Done

Jobclient
¥ Performance

Version information

-

Maintenance

-

System configuration

XML impart / export

-

Job-Pools

Narne JobPool ToDo Failed Job clients

Kinfinity.KExpertQuerylob Kinfinity.KExpertQuerylob 0 0 1]
Kinfinity.KSearchPerforman: Klnfinity.KSearchPerforrmance 1] 0 1]
Kinfinity.KTableQuerylob Klnfinity.KTableQuery)ob 0 0 0
Kinfinity.KTableRenderlob Klnfinity.KTableRenderlob 0 0 0
Kinfinity.KTableSortlob Klnfinity.KTableSortlob 0 0 0
Query Kinfinity.KQuerylob 0 0 0
Script Klnfinity.KScriptiob 0 0 27
Script-Trigger Klnfinity.KScriptTriggerlob 0 0 26

Back Exit

The Job-Clients overview table on the top right shows the following for each job-client that is
currently running:

315

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

e its name in the format [Job-Client-Name]@[Mediator-Name] (name),

e itsclientid (/D),

e its IP address relative to the mediator (/P),

¢ the name of the mediator connected to it (Server),

e the process number assigned by the operating system (process),

e the job types assigned to it (Pool),

e its work status (Status) and

e the number of jobs it has completed (Done).
The Client id assigned by the mediator and a separate number is assigned with each new client
connection. The Job-Client name and the job types assigned to the Job-Client are defined in the
initialization file for the respective Job-Client (default file name: jobclient.ini) under the key name

or the key jobPools respectively. Each job type of a Job-Client is shown in a row of its own in the
Job-Client overview, so that a Job-Client regularly takes up several rows.

The individual columns of the Job-Clients overview can be sorted by clicking on the head of the
column. Right-clicking a row also opens a context menu:

e Display information:: displays all data listed in the selected row, with the exception of the job
type and the completed number of jobs, in a new window. Added are
o the date and time of the last time the Job-Client was started (startUpTime),
o the maximum working memory capacity available for use by it in bytes (max Memory),
o the name of its log file (logFileName) and

o its specific name, under which it can be forced to shut down (a concatenation of the string
“jobclient” and the Job-Client number) (shutDownString).

The data there can be copied to the clipboard of the operating system (Copy to clipboard
button) or be exported to any location as a text file that can be given any name using a saving
dialog (Save button).

e The operation triggered using the menu item Display information can, alternatively, be
performed by double-clicking a row in the Job-Clients overview.

Remove Job-Client ends the Job-Client selected in the Job-Clients overview .

Remove all Job-Clients ends all Job-Clients listed in the Job-Clients overview .

The job pools overview on the bottom right in form of a table lists all job types that are assigned to
at least one Job-Client in the Job-Clients overview . For each job type it displays,

its name (name),

its technical name used in the Job-Client’s initialization file (JobPool),

the number of uncompleted jobs of this job type (ToDo),

the number of failed jobs of this job type (Failed) and

316

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

e the number of Job-Clients available to execute the type of job (Job-Clients).

The individual columns of the job pools overview can be sorted by clicking on the head of the
column. Right-clicking a Job-Client also opens a context menu:

¢ Empty job pool deletes all uncompleted and failed jobs of the job type selected in the job pools
overview . This operation is only possible when no Job-Client is running.

e Configure error messages to ignore allows specific error messages to be blocked when
executing jobs of the job type selected in the job pools overview.

o If an error message is blocked this way, the job related to the error is not factored in when
determining the number of failed jobs in the job pools overview. This operation is only
possible when there are already jobs of the job type selected in the job pools overview
waiting to be processed, or that were already processed.

° The error messages to be blocked are administrated in a separate window:

= All error messages to be blocked are listed in the alphabetically sorted error message
list. An error message is blocked when its output text matches a text in the error
message list.

= "+" allows input of an error message to be blocked using a separate window. The error
message appears in the error message list.

= ".." allows the error message selected in the error message list to be changed.

= "-" deletes the error message selected in the error message list .

2.5.2.2.2. Performance

Client

Allows to activate the collection of performance data for clients.

317

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

A —Client

knowledge-graph
4 [atabase Record client performance data

Administrate . .
Record duration 5 2 Minutes Log targets Internal

Developer
Influx
. Report eve = | Seconds O
4 |nformation b b 0 L4

Jobdient Start

4 Performance
Client
Server
Version information
4 Maintenance
client caches
Garbage collection
Maintenance information
kaintenance message
kaintenance script
4 System configuration
Access authorisation
Audit log Last update: Today, 12:22:17 PM

Blob storage v Refresh Reset Copy to clipboard Table

Record duration configures the number of minutes to keep the performance data collection active.
The preset is 5 minutes.

Report every configures the duration in seconds between performance data snapshots. The preset
is every 10 seconds.

Log targets offers the logging to the internal log collector and/or a configured Influx time series
database.

Start starts the client performance data collection with the given parameters. It will stop after the
configured duration or when klicking

Stop stops a running client performance analysis.

The key performance indicators are shown in a nested list in the key performance indicator
overview. Clicking on the triangle symbols to the right of the categories allows listed subitems to be
expanded and collapsed. Alternatively, this can be performed using a context menu, which can be
accessed by right-clicking a list item:

¢ Expand opens all directly listed subitems in the list item selected.

e Expand fully opens all directly and indirectly listed subitems in the list item selected.

e Contract fully collapses all listed subitems in the list item selected.
Double-clicking on a list item allows all key performance indicators stored below it to be shown at a

glance in a separate window. There, they can be copied to the clipboard of the operating system
(Copy to clipboard button) or exported to a text file (Save button).

318

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

Below the collected statistics there are for buttons available:

Refresh updats the collectected performance indicators shown in the key performance indicator
overview.

Reset deletes the collected performance indicators shown in the key performance indicator
overview.

Copy to clipboard copies the key performance indicators shown in the key performance indicator
overview to the clipboard of the operating system.

Table opens a dialog with a tabular display of the collected performance data.

Server
Server
b Database
4 Information
Jobclient Test Value
4 Performance Roundtrip: Blob 0.785 msecs
Roundtrip: RPC 0.845 msecs

client Throughput: Blob (1.0 ME) 11,16 MBfsec
Server Throughput: Blob (100.0 KB) 39.89 MB/'sec

Version information
» Maintenance
¥ System configuration

¥ XML import / export

Copy to clipboard

Back Exit

Test performance starts a process to evaluate the performance of the mediator connection. This

sends several requests to the mediator and monitors timing and throughput of the connection.
Measurements are taken of

e the duration until a small file is transmitted (Roundtrip: Blob)
e the result of a mediator support call request (Roundtrip: RPC)

e the average transmission rate when sending several 1 MB files (Throughput: Blob (1.0 MB))
and

¢ the average transmission rate when sending several 100 KB files (Throughput: Blob (100.0 KB)
).

The test results are shown to the results list after the test is finished.

Copy to clipboard copies the test results in the results list to the clipboard of the operating system
as plain text.

319

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

2.5.2.2.3. Version information

This menu item can be used to retrieve version-specific information for the Knowledge Graph and
Admin tool.

Version information

Database iviews
4 Information

(C) intelligent views gmbh

Jobclient o n
Build:
4 Performance
" Build 20423
client
Release state:
Server

L : Preview
Version information

Knowledge Graph version:

-

Maintenance

-

System configuration

XML import / export Knowledge Graph information:

-

Documentation
Memory bound:
2.0 GB
GC threshold:
1024.0 MB
VM Version:
832
#7247 76 176832007247 76 176]
HTTP Proxy:
No proxy server
External Libaries
BoostRx: not present
CryptoSystem: LibCryptoEVPInterface
LibCryptoEVPInterface: 1.0.2k release
SQlite: not present
WinGDIPlusinterface: present

Copy RSA key Copy

Back Exit
Specifically, you can retrieve:

¢ the version number of the Admin tool (Build),

¢ the publication status of the Admin tool (Release state),

e the license information present in the graph (License),

¢ the version number of the Knowledge Graph (Knowledge Graph version),

¢ the name of the Knowledge Graph and the mediator used (Knowledge Graph information),

e the maximum system memory in bytes that can be used by the Admin tool (Memory bound),

e the amount of memory used at which the process will start reclaiming memory (GC threshold),

e the version number and the digital finger print of the execution environment used by the
Admin tool (VM version),

e the active HTTP proxy configuration (HTTP Proxy),

e the external libraries present and their versions (External Libraries),

320

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

the language setting active in the operating system (Locale),

the fonts used in the Admin tool (Fonts),

the software components including version numbers present in the software (Software
components) and

e the core packages including version number used in the Admin tool (Packages).
The information is output in a text area, which has a context menu that can be activated by right-
clicking:

e Copy copies the selected text area to the clipboard of the operating system.

¢ Find Again searches for the selected text area and finds its next occurrence in according to the
read direction.

* Find allows a string to be input in a separate window, and its next occurrence in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse. The
query is case-sensitive.

¢ Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text
segment.

The Copy button at the bottom copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for this build of the Admin tool to the clipboard of
the operating system. This key can be used in the configuration of a mediator to restrict the tool
build versions allowed to access the mediator.

2.5.2.3. System configuration

2.5.2.3.1. User

The user administration show the list of configured user accounts in the Knowledge Graph. It can
also link these accounts relevant for the login to the Knowledge Builder and Admin tool to user
objects in the graph.

321

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

User

expert-net
» Database User Aszociated with Status Login timestamp Pa Create
¥ Information admin Administrator Sk

. Aczociate
¥ Maintenance

4 System configuration drop association

Access authorisation Change password
Audit log Lagout
Blob storage s
Components
License liznems
System accounts Administrators
User 1
¥ XML import / export User
0
Active
< > 0
Back Exit

The user overview in the form of a table shows, information for the accounts registered in the
Knowledge Graph. The fields are:

¢ the user name (User),

e the object of the user-generated subgraph the user is optionally linked to (Associated with),

e which status the user currently has (Status),

e the date and time of the last login of this account using the Knowledge Builder (Login

timestamp) if the user is still logged in.

The Status provides information about whether a user has administrator rights, whether a user with
administrator rights does not have a password and whether a user is logged into the Knowledge
Graph using the Knowledge Builder. Names of users with administrator rights without a password
are marked in red.

Create creates a new user. User name (obligatory) and password (optional) are defined in a
separate window. The type and quantity of permitted characters is not restricted.

Associate associates the account with a user object from the graph model. This association is
necessary for Knowledge Graph with enabled access rights managment and accounts, that do not
have administrative access.

Drop association removes the selected users association with a Knowledge Graph object.

Change password changes the password of the user selected in the user overview . The new
password is entered two times in two windows that appear consecutively.

Logout logs out the user selected in the user overview from the Knowledge Graph following a
security confirmation. This works only for users currently logged in with the Knowledge Builder.

Delete deletes the account object selected in the user overview following a security confirmation.
At least one user with administrator rights must remain.

322

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

Rename allows a new user name to be assigned for the user selected in the user overview by
means of a free text field in a separate window. If the free text field remains blank, no renaming
occurs.

Maessage opens a text input window to send a message to the user selected in the user overview.
The message is buffered in the graph and appears to the user in the Knowledge Builder as soon as
the user logs in to the Knowledge Graph. The user cannot reply to this message sent from the
Admin tool.

Administrator assigns administrative rights to the account selected in the user overview, or
removes the flag. A user must have a password to obtain administrator rights. At least one user in
the graph must have administrator rights.

Password change is a flag, that when set forces the user to change the password after successful
login in the Knowledge Builder. This is usually used when a new account is created by an
administrative to to hand out an initial password.

The following three fields Administrators, Users and Active indicate the number of user account
with adminitrative rights, the number of all user accounts and the number of active user accounts.

2.5.2.3.2. Blob storage

Attribute values of attributes with the attribute value type file (called blobs) can also be stored in a
blob store outside the Knowledge Graph. The advantage of this is that they can be managed
independently of the Knowledge Graph and can thus be managed in a different system
environment. To store blobs in a blob store, the blob store must be set up and connected to a
configured blob service (a software service).

323

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

new Blob storage

Database External stores for file attributes:

»
» Information
’ Binary Store (6afdd613-e908-47de-b99f-f69ca7d01ebb+ID0_521891430)

Maintenance

[N

System configuration
Access authorisation
Audit log
Blob storage

» Components

Create Delete
License
System accounts
User S
» XML import / export Deletable Files Delete

External stores in blob service:

Back Exit

Create generates a new blob store. Using the name format [Knowledge Graph ID]+[blob store ID] ,
the blob store overview appears in the text field above it.

Delete deletes the blob store selected in the blob store overview .

The numeric field Deletable files shows the number of blobs no longer required in the blob store
overview of the selected blob store. Blobs are no longer required when their respective attributes
have been deleted from the Knowledge Graph or if the connection between blob service and blob
store has been removed using the Admin tool.

Delete deletes all blobs that are no longer required in the blob store selected in the blob store
overview .

You can identify a blob service in the free text field URLs . This is done by entering the network
address of the initialization file of the corresponding blob service (default file name: blobservice.ini')
stored under the interfaces key including the prefix http . If the blob service is supposed to be
addressed via several network addresses, these can be entered in comma-separated form.

Alternatively, the blob service integrated in the mediator can also be addressed. In the initialization
file of the mediator (default file name: mediator.ini), the value true must be set under the key
startBlobService and the free text field URLs must be left blank. The internal checkbox to the right
of the free text field URLs indicates whether the integrated blob service or an external blob service
is addressed. The blob service integrated into the mediator is not configured via the mediator

324

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

initialization file but via a separate initialization file (default file name: blobservice.ini).

Add connects the blob store selected in the blob store overview to the blob service identified via
the free text field URLs . To do so, the blob service must be active. If linking is successful, the blob
store using the name format [Knowledge Graph ID]+[blob store ID] appears in the text field below,
the overview of registered blob stores.

Update updates the overview of registered blob stores. To do this, a blob store must be selected in
the blob store overview.

Remove interrupts the connection of the blob store selected in the overview of registered blob
stores to the blob service and removes the blob store from the overview. In doing so, all blobs
stored in the blob store irrevocably lose their internal references to the respective attributes in the
Knowledge Graph and can no longer be retrieved in the Knowledge Graph. To ensure removal is
successful, the blob store selected in the overview of registered blob stores must also be selected
in the complete blob store overview.

All blobs stored via a blob service are stored in a subfolder called blobs that is located relative to
the position of the blob service. The internal assignment of every blob to its blob store and its
Knowledge Graph is established using an SQLite database.

2.5.2.3.3. Components

Knowledge Graphs consist of Knowledge Graph components. In addition to the basic functions, they
basically provide the Knowledge Graph with additional interfaces and user interfaces for user data
that can be displayed in the browser (web front-ends).

Publication status components (Release States), of which there are three variants (Preview ,
Release Candidate , Release) are a special subgroup of Knowledge Graph components. If such a
component is installed in the Knowledge Graph, only software components with suitable
publication statuses are able to access the Knowledge Graph.

325

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

Components

Database Software

Information Attribute versioning ~

Maintenance . .
. Boost Libraries
4 System configuration

Access authorisation Calendar-Component

Audit log graphviz component
Blob storage KEM
» Components
License
System accounts v
User

XML import / export

Add standard component Create license template

Knowledge Graph

i-views Core
Knowledge Builder
Printing component
REST

Tagging

View configuration

View Configuration Mapper

MNam: Version |0 -0 -0

Add generic component Update all Update Remove

Back Exit

The Software list provides an alphabetical list of all Knowledge Graph components supplied with
the Admin tool and their respective version numbers. If they need a separate license, there is also a
note as to whether this is included in the current license of the Knowledge Graph. Publication status
components do not have a version number.

If you right-click on a Knowledge Graph component, a context menu appears. The menu item Add
standard component available there has the same functions as the button of the same name.

Add standard component installs the Knowledge Graph component selected in the software list in
the Knowledge Graph. A separate window informs of the installation status. Some Knowledge
Graph components require other Knowledge Graph components installed in the Knowledge Graph.
Most installed Knowledge Graph components (except for publication status components) appear as
separate entries in the Technical category in Knowledge Builder. Only one publication status
component can be installed at a time.

Write license template generates a template whose content is to be completed for the component
license configuration file to be used to generate the license key, and stores it at a location of your
choice via a saving dialog (default file name: [Knowledge Graph].componentLicenseTemplate.ini).
Irrespective of the configuration of the Knowledge Graph just administered, configuration
placeholders are specified for the components KEM , i-views core and Knowledge Builder . The
version number of the respective Knowledge Graph component supplied in the Admin tool is pre-
entered in every configuration placeholder.

The Knowledge Graph list alphabetically lists all Knowledge Graph components installed in the
Knowledge Graph with their respective version numbers. An installed Knowledge Graph component

326

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

for which a newer version is provided in the Admin tool is highlighted in red. The optional
Knowledge Builder component is pre-installed in a new Knowledge Graph by default.

The text fields Name and Version show the name and the three-digit version number of the
installed Knowledge Graph component selected in the Knowledge Graph list.

Add generic component adds a generic model component or a generic software component to the
Knowledge Graph list. The component type is selected in a separate window. Generic components
allow bundling of project-specifically created Knowledge Graph extensions and simplify their
installation (removal) and version monitoring via the Admin tool. The name and version number of
a generic Knowledge Graph component installed in the Knowledge Graph can be freely assigned in
the corresponding text fields.

Update (the name changes to Renew, if it can be deactivated) updates the installed Knowledge
Graph component selected in the Knowledge Graph to the version supplied in the Admin tool. If
the language of the currently running Admin tool differs from the language of the Admin tool with
which the Knowledge Graph component was originally installed in the Knowledge Graph, identifiers
of all elements and element types of this Knowledge Graph component are also updated.
Depending on the Knowledge Graph component, the update of the old identifiers either adds new
identifiers in the language of the Admin tool that is currently running (the respective applicable
language version is then displayed depending on the language setting in Knowledge Builder) or
replaces the old identifiers with new identifiers.

Remove removes the installed Knowledge Graph component selected in the Knowledge Graph list.
If Knowledge Graph components in the installed status in Knowledge Builder have an entry in the
Technical category, they leave their own subgraph after they have been removed, which has to be
removed manually. Knowledge Graph components can only be removed if no other Knowledge
Graph components that depend on the Knowledge Graph component to be removed are installed.
The two Knowledge Graph components i-views Core and View Configuration offer basic functions
and cannot be removed.

Boost libraries 1.18.0

This configuration menu appears only if the boost libraries Knowledge Graph component is
installed.

With the exception of the blob service and the mediator, all the software components can interpret
JavaScript. In order to improve the scope and speed of interpretation of regular expressions
embedded in JavaScript, it is possible to transfer their interpretation to the Boost.Regex library.
Under Windows and Linux, the library (file name in Windows: boost_regex.dll , file name in Linux:
libboost_regex.so) must be in the same directory as the transferred software component. In Mac
OS the library is integrated in the file of the transferring software component.

The boost libraries Knowledge Graph component makes it possible to ensure that access to the
Boost.Regex library is possible.

If the Boost libraries required for all incl. Admins option is selected, all software components apart
from the Admin tool can only access the Knowledge Graph if they can access the Boost.Regex

327

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

library.

If the Boost libraries required for all apart from Admins option is selected, all software
components apart from the Admin tool can only access the Knowledge Graph if they can access the
Boost.Regex library. The only ones excepted from this access lock are users with administrator rights
who access the Knowledge Graph via the Knowledge Builder.

If the Boost libraries not required, logging only option is selected, each software component enters
a corresponding warning in its respective log file, if available, if it cannot access the Boost.Regex
library during start-up. Access to the Knowledge Graph remains possible regardless.

Knowledge portal
This configuration menu appears only if the Knowledge portal component is installed.

The Knowledge portal component enables a Knowledge Graph to operate a knowledge portal (of a
front-end that can be displayed via browser). The configuration of the display and control elements
of this front-end is performed in the Knowledge Builder on the relevant element types via an editor
specially provided by the Knowledge Graph component for that purpose and with the help of the
XML markup language. To make maintenance easier, and for the logical regulation of XML
documents, it is possible to install schemas in the DTD format, on the basis of which the XML
documents can be validated.

In the front-end, a distinction is made between an edit view and a presentation view, each of which
have exclusive display and control elements. Separate DTD schemas are maintained for both views.
Each of the control elements explained below exists for every view.

328

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

new Knowledge Portal

¥ Database Edit Config DTD: Choose Reset Show

b)
Information View Config DTD: Choose Reset Show

» Maintenance
4 System configuration
Access authorisation
Audit log
Blob storage
4 Components
Boost Libraries 1.18
Converter service
Knowledge Portal
License
System accounts
User
» XML import / export

Back Exit

The Select button can be used to access the file system of the operating system in order to load a
DTD schema file for the relevant view and install it in the Knowledge Graph. The default file name
for edit view DTDs is editConfig.dtd , and the default file name for presentation view DTDs is
viewConfig.dtd .

Reset deletes the DTD schema installed for the relevant view from the Knowledge Graph.

Display shows the DTD schema installed for the relevant view in a separate window. There it can be
copied to the clipboard of the operating system (Copy to clipboard button) or exported to any
location via a saving dialog as a text file with a name of your choice (Save button). The window also
features a context menu of its own, which can be opened by right-clicking:

e Search allows a string to be input in a separate window, and next appears in accordance with
the read direction in relation to the position of the cursor set by clicking the mouse. The query
is case-sensitive.

e Mark all marks the entire text. Alternatively, the mouse pointer can be used to mark any text
segment.

e Copy copies the selected text area to the clipboard of the operating system.
Converter service

This configuration menu appears only if the print component Knowledge Graph component is

329

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

installed.

The print component allows selected Knowledge Graph elements to be integrated into an electronic
document that can be saved. To do so, a document template in the formats ODT, DOCX or RTF must
be imported into the Knowledge Graph using the Knowledge Builder and be linked to the
Knowledge Graph element to be integrated into a document. This layout of this document template
is created in an external Office program. You can use KScript and KPath to define placeholders to be
filled out by elements of the Knowledge Graph.

The conversion service is a function of the print component. If the context menu item Print is used
to generate a document in the Knowledge Builder, then along with the original format of the
imported document template, diverse other output formats can be selected into which the
document template can be converted. To ensure this conversion functions, a suitably configured
bridge (a software service) must be started and be linked to the print component, and a version of
LibreOffice or OpenOffice must be installed.

The bridge is suitably configured using its initialization file (default file name: bridge.ini). The value
jodService must be added in the section [KHTTPRestBridge] under the key services . Moreover, a
new section [file-format-conversion] must be created and be stored there using the key value pair
sofficePath="[File path]/soffice.exe” with a correct path name for the location of the LibreOffice or
OpenOffice start file.

Converter service

new
» Database URL:
» Inf i

nformation Timeout: 20 | Seconds
» Maintenance
4 System configuration Check

Access authorisation
Audit log
Blob storage
4 Components
Boost Libraries 1.18
Converter service
Knowledge Portal
License
System accounts
User
» XML import / export

Back Exit

The bridge is linked to the print component using the free text field URL. The network address of

330

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

the bridge is entered there in the format http://[Bridge-IP-Number]:[Bridge-
Port]/jodService/jodconverter/service . The path section /jodService/jodconverter/service has
historical reasons and activates the predefined jodService.

Check starts a test process. The test process uses REST to send a test document to the bridge
defined using the network address and expects that a properly converted test document is
returned. The test result is output in a separate window.

The free text field Timeout is used to define how many seconds to wait for the return of the
converted test document before generating an error message. The preset is 20 seconds.

2.5.2.3.4. Licence

A Knowledge Graph must have a valid license so that Knowledge Builder and other software
components (with the exception of the Admin tool) can work with it.

License

» Database Status License is valid
¥ Information
» Maintenance
4 System configuration
Access authorisation
i Customer Licence for intelligent views
Audit log

Blob storage

¥ Components

License
System accounts Components [Kinfinity. KEMCemponent]
User version=""**
» XML import / export [KInfinity.KInfinityCoreComponent]

version="***

[KInfinity.KnowledgeBuilderCompenent]
version="**

Partner

wvalid until | Jan 15 2025
valid for Graphs

valid for servers

- Add / Renew

Back Exit

The Status field specifies whether the license is currently valid or invalid. If it is invalid, a reason is
also stated. Reasons for an invalid license can be exceedance of the validity date or maximum
number of allowed registered users.

The Customer field describes the client for whom the license was issued. In addition to the name,
address and department may also be listed.

331

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

The Components field displays the content of the component license configuration file [Knowledge
Graph].componentLicenseTemplate.ini used to generate the license key. This specifies

e The licensed versions of individual components (version),

e The maximum number of registered users with administrator rights (maxAdminUsers) and

e The maximum number of registered users without administrator rights (maxUsers)
The Partner field contains the name of the partner via which the license is forwarded.
The Valid to field contains the date on which the license expires.

The Valid for Knowledge Graphs field contains a list of names of all Knowledge Graphs to which the
license is restricted. This can be entered using a regular expression.

The Valid for servers field contains a list of all IP addresses and port numbers that can be used to
reach a mediator connected to the Knowledge Graph.

The fields Partner, Valid to , Valid for Knowledge Graphs and Valid for servers can be left blank.
All fields have a context menu that can be activated by right-clicking.
¢ Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text
segment.

e Copy copies the selected text area to the clipboard of the operating system.

¢ Find Again searches for the selected text area and finds its next occurrence in according to the
read direction.

e Find allows a string to be input in a separate window, and its next occurrence in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse. The
query is case-sensitive.

Add / Renew makes it possible to load a new license key (file name: [License name].key) via the file
system of the operating system.

2.5.2.4. Maintenance

2.5.2.4.1. Client caches

To improve performance, software components accessing the Knowledge Graph often fall back on
their own buffers (cache). These buffer the schema and configuration data of the Knowledge Graph
so they can access them more quickly if they need to use them later on.

332

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

client caches

b Database E Flush client caches i

¥ Information

4 Maintenance
client caches
Garbage collection
Maintenance information
Maintenance message
Maintenance script

¥ System configuration

r XML import / export

Back Exit

Reset client caches deletes these buffered data. This makes sense if they are obsolete due to
changes to the schema or the configuration. This operation requires that the Knowledge Graph is
activated via a mediator.

2.5.2.4.2. Garbage Collection

Garbage collection is a procedure that deletes objects that are no longer referenced (according to a
programming terminology reading) from the Knowledge Graph and thereby minimizes the memory
usage of the Knowledge Graph. Use of the garbage collection requires that the Knowledge Graph
that is to be cleaned up is activated via a mediator.

333

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

Garbage collection

b Database Actions
» Information : Start |
4 Maintenance Pause
client caches
- Stop
Garbage collection
Maintenance information Information
Maintenance message Refresh collecting

Maintenance script
T13:55:28+01:00{ 'timestamp": 2020-02-06T13:55:28+ 01:00, 'type": GC, 'volume"

P System configuration , 'status’: collecting, 'clusters': 0, 'frames's 0, "progress’ 0.0d, todot 1}

b XML import / export

Back Exit

Start launches a new garbage collection for the Knowledge Graph or continues a paused garbage
collection. No confirmation is sent when the process is completed. You can determine its progress
via the Refresh menu option.

Pause interrupts the execution of the active garbage collection for the Knowledge Graph.
Stop cancels the execution of the active garbage collection for the Knowledge Graph.

Refresh writes the current state of the garbage collection for the Knowledge Graph to the
neighboring text field. If garbage collection is active, feedback on its progress is provided in percent.

2.5.2.4.3. Maintenance

Perform maintenance now checks

e the license (license)

e indexes (indexes),

e registered objects (the registry),
e rights (access rights),

e triggers (trigger) and

e installed Knowledge Graph components (active components)

334

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

for faults. Over the course of the check, the statistics for property frequencies per object (metrics)
that can be viewed using the Knowledge Builder are updated.

Any faults found are collected in a fault overview in the form of a table. For each fault,

e a short description, if relevant including the cluster ID and the frame ID (format cluster
ID/frame ID) of the faulty object (in the terminology interpreted by the program) (notification
),

the superordinate semantic element affected by the fault (object),

its type (type),

the severity of the fault (priority) and

the first point in time at which it was identified in the form of a date (date)
are output. The individual columns of the table can be sorted by clicking on the head of the column.

Details displays all data listed in the fault overview of the selected fault in a new window. The time
of the first point in time at which it was identified and date and time of the last time it was
identified are added. The data there can be copied to the clipboard of the operating system (Copy
to clipboard button) or be exported to any location as a text file that can be given any name using a
saving dialog (Save button). The operation triggered using the Details button can, alternatively, be
performed by double-clicking a fault in the fault overview.

Remove deletes the fault selected in the fault overview. This does not effect the first point in time
at which the fault was identified.

2.5.2.4.4. Maintenance information

335

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

new Maintenance information

» Database 2021-02-23-15-00-23 >> Add component: Knowledge Portal 3.6 (Auf 5.0.0 aktualisieren)
2021-02-23-15-00-10 > > Add component: Boost Libraries 1,18

2021-02-23-15-00-06 > > Add component: KEM 4.1

4 Maintenance 2021-02-23-14-59-58 >> Add component: Druckkomponente 5.1

2021-02-23-14-59-40 > > Add component: Viewkonfiguration-Mapper 5.4.-98
2021-02-23-14-57-46 > > Add component: Knowledge Builder 5.4 (Unlicensed component)

» Information

client caches

Garbage collection 2021-02-23-14-57-45 > > Add component: View configuration 5.4.-95
_ i , 2021-02-23-14-57-41 >> Add component: REST 5.4.-99
Maintenance information 2021-02-23-14-57-40 > > Add component: i-views Core 5.4.-98 (Unlicensed component)

Maintenance message
Maintenance script

» System configuration

» XML import / export

Copy to clipboard Add comment

Back Exit

This menu option can be used to call up a chronologically ordered maintenance history of all
essential administration processes in the Knowledge Graph since its creation. It contains backup
and transfer processes, component installations and updates, and the execution of maintenance
scripts and garbage collection, each with the time and date.

The maintenance history has a context menu that can be activated by right-clicking:
e Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text
segment.

e Copy copies the selected text area to the clipboard of the operating system.

¢ Find Again searches for the selected text area and finds its next occurrence in according to the
read direction.

* Find allows a string to be input in a separate window, and its next occurrence in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse. The
query is case-sensitive.

Copy to clipboard copies the entire maintenance history to the clipboard of the operating system.

Add comment allows a note to be entered via a free text field in a separate window. It is given a
timestamp and added to the maintenance history. Notes added to the maintenance history cannot
be deleted.

336

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

2.5.2.4.5. Maintenance message

Maintenance message

P Database Set a maintenance message to prevent user log-ins.
¥ Information
4 Maintenance
client caches
. Current maintenance message
Garbage collection _ _ _
. .) The platform is currently being serviced
Maintenance information
Maintenance message
Maintenance script
¥ System configuration

¥ XML import / export

Maintenance message The platform is currently being serviced

E Set i Reset

Back Exit

The Set button activates a maintenance block that prevents all users from accessing the Knowledge
Graph via the Knowledge Builder. To do this, a maintenance notification must be written.

The maintenance notification is written in the free text field Maintenance notification. It is
displayed as an error message shown to all users who try to access the Knowledge Graph via the
Knowledge Builder when the maintenance block is active.

The Reset button removes the previously set maintenance block and deletes the maintenance
notification.

2.5.2.4.6. Maintenance script

337

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

new Maintenance script

»
Database Choose maintenance script File

» Information

4 Maintenance Ne maintenance script selected
client caches
Garbage collection
Maintenance information
Maintenance message
Maintenance script

¥ System configuration

» XML import / export

Back Exit

Select maintenance script can be used to access the file system of the operating system in order to
load a maintenance script (file name: [Maintenance script].kss). Maintenance scripts are produced
on a case-specific basis in the programming language Smalltalk and permit operations that cannot
be implemented using the predefined functions of the Admin tool or using the KEM or JS interfaces.

If the maintenance script has a description, this description is output in an invisible text field under
the Select maintenance script button after the maintenance script has been loaded. This text field
has a context menu that can be activated by right-clicking:

e Select All selects all the text. Alternatively, the mouse pointer can be used to mark any text
segment.
e Copy copies the selected text area to the clipboard of the operating system.

¢ Find Again searches for the selected text area and finds its next occurrence in according to the
read direction.

¢ Find allows a string to be input in a separate window, and its next occurrence in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse. The
query is case-sensitive.

Execute maintenance script starts the maintenance script. A separate window tells you when the
maintenance script was executed and, depending on the script, offers additional execution
information or permits script-specific execution options.

338

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

2.5.2.5. XML import/export

2.5.2.5.1. Schema and configuration

Along with subgraphs generated by the user and imported using components (schemas with useful
data), a Knowledge Graph, by extension, is also comprised of diverse other modules (configurations)
that extend, configure or work with this subgraph in functional terms. Schemas and configurations
are referred to jointly as configurations within the context of this menu item.

Numerous configurations of a Knowledge Graph can be systematically exported and imported.

Schemna and configuration

¥ Database » Configuration ~

¥ Information Access rights (1)
b Maintenance Collection of semantic elements
Data sources
Index Filter
4 XML import / export Indexes (3)
Schema and configuration Knowledge Graph (5]
LDAF (1)

License (1)

¥ System configuration

Mappings of data sources

Organizing folder (1)

Print configuration

Queries (24)

Scripts (26)

Trigger (1) -

Add Remove - Addall Reset

Pre-import maintenance script
Pest-import maintenance script

Schema and configuration

Expart Import Compare
Selection Schema to select semantic elements
Lzad Update

Back Exit

Preparation of schema for object transfer

For transfer of specific semantic elements - especially instances (individual objects, attributes and
relations of respective types) - and for controlling the export and import behavior, preconfigured
XML attributes are required.

Preparation of XML attributes

To generate the XML attribute types, the " Update " option of the Admin tool adds the Boolean
attribute types to the Knowledge Graph (if they do not yet exist in it) as follows:

e XMI-Schematransfer: Export all objects

339

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

e XML-Schematransfer: Export direct objects
e XML-Schematransfer: Do not overwrite
e XML-Schematransfer: Do not export type and all subtypes

e XML-Schematransfer: Do not export subtypes

These attribute types are required to select which elements and element types of the configuration
type Knowledge Graph found in this configuration should be exported or not. To do so, these
attribute types are attached to suitable object types using the Knowledge Builder and are given
suitable attribute values.

If nothing has been configured using these attribute values, then the export applies for every object
type, but not its objects. If an object or object type is exported, all attributes and relations directly
connected to it and their attribute or relation types respectively are also exported.

The configuration overview is a list providing an overview of all configuration types in a Knowledge
Graph that can, in principle, be transferred by means of the operations described in the following.
Able to be transferred by principle are

individual, registered mappings of data sources (mappings of data sources)

e individual search fields configured by administrators and are user-defined (queries)

e individual data source access settings for use for mappings of data sources (data sources)
e the print configuration (print configuration)

e the set of all modules defined within the category Determination of view configuration (view
configuration determination)

e individual index filters (index filter)

e individual index configurations (indexes)

e the LDAP authentication (LDAP)

e the license for the Knowledge Graph (license)

e individual, registered collections of semantic objects (collection of semantic elements)
e individual, registered scripts (scripts)

e the working folder (organizing folder)

e the set of all modules defined within the triggers category (Triggers)

e individual subgraphs (Knowledge Graph) and

e the set of all modules defined within the rights category (access rights).
Display

The configuration overview also manages all configurations specifically intended for export.
Configurations intended for export appear as an expandable list of subitems of their respective
configuration types. If these configurations require other configurations for successful export, these

340

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

other configurations are, in turn, listed in the form of an expandable list of subitems of the
respective configurations. Configuration types without their own configurations are marked in
italics, configuration types with their own configurations are marked in bold and show the number
of configurations assigned to them in brackets. Configuration und configurations of each
configuration type are sorted in alphabetical order respectively.

Navigation

Expanding and collapsing lists of subitems in the configuration overview is carried out by clicking
on the triangle symbols to the left of the listed items. Alternatively, this can be implemented using a
context menu, which can be accessed by right-clicking a list item:

¢ Expand opens all directly listed subitems in the list item selected.
¢ Expand fully opens all directly and indirectly listed subitems in the list item selected.

e Contract fully collapses all listed subitems in the list item selected.
Adding/removing configurations

Add adds a configuration of the configuration type selected there to the configuration overview . If
more than one configuration exists in the Knowledge Graph for the configuration type selected,
then a selection option follows in a separate window. Selection is carried out there by either clicking
individually on the respective configurations in a list, or collectively by using the Select/deselect all
button.

Remove either deletes all configurations of the configuration type selected in the configuration
overview or the configuration selected in the configuration overview .

Add all adds all configurations existing in the Knowledge Graph to the configuration overview and
distributes them among the respective suitable configuration types.

Maintenance scripts

The ... buttons can be used to access the file system of the operating system in order to load a
maintenance script (file name: [Maintenance script].kss). Maintenance scripts are produced on a
case-specific basis in the programming language Smalltalk and permit operations that cannot be
implemented using the predefined functions of the Admin tool or using the KEM or JS interfaces.

If a maintenance script loads, the file name of the maintenance script selected appears in the text
field positioned to the left of the respective button. If configurations are imported afterwards, then
the maintenance script is executed. If configurations are exported afterwards, the maintenance
script is also exported and only executed when these configurations are imported. The exact time of
execution of the maintenance script in relation to the import process depends on which of the two
... buttons was used to load it. It is either before the import process starts, or after the import
process finishes.

Export and import

Export exports the configuration selected in the configuration overview . An export as one single

341

Technical Handbook 5.8 - 2.5. Individual Knowledge Graph administration

archive file in the archive format tar or as individual files in a folder can be selected. The export
method is selected in a separate window:

e The free text fields File or Directory can be used to specify the name of the archive file (file
name: [Knowledge Graph].tar) or the folder respectively (no default name). The archive file or
the folder respectively is created in the same folder as the Admin tool. Alternatively, Select can
be used to open a saving dialog to define any name and location used to save the archive file or
the folder respectively.

Import imports configurations to the Knowledge Graph after confirming a prompt. An import from
one single archive file in the archive format tar or from individual files in a folder can be selected.
The import method is selected in a separate window:

e The free text fields File or Directory can be used to specify the name of the archive file (file
name: [Knowledge Graph].tar) or the folder respectively (no default name). The archive file or
the folder respectively is searched for in the same folder as the Admin tool. Alternatively, Select
can be used to access the file system of the operating system to select an archive file or a folder
respectively from any location.

e If the archive file or the folder to be imported respectively is selected, an overview of the
configurations it contains appears in an additional window. This overview can be copied to the
clipboard of the operating system (Copy to clipboard button) or be exported to any location as
a text file that can be given any name using a saving dialog (Save button). The Import button
starts the import process. The window also features a context menu of its own, which can be
opened by right-clicking:

o Search allows a string to be input in a separate window, and next appears in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse.
The query is case-sensitive.

o Mark all marks the entire text. Alternatively, the mouse pointer can be used to mark any
text segment.

o Copy copies the selected text area to the clipboard of the operating system.

Save saves the configurations currently selected in the configuration overview for this Knowledge
Graph as an XML file. A saving dialog is used to define a name and the location of the XML file
(default file name: instruction.xml).

Load accesses the file system of the operating system to load a previously saved selection of
configurations for this Knowledge Graph from an XML file (default file name: instruction.xml).

342

Technical Handbook 5.8 - 3. View Configuration Mapper

3. View Configuration Mapper

3.1. Introduction

View configurations can be transported into a web front-end and be displayed here in a
straightforward way using the ViewConfiguration Mapper (VCM for short). To do so, the JSON
generated in the view configuration is transported to the front-end via the REST interface in i-views
and is translated into HTML there using mustache templates.

Web-Frontend

{{mustache}}
Templates

i-views Knowledge-Builder

In addition, standard interactions such as content maintenance are supported directly, and the
option is provided to execute user-specific actions in the front-end that were defined in the view
configuration using VCM.

The ViewConfiguration Mapper is a single-page application that runs in the client’s browser. It uses
ractive (ractive.js.org) for an interactive and reactive application that is based on mustache
templates. (mustache.github.io/) .

343

http://ractive.js.org
https://mustache.github.io/

Technical Handbook 5.8 - 3.2. Interaction patterns

3.2. Interaction patterns

When creating user interfaces with the i-views web GUI framework, you will have to deal with at
least two different major design aspects: static and dynamic behaviour.

Static behaviour describes the way in which elements of the Knowledge Graph are displayed, how
they are ordered and filtered, mapped to widgets, arranged on the page and the like. Defining static
behaviour requires good domain knowledge as well as graphic designer’s skills.

Dynamic behaviour on the other hand side is closer to the work of a programmer as it describes
the flow of interaction, data manipulation, handling of state, refresh of display areas and so forth.
Describing dynamic behaviour often requires programming (i.e. scripting in JavaScript) and is more
difficult to capture. Usually an application developer must browse through several scripts and
configuration settings to understand the dynamic behaviour of an application.

Interaction patterns help to cope with the task of designing the dynamics of an application. At the
same time, they help users in understanding the behaviour of an application by providing well
known mechanisms which re-appear in many other applications.

Well known patterns include for example:

* navigation bar
e shopping cart
e wizards

e simple search

* etc.

This guide is not meant to be a comprehensive list of interaction patterns — such collections can be
found in literature. Though, we would like to show how selected patterns can be realized using the
i-views web GUI.

In the first part of this guide, we present those components that take part in the dynamic behaviour
— either by controlling interaction flow or by being influenced or controlled.

In the second part we discuss application state.

In the third part we show how selected patterns can be implemented with the i-views web GUI
framework.

3.2.1. Building blocks of dynamic behavior

3.2.1.1. Panels

Panels and views are mainly elements of static behaviour. As panel contents and visibility may
change over time, panels are frequently part of dynamic application behaviour as well.

344

Technical Handbook 5.8 - 3.2. Interaction patterns

First, panel contents depend on the type of panel: Layout panels contain other panels whereas

view panels contain views — either statically or dynamically determined.

All types of panels may carry one specific " domain model " at a given time. The domain model may
be an element of the Knowledge Graph, a list of elements, a (parametrized) search definition, or
search parameters. Panel contents (= domain model) are determined according to one of the

following cases:

Possible case

a) Resulting from an action +

(see chapter below)
("Show result in panel" or
action within the same
panel)

b) Passed through on
panel dependency
activation ("influences")

Additional option

e) Optional: computed by (+)

a script (" Script for target
model ") in addition to a)
or b)

c) Passed through on panel activation cascade (see section

below)

d) No action or activation (contents may be determined
inherently by panel (sub-)configuration, e.g. 'Search' or

'Graph’)

Additional option

f) Optional, but not
recommended in the first
place: computed by a
script (" Script for context
element ") in addition to
e)orc)

Alternative option

g)

Optional, but not

recommended in the first place:

a configured fixed element of the

knowledge

graph ("context

element")

Panels exist in the two states: visible (or active) and invisible (or inactive). The state of a panel can
be changed by activating or deactivating the panel. This process is initially triggered by an action
(see chapter below). After that, a cascade of further activations and deactivations is conducted
depending on panel structure and configured dependencies.

The following rules apply with respect to panel activation:

¢ Rule A ("static activation"): The main window panel of the application is always active when an
application starts (for the web frontend: application = view config mapper (VCM))

¢ Rule B ("action activation"): The execution location (location at which an action is triggered by
a user, e. g. by clicking on a button or onto a table row) determines which panel becomes
active when the action is executed

Based on A/B, there are subsequent activations based on these rules:

1. Influenced panels are activated (e.g. by relation "influences")

2. Panels with a specialized function (e.g. window title) are activated automatically by their

345

Technical Handbook 5.8 - 3.2. Interaction patterns

superordinate panel in the corresponding hierarchy (e.g. main panel or dialog panel)
3. Subpanels are activated

4. In the case of a panel with a changing layout: Sister panels of the active subpanel are
deactivated

5. Continue with 1. until no further panels can be activated (an integrated cycle test prevents
endless loops)

6. Make sure that all parent panels of activated panels are activated as well

Subsequent activations of step 1 - 3 pass the domain model (context) from one panel to the next. If,
for example, panel A shows the element "Mr. Meyer", then the activated subpanel B also shows
"Mr. Meyer". This default behaviour may be altered according to panel content rules (using scripts
or a fix context element; see cases e), f) or g) above).

The so-called " Activation mode " can be used to optimize the calculation of the panel contents in
step B (action activation) and in step 1 (influencing). This avoids the recalculation of panel contents
that are currently not displayed despite activation, because they are not visible (e.g. a shopping
basket). The available activation modes are as follows:

e The option " Refresh model and view " updates the panel contents only if panel is active

e The option " Refresh view only " updates the view contents (friends of Mr Miller), keeps view
state (table page 4) and domain model (Mr Miller)

e The option " Default " is the fallback setting when neither of the other options described above
were selected (update the panel contents and activate the panel)

3.2.1.2. Actions

Actions are the main driver for dynamic behaviour . They are triggered by user interaction in the
web frontend, i.e. whenever the user activates a button , menu item, or hyperlink. Actions may
change the state of the Knowledge Graph or they purely are of navigational nature - thus changing
only application states (e. g. current visibility of panels, user selections etc.).

The action definition (= configuration of the action) comprises the direct effect of the action as well
as the changes in display contents thereafter. The action effect depends on the selected action type,
parameters, and action target (panels) which will be determined on run-time.

Changes in display contents as consequence of an action are more complicated to understand. The
following rules apply:

1. The panels configured as panels to be activated ("show result in panel") are activated with the
domain model returned as action result — optionally modified by a script ("script for target
model") and optionally disabled by another script ("script for activation").

2. If the former rule does not apply, the panel configuration containing the action may determine
the panel to be activated ("show action results in panel"). This configuration is inherited along
the parent-child structure of the panels.

346

Technical Handbook 5.8 - 3.2. Interaction patterns

3. If the former two rules do not apply, the panel containing the action is activated.

4. In addition, panels to be activated or deactivated can be set by the action script using functions
"actionResult.addActivation()"and "actionResult.setCurrentPanel()"

After applying these rules, subsequent activations will be conducted according to the activation
rules in the panel section above.

3.2.1.3. Scripted actions

Action configurations with user-defined action scripts offer the broadest range of possible action
behaviour.

The i-views JavaScript-API allows full access to and modification of the Knowledge Graph —
considering the user’s access rights restrictions, of course. Additionally, the current state of the
application can be accessed and modified as well as the current view, session, user, and panel are
available to the action script. The following parameters or functions are provided:

Action: the current action is the first parameter of the action script

View: the view is the "this" object of the action script

Session: can be accessed by "action.session()" or as shown below in the section about sessions

Panel: can be accessed by "this.panelView()" — the panel is only available to the action if the
configuration option "panel contents required" is selected

3.2.1.4. Actions and views

Usually, the receiver of an action is the view the action is attached to. This is the case for all actions
that are configured as member of a menu of a view and for special actions directly configured for
the view, e.g. the “click action” of a table. When a menu is configured “stand-alone”, e.g. as a
navigation bar, all actions of the menu have their own view, which is of type “ActionView”.

3.2.1.5. Built-in actions

Built-in actions are executed whenever no (custom) action script is present. The action type
("action type") determines what will happen on action execution and what the result domain model
of the action will look like. Built-in actions are usually specialized to specific views and require
correct parametrization.

Action type " save " deals with form data from edit views, writing data back to the Knowledge
Graph. The web frontend will automatically detect the corresponding edit view to a given "save"
action if there is only one edit view visible. If you have more than one edit view visible at the same
time, use "view roles" to link an action to a corresponding view.

NOTE An action can handle only one view role, whereas a view can be related to
different view roles.
Action type " read " has the same effect as no action type and the same effect as an empty action

347

Technical Handbook 5.8 - 3.2. Interaction patterns

script — it does nothing and the result domain model is the current domain model of the view.

Action type " select " has the same effect as action type " read " but the resulting domain model is
the element specified by the parameter " selectedElement " (set by the web frontend).

3.2.1.6. Transactions / Action Sequences

Actions modifying the Knowledge Graph automatically run a transaction ensuring a consistent all-
or-nothing modification. However, there are situations in which changes that the user makes to the
Knowledge Graph are split into a sequence of consecutive actions — especially when user
interaction is necessary to determine further action parametrization or to abort of the process so
far.

Example: A new object needs to be created within a dialog. To allow the user aborting the creation
of the new object by pressing a cancel button of the dialog, the dialog invoking action starts a
transaction, the cancel button cancels the transaction (action type: "Cancel") and a save button
commits the transaction.

In order to encapsulate a sequence of actions into one transaction, you mark the first action with
"Transaction - begin " and the final action with "Transaction - commit ".

Caution:

¢ Risk of data loss caused by never-ending transaction. When actions are configured with
"transaction - begin" only, a single never-ending transaction will be created. A never-ending
transaction has the potential to grow continuously once started, recapturing all actions since
the begin of transaction, until the system first becomes slower and then breaks down
completely. Additionally, changes never will be saved since saving is triggered at the end of a
transaction only in order to keep up consistency.

To avoid these effects, make sure to set a " transaction - commit " as soon as the sequence of
actions is complete enough for achieving the required state.

Only set an action to "transaction - begin" if you also set a subsequent action to " transaction -
commit ".

¢ Risk of losing data integrity in case of repetitive transaction execution
Transactions must not be executed on elements with variable order.

The transaction history of a transaction records which action is executed on which semantic
element of a particular order. When executing a further action within a transaction, the transaction
history with its fixed order of actions is repeated and the new action is supplemented to that
history.

If the order of semantic elements varies when the transaction is repeated (e. g. by creating
elements by means of a script or by determining elements executing a query), this results into a
misalighment of the order of actions to their respective element of a particular order, leading to

348

Technical Handbook 5.8 - 3.2. Interaction patterns

actions being processed on wrong elements.

When processing semantic elements in a transaction sequence, therefore make sure that the order
of elements keeps deterministic. To keep a deterministic order, the elements need to be sorted
after a fixed property.

Example: An action A executes a query for meals. The search result is “Pudding” and “Fish”. The
action additionally creates two rating objects and links the ratings to “Pudding” and “Fish”. The user
is enabled to write a comment (attribute) on each rating. The next action B saves the comments at
the rating objects and ends the transaction. The execution of action is as follows: A, A + B . Action A
therefore is executed twice. An important aspect is the deterministic order of found meals: since
the result of a query has no specific order, the assignment of the first comment to “Pudding” or to
“Fish” happens by coincidence. Therefore, the query result needs to be assorted first to ensure a
correct assignment of first and second rating object to the relevant meal. Only this makes it possible
to prevent the pudding from receiving the rating “Very tender, but too many fish bones”.

The transaction commit can also be brought about dynamically via the " setTransactionCommit() "
script function.

If the transaction is to be cancelled, you can achieve this by means of an action of the " Cancel "
type. Cancelling means that all previous changes to the Knowledge Graph conducted within the
transaction are undone. The " setFailed() " script function can be used to dynamically initiate a
cancellation.

As a transaction is always coupled with the duration of a session (see below), a transaction is
cancelled automatically when the session ends in which the transaction was started.

If, for example, you open a dialog at the start of the transaction and the dialog is closed before the
transaction was completed, the transaction is cancelled automatically. This does not apply to
dialogs that are opened while a transaction is already running: opening a dialog creates a new
session on the session stack which is independent from the currently running transaction. Dialog
sequences (one dialog is closed, and another dialog is opened immediately) do not interrupt the
transaction either.

Only one transaction can be processed at once. A transaction within another

NOTE .
transaction is not supported.

3.2.1.7. Recall actions

Sometimes an action needs to start a sequence of actions and after the last action in the sequence
wants to come back to the original context for finalization. This mechanism can - but does not have
to - be combined with a long-running transaction as described above.

The desired behaviour can be achieved by configuring a recall script ("Script (recall)") which is
activated when calling the function "action.recallMarkedAction()" in the last action of the sequence.
The recall script is then executed with the same environment (view, action, parameters) present
when the action was first executed.

349

Technical Handbook 5.8 - 3.2. Interaction patterns

The environment necessary to run a recall script is stored on the current session and will thus be
dropped on session end. The function "action.dropMarkedAction()" allows removing the
environment from the session in the case that the whole sequence of actions shall be aborted.

3.2.1.8. Sessions

In sense of the view configuration, a session serves as temporary storage for variable values which
can be read from and written to within scripts of the view configuration. This in turn allows
representing the current state of an application.

Sessions are run-time objects, instantiated while running an i-views web application. Sessions form
a stack. The first session lasts the entire duration of the web session; that is from the time the
application is called until the respective browser window is closed. You can always call up the first
session by using function " $k.Session.main() ".

Opening a dialog generates a new session on the stack. The closing of the dialog removes the
corresponding session from the stack again.

The activation of panels, which are marked with a " Session boundary ", also generates a new
session on the stack which lasts until the panel is deactivated. The element of the new session is set
element() "

to the current element of the panel and can be used in the future by using the
function on this session.

Use the function " $k.Session.actual() " to access the top session of the stack.

Values are written to a session variable by means of " $k.Session.actual().setVariable() " and are
read from a session variable by means of " $k.Session.actual().getVariable() ".

3.2.2. Application state
The application state comprises the activation states of the following:

e panels

e panel contents
e session stack

e session variables

Actions allow application designers to change application states. Unfortunately, as explicated above,
there are numerous options and parameters that influence especially panel activation and contents.

As a result, the desired effect is often not achieved or is spoiled by unwanted side effects. To make
applications’ dynamic behaviour simpler to understand and maintain, it is therefore necessary to
use clear, modular building blocks keeping action effects as local as possible.

Here, the session stack together with session variables plays an important role by providing a local,
temporary context to such a building block.

350

Technical Handbook 5.8 - 3.2. Interaction patterns

System architecture considerations

There are two main players in the i-views web GUI framework: a JavaScript application running in
the web browser and the i-view REST interface running at server-side.

As the REST interface is stateless by design, the application state resides completely in the front-
end (web browser).

At the same time, application logic (static and dynamic behaviour) is exclusively available in the
back-end (Knowledge Graph) and applied when calling the REST API.

As a result, all necessary application state must be provided by the front-end when calling the REST
API. Usually this is done automatically by the framework. For example, the session stack is always
being provided and is thus available to back-end scripts.

For efficiency reasons, only the state of the view an action is attached to will be provided when the
action is executed. Sometimes this is not sufficient and configuration options like " panel contents
needed " have to be set.

3.2.3. Interaction patterns and recipes

For the needed information about usage and rationals of interaction patterns for your user
interface, see ui-patterns.com first. The website describes the needed patterns, whereas the
implementation of the very solution is supplemented in here.

The following subchapters show recipes on how to implemnt the i-views specific solution of certain
patterns for user interfaces using the view configuration mapper.

3.2.3.1. Navigation bar

Similar to the visualization of an "Alternative" view, panel tabs with a navigation bar can be used.
The advantage of panel tabs with navigation bar in comparison to the alternative: panel tabs can
contain further sub panels, allowing configuration of more specific layouts as well as using all of the
panel related functions a view doesn’t come with (view models, session boundaries, interaction
etc.).

In order to configure panel tabs with a navigation bar, proceed as follows:

1. Configuration of panel structure:
o Create a panel containing a menu residing on top or at the side of the screen.

o Depending on the intended layout of the navigation bar menu, select menu type "Tool bar"
for horizontal layout or "List" for vertical layout.

o Create a button for each section to be displayed.

o Create another panel of type "Switching Layout" that covers the remaining part of the
display area.

o Create a sub-panel of this panel for each section and mark each panel as "Session

351

http://ui-patterns.com/

Technical Handbook 5.8 - 3.2. Interaction patterns

boundary" (check box set to true).
2. Linking action to panel:

o Link each button (= action) to the corresponding section panel using the relation "Show
result in panel". This causes a panel to be activated when its button is pressed.

o Link each button (= action) to the panel of the menu in which the action itself is located in.
This causes an update of the button styling when the button is pressed.

3. Creating style for action:

o For a better usability, create a style "buttonActive" that gives a visual indication of the
button selection. First create the style at one action and then reuse (assign) the style to the
other actions as well.

o Add the following script at class (script) to each button:

function additionalPropertyValue(element) {

var isActive = isActiveForSession($k.Session.actual(), this
.getPanelsToActivate())

return isActive ? "yourButtonClass buttonActive"
"yourButtonClass"

}

function isActiveForSession(session, panelsToActivate) {

var sessionBoundaryActivatedConfig = session.
panelConfiguration()

var isActive = panelsToActivate.indexOf
(sessionBoundaryActivatedConfig) > -1

if(!isActive && session.parent()) {

isActive = isActiveForSession(session.parent(),

panelsToActivate)

}

return isActive

Replace "yourButtonClass" by the name of the class that is intended to be used for the
button.

4. Defining the CSS class for the style

For the style, add a class for the active button to the Options Resource of the REST service of
the "viewconfig" application.

To do so, use the organizer in the Knowledge Builder to navigate to "TECHNICAL" > "REST". In
the "REST Service" object list on the right side, select the service with the id "viewconfig". In
the detail editor of the service, select "vem/options" and edit the entry for "CSS".

352

Technical Handbook 5.8 - 3.2. Interaction patterns

Example: let’s assume a class ".navigation-button" is already in use for the buttons. Then a
further class ".navigation-button.buttonActive" is needed for styling of the active state of the
button:

.navigation-button {width: 200px;}
.navigation-button.butttonActive {background-color: red !important;}

5. Refresh interfaces of REST and VCM:

o Update REST-Service and ViewConfig and reload the web frontend (since panels have been
created).

Result: When clicking on a button, the representative panel is shown and the buttons is
styled with an active style.

3.2.3.2. Dialog (modal)

Configure a dialog panel. Make sure the panel has proper title and a menu with a button labelled
"X" to close the dialog. Check the "close panel" option for the close action. Configure the body part
of the dialog as desired. Optionally, configure a footer panel with menu buttons "Ok" and/or
"Cancel" — both with "close panel" option checked as above.

Finally, configure an action to open the dialog. Connect the action to the dialog panel using the
relation "show result in panel”. Make sure that the action result is the domain model you want to
present in the dialog.

3.2.3.3. Wizard

A wizard is used to guide the user throughout an input process that contains several steps . The
following wizard example configuration is as follows:

Forward

Cancel

e An action button returns the semantic element to be edited or created and displays it on
another panel or opens a dialog. While doing so, the action begins a transaction so that editing
can be aborted anytime.

353

Technical Handbook 5.8 - 3.2. Interaction patterns

e Within the panel or dialog, each step is presented on a separate subordinate page.

e A sub configuration displays progress information and is equipped with
"Back"/"Forward"/"Save"/"Cancel" buttons. In case of a dialog, the dialog footer panel is
suitable for such a purpose.

Configure a panel of type " switching layout ". Each step of the wizard is then presented in a sub-
panel of this panel. Embed the switching panel into a dialog panel or make sure that there are no
other means of navigation despite "forward/save", "back", and "cancel". Configure a (footer) panel
below the switching panel with navigation buttons "forward" and "back".

The wizard operates with an edit view in each sub panel of the switching layout. The superordinate
panel (e. g. dialog panel) is activated by means of an action starting a transaction : when the wizard
is abandoned without saving ("Cancel"), the changes are aborted. Each step initiates an
intermediate save action ("Forward"/"Back") within the transaction.

Each sub panel of the switching layout must contain an edit view. Otherwise the
action buttons won’t operate. If introductory text is needed for a step, it therefore
cannot be placed solely in a separate sub panel without edit view.

NOTE
This wizard can be used with either the buttons placed in the same panel as the
edit view or in a separate panel different from the edit view (e. g. dialog footer
panel)

Register a script with the key " wizard ":

$k.define([], function () {

function currentPageIndex() {
var index = $k.Session.actual().getVariable('currentPagelIndex')
if (!index) {
return 1

}

return index

function numberOfPages() {
var switchingConfig = $k.Session.actual().panelConfiguration()
var switchingPanel = $k.PanelConfiguration.from(switchingConfig)
return switchingPanel.subPanels().length

function nextPage(view) {
var currentPage = $k.PanelConfiguration.from(view.panelView
().configurationElement())
var switchingPanel = currentPage.parent()

354

Technical Handbook 5.8 - 3.2. Interaction patterns

var pages = switchingPanel.subPanels()
var currentIdx = pages.indexOf(currentPage)
var nextPage = null
if (currentIdx < (pages.length - 1)) {
nextPage = pages[currentIdx + 1] // index based on
start value 1
$k.Session.actual().setVariable('currentPageIndex', currentIdx + 2)
}

return nextPage

function previousPage(view) {
var currentPage = $k.PanelConfiguration.from(view.panelView
().configurationElement())
var switchingPanel = currentPage.parent()
var pages = switchingPanel.subPanels()
var currentIdx = pages.indexOf(currentPage)
var previousPage = null
if (currentIdx > @) { // @-basiert
previousPage = pages[currentIdx - 1] /7
index based on start value 1
$k.Session.actual().setVariable('currentPageIndex', currentIdx)
}

return previousPage

return {
currentPageIndex: currentPagelndex,
numberOfPages: numberOfPages,
nextPage: nextPage,
previousPage: previousPage
}
})

This script contains the functions as follows:

"currentPagelndex()", "numberOfPages()", "nextPage(view)" and "previousPage(view)" returning
the current page, the number of pages, the next page and the previous page. Use this information
for the action, label, and enablement scripts of the "forward" and "backward" buttons.

For the footer panel, add a text view for displaying the pages and a menu. At the menu, add an
action for the forward button: to save intermediate changes, select the action type "Save".

Label script for " forward " button:

355

Technical Handbook 5.8 - 3.2. Interaction patterns

var wizard = $k.module('wizard') var
var numberOfPages = wizard

function label(element) { var text
currenPageIndex = wizard.currentPageIndex()
.numberOfPages() text = "Save" if (currenPageIndex == numberOfPages)

return text text = "Forward" return text}
Action script for " forward " button - e. g. action type "Save" with "Script (after action)":

function postAction(element, action) { var nextPage = $k.module('wizard
') .nextPage(this) if (nextPage == null) ({ action.setClosePanel (true)

action.setTransactionCommit (true) } else { action.result
().activatePanelConfiguration(nextPage) }}

If the last step is reached (= last sub panel visible), the "forward" button acts as a save button and
commits the transaction - leading to all changes done in the dialog being saved. Committing the
transaction will also save all intermittently saved changes that happend during the transaction.

Action script for “ backward ” button - e. g. action type "Save" with "Script (after action)":

function postAction(element, action) { var previousPage = $k.module(
'wizard').previousPage(this) if (previousPage !== null) action.
result().activatePanelConfiguration(previousPage)}

Enablement script for “ backward ” button:

function actionEnabled(element) { var wizard = $k.module('wizard') var
currenPageIndex = wizard.currentPageIndex() return currenPagelndex > 1

// index based on start value 1}

Add a label to the text view in the footer panel showing the current page number and total for

progress indication. Provide a label script as follows:

function label(element) { var wizard = $k.module('wizard') var
currentPageIndex = wizard.currentPageIndex() var numberOfPages
.numbexrOfPages () ; return currentPagelIndex.toString() + ' / ' +

= wizard
numberOfPages.toString();}

Configure further functionality for each step of the wizard as needed.

356

Technical Handbook 5.8 - 3.2. Interaction patterns

3.2.3.4. Transaction

Configure the first action as "transaction: begin " and the final action as "transaction: commit ".
Every in-between action should have an alternative action allowing users to abort the transaction.
Configure abort actions with "action type: abort ".

To clearly indicate the scope of the transaction use "Dialog" or "Wizard" patterns.

3.2.3.5. Guided input

Attach a menu to the property configuration for which you want to provide input guidance. Add an
action to the menu and configure the action to do whatever is necessary to initiate the process.
Configure a "Script (recall)" that will be executed after the guided process has finished:

function customActionRecall(action, actionResult) {
this.setNewValue(actionResult.element());

actionResult.activatePanel(this.panelView());

In this script, the input value will be written to the property input field (function "setNewValue()")
and the action result will be equipped with the contents of the current panel which is necessary as
we otherwise might loose other input fields’ values on the same panel.

Connect the action to a dialog panel or a sister switching panel using the relation "show result in
panel". Configure the targeted panel to guide through the process of input value determination (see
e.g. patterns "wizard" or "dialog" above).

The final action of the process must invoke the recall script and make sure that possible dialog
panels are closed. Additionally, the input field’s value must be passed to the recall script e.g. by
setting the action result accordingly.

function customAction(action, actionResult) {
actionResult.setModel (action.selectedElement())

action.recallMarkedAction()

Provide the user with the ability to abort the process. The aborting action must remove the recall
action from the session:

357

Technical Handbook 5.8 - 3.2. Interaction patterns

function customAction(action, actionResult) {

action. dropMarkedAction()

3.2.3.6. Search and Filter

Searching for a specific element of the knowledge graph is often a complex task that has to be
supported by various user interface elements and functionalities. First, the search has to be
parametrized to the user’s needs. After initiating the search, the results are visualized in a way that
allows the user to distinguish between different elements and finally select one or more. Optionally,
further filtering of search results is needed.

In any case, the configuration of a search compoundis required, which on the one hand defines the
search configuration to be used and on the other hand brings together the states of all the views
involved, which are usually spread across several panels.

3.2.3.6.1. Parameter

Parameters are entered using form inputs. In order for the user input to be processed in the
appropriate search parameters, the form input must be configured as part of a search compound as
described in the chapter on form input. Web applications often have a globally available search with
a single parameter in a header bar that is always visible. More complex parameterized search
functionality requires more space for the parameters and is therefore only made visible when
required. In any case, it has proven to be advisable to place the parameter form inputs on a
separate panel. === Triggering the Search

The search process can be triggered as soon as the user has specified all the required search
parameters. If there is only one parameter, it can be triggered directly by an "Accept action" on the
form input. Otherwise, a separate button is required. The action for triggering the search can either
have the action type "Script" or no action type. It is important that the required values from the
form input are available for the parameters when the search is triggered. To do this, the action must
be executed on a view that is located on the same panel as the form entries for the parameters. The
action for triggering the search must also activate the panel with the view of the search result or
the panel with the view for filtering the search result. === Filtering

The user can use a facet view to further narrow down the search result. To do this, the facet view
must be part of a search compound. An interaction configuration of the facet view is not required. If
the facet selection is changed, the panel is automatically recalculated with the updated facet
selection. In order for the search result view to be adapted to the facet selection, the panel of the
facet selection must influence the panel with the view of the search result. This is of course not
necessary if both are on the same panel. For performance reasons, however, it is recommended to
configure separate panels. === Search result

Various views can be configured as output in the search compound to display the search results:

358

Technical Handbook 5.8 - 3.2. Interaction patterns

e Table

e Graph

e lLayout

e Alternative

In the case of Layout and Alternative, a "Script for domain model" is required, which distributes the
elements of the search result to the subviews:

function domainModel() {
var subModels = []
try { subModels = this.domainModel().elements() } catch (error) { }
return subModels

3.2.3.7. Mirrored State

If the user navigates to a new panel, the views contained on it are recalculated on the basis of an
"empty" base state. If you want to start at this point with a state that the user has already created
by manipulating the views of other panels, you can configure the corresponding views as the source
and target of a "Mirror compound".

Example: Panel A is located on the main page of the application and contains a form input F1 for a
global search. Panel B contains the search result and also shows the entered search parameter in a
form input F2. If you connect F1 via the "Mirrored from" relation and F2 via the "Mirroring from"
relation with a mirror compound, the state of F1 is mirrored when F2 is initialized. Mirroring is
unidirectional, but can also be configured bidirectionally if required. In this case the views involved
are both "Mirroring" and "Mirrored".

3.2.3.8. Customized relation target dialog

The standard relation target dialog provides default functionalities:
e A list of the possible relation targets displayed by their primary name. Clicking onto a list entry
closes the dialog and creates a relation to the selected target.

e A dropdown form entry allows selection of relation target types. A "New" button offers to
create a new object of the selected type to be used as relation target.

e A "Cancel" button closes the dialog without further action.

However, it might be the case that the dialog does not fit the needs for every web frontend. For
example, the table might need to show other properties than the primary name or the dialog offers
too much functionality - e. g. creating new objects of a type by an average user must be prohibited.

A customized relation target dialog can be created easily as follows:

359

Technical Handbook 5.8 - 3.2. Interaction patterns

1. At the property configuration for the relation, add a custom menu.

2. For the menu, select the menu type "View specific actions".

3. Add an action to the menu, select the action type "Choose relation target".
4. Create a new view role for the action.

5. In the ViewConfig Mapper tree, select the node "Dialog panels" and create a new dialog. In the
dialog, choose the template " RelationTargetDialog ".

6. A follow-up dialog asks for a name which will be used to creating the configuration names for
all components of the dialog panel, enhanced by the suffix ".relationTargetDialog".

7. Add the previously created view role to the dialog panel: this ensures that the action (choosing
a relation target) only takes place in the specific configuration the role is assigned to.

8. Adjust the ViewConfig elements (table, menu actions etc.) according to your needs. For
example, if a "New" button is not needed, remove it. If the both type selection and "New"
button are not needed, remove the whole corresponding footer panel.

Assigning a new default dialog for relation targets

The standard relation target dialog already is preconfigured as a dialog panel of the View
Configuration Mapper. It has the default view role "RelationTargetDialog" and it is displayed when
selection of a relation target dialog is initiated by clicking onto the search button "+" of the property
view.

By re-assigning the view role "RelationTargetDialog" to a customized dialog panel, this panel can be
used as default instead.

Tipp: When using a default dialog panel with the role "RelationTargetDialog", no custom action is
needed at the property edit.

360

3.3. Configuration

Technical Handbook 5.8 - 3.3. Configuration

The usual procedure involves activation of the ViewConfiguration Mapper components in the
Knowledge Graph and the creation of a modification project, into which vem is integrated. In order
to modify the look & feel, making changes in CSS alone may be sufficient. vem supports LESS
(lesscss.org/). The templates can also be changed or supplemented for more complicated

modifications.

Grunt (gruntjs.com/) is used as the TaskRunner, and as a Package Manager Bower (bower.io/). More
detailed information and a list of the Grunt tasks is available in the README.md in the project.

3.3.1. Frontend configuration

The configuration of the web frontend is done by means of the vem/options resource at the

viewconfig REST service:

P*OEX v

€3 viewconfig

+* vcmy/options-post-authentication
bt viewconfigmapper/index.html
» 4% accessToken/login

Konfiguration Alles
» 4% accessToken/logout
» 4

» 4% blob/(blobLocator}

accessToken/renew

» 4% panel/config

» 4% panel/contents

» 4% perform/altemnative-select

4 t. perform/cancel

» 4% perform/custom/(actionType}
» 4% perform/delete

b 4% perform/edit-save

» 4% perform/graph-add

» 4% perform/graph-create

> 4t perform/graph-expand

» 4% perform/graph-link

» 4% perform/graph-link-targets

» 4% performyhierarchy-collapse

> 4* perform/hierarchy-expand

» 4% perform/markup-tag

¥ 4% perform/password-change Skript fiir Optionen
» 4% perform/query-parameter-proposal
4 t. perform/query-search

» 4% performyread

. o . .

There are two phases for which the options can be set:

1. Before authentication

2. After authentication

Optionen nach Authentifizierung

g

No Authentication

calendar net-navigator

chart slideshow
html-editor [tagging

maps timeline

markdown

(=) Javascript [11]

vem/options-post-authentication

Attribut oder Relation hinzufiigen

By default, only phase 1 is configured. If options need to be configured for the time after
authentication (e. g. setting the frontend language depending on the user account), a further
options resource must be created and then linked via " Optionen nach Authentifizierung ".

3.3.1.1. Options script

User-defined options

361

http://lesscss.org/
http://gruntjs.com/
http://bower.io/

Technical Handbook 5.8 - 3.3. Configuration

User-defined options can be set using the function setCustomOption at the VCMOptions object.

Option Standard

value

disableUnloadWarning false

history.enabled true
history.initialContent true
Example:

Description

Deactivates the warning when leaving the site (e. g. via
the browser back button or by clicking on an external
link)

Activates/deactivates the rewriting of the URL
(bookmarking)

Activates/Deactivates the initial loading of panel
content

function configure(options, request) {
options.setCustomOption('disableUnloadWarning', true)

Translations

Translations can be set using the function setTranslations at the VCMOptions object. When doing

so, it is important to use " base " as property name and not the language abbreviation " en " (see

following example). If this is not being considered, the standard translation texts for English are not

found anymore.

Key Description

login.form.message Shows a a message within the login mask
login.form.title Title of the login mask
login.form.submit.label Label of login button
login.form.username.label Label for user name text field

login.form.username.placehold Placeholder for user name text field

er

login.form.password.label Label for password text field

login.form.password.placehold Placeholder for password text field

er

Example:

function configure(options, request) {

options.setTranslations({

362

Technical Handbook 5.8 - 3.3. Configuration

de: {
login: {
form: {
message: 'Bitte benutzen Sie ihr E-Mail als Login'

}
}
b
// base is the property name for english translations
base: {
login: {
form: {
message: 'Please use your e-mail as login'
}
}
}

3.3.2. View configurations for the View Configuration Mapper

The View Configuration mapper interprets all view configurations created in i-views. However, there
are several differences between processing in the Knowledge Builder and in the View Configuration
Mapper, which this chapter will discuss.

3.3.2.1. Panel configuration

If the web application is supposed to be based on a panel configuration, the application must be
linked to the panel configuration.

4 View Configuration Mapper
- P:Main
¥ Title
b 9 PTop Configuration Extended KB Context
¥ [PHorizontal Configuration name = | View Configuration Mapper
» Dialog panels _
Identifier = |viewConfigMapper

To do this, an object of the main window panel is appended to the application. All other panel
configurations can then be appended to this object. Additional panels (e.g. dialog panels) are
optional. However, if they are used in the web front-end, they must be connected to the application
in this way. It does not suffice to merely define it e.g. as a target window of an action because it
would not be taken into account for the display of the application otherwise.

3.3.2.2. Apply in
In order to determine a suitable view configuration for a semantic element, it is necessary to look to

363

Technical Handbook 5.8 - 3.3. Configuration

the type of the element and to the context in which the view configuration is to be used. This
context is determined via the “apply in” relation. If a view configuration is to be used in vcm, it
should therefore be ensured that the relation was sourced accordingly.

Configuration Extended KB Menus Styles Context

Context
4 apply to = Person
apply to subtypes =0

apply in View Configuration Mapper

Add relation

3.3.2.3. Style

To influence the display of a view, it is possible to use so-called “styles”. They can be used, for
example, to configure whether a heading is to be displayed, or whether data should be highlighted
in a specific way.

The setting for the styles for the display in the web front-end by means of the view configuration
mapper are available on the “View configuration mapper” tab. The prerequisite for this is that a
view configuration mapper component has been installed in the KB.

There are multiple setting options for the styles (see figure):

364

Technical Handbook 5.8 - 3.3. Configuration

Configuration Extended KB Men ontext

| AJOFND ¢ U

demostyle
Configuration Extended KI View configuration mapper JContext

class —

Choose oo

O

class (script)

collapsed

dateFormat

datetimepickerOptions Choose oo

downloadRequest

I m

I
d

editCustomButtons

|
O

editStateToggle

extra

extra Choose see

extraDateFormats

groupColumnGrid

[
O

hideFilters

I
O

hideLabel

href

I
O

localAction

numberFormat

Choose see

O v

propertyValidation

n

readOnly

There are a number of Style elements that are already defined in i-views. The following section
explains what these elements are and how these style elements are created in the Knowledge
Builder so that they can then be linked to individual elements of the view configuration of an
application.

In the view configuration, you first have to select the element with which one or more style
elements are to be linked. Depending on the type of the view configuration element, various tabs
are available for configuring the styles (“Actions and styles” = “Styles” or just “Styles”). Once you
have chosen this tab, you can either define a new style element t] or link and existing style
element p When defining a new style element it is first necessary to assign it a configuration
name. You can then configure it on the right side of the editor.

The following section describes the individual configuration options for style elements:

365

Name

class

class (script)

collapsed
dateFormat

datetimepic
kerOptions

downloadRe
quest

editCustom
Buttons

editStageTo
ggle

extra

extra

extraDateFo
rmats

hideFilters

hideLabel

href

localAction

numberFor
mat

readOnly

Attribute
type

String

Reference to
script

Boolean
String

Reference to
script

String
Boolean

Boolean

Reference to
script

String

String

Boolean

Boolean

String

Boolean

String

Boolean

Technical Handbook 5.8 - 3.3. Configuration

Configuratio Description

n type

CSS class

Hyperlink

Properties

Styling through specification of a predefined CSS class i
the CSS of the ViewConfiguration Mapper or in the
“viewconfigmapper.config.GET” script

Definition of CSS styling in the form of a script return
value

Can be used to create a user-defined behavior for an
action with the help of the script and render mode.
Example: A script that returns URL attribute values is
used with the renderMode and with a
parameter specification in the “href” line to define an
external web link for the action of a button.

“external”

Hides the table query filters in the table header

Hides the label of a view configuration element (label
on the tab of an alternative remains)

Link to a website or folder path as per the HTML
standard. Alternatively, you can enter a parameter
name in curly brackets which is then equipped with a
URL under “extra” by means of a script.

Limits the effect of an action to the current panel

The properties of the view configuration element can
only be read in the application, not edited. That is why
no “Edit button” is displayed.

366

Name

renderMode
renderMode

style

style

target
tooltip
vcmDetailed

vcmMarkRo
wClick

vcmPluginCa
lendarOptio
ns

vemPluginC
hartDataCol
umns

vemPluginC
hartDataMo
de

vemPluginC
hartHeight

vemPluginC
hartLabelCol
umn

vemPluginC
hartOptions

Attribute
type

Selection
String

String

Reference to
script

String
String
Boolean

Boolean

Reference to
script

String

String

String

String

Reference to
script

Configuratio
n type

Property

Property

Context help

VCM plugin

VCM plugin

VCM plugin

VCM plugin

VCM plugin

VCM plugin

Technical Handbook 5.8 - 3.3. Configuration

Description

See the “RenderModes” sub-chapter
See the “RenderModes” sub-chapter

Here you can define CSS properties that are only used
for those views that are linked to this style.

Here you can use a script to define CSS properties that
are only used for those views that are linked to this
style.

Note that is displayed during mouse hover

If activated clicks on a table row will display them as
marked. This style has to be linked to a table.

Default values that can be defined by script, e.g. start
date when the calendar view is called

This is used if the data of the underlying table is to be
read out either by row (“rows”) or by column
(“columns”) for the chart to be displayed; if not
specified, the default data mode is “rows”

Absolute height of a chart in pixels (e.g.: “300px”)

Script that can be used to control the display of
components of the chart: Display of keys, scaling of
axes etc.

367

Technical Handbook 5.8 - 3.3. Configuration

Name Attribute Configuratio Description
type n type
vemPluginC Selection VCM plugin Selection options for the “chart” RenderMode
hartType (applicable for tables):
e bar
e doughnut
e line
* pie
e pole
e radar
vemPluginC String VCM plugin Absolute width of a chart in pixels (e.g.: “380px”)
hartWidth
vcmStateCo Selection Selection options:
ntext
e global
* page
* none

vcmStateCo String
ntext

vcmTruncate String

For each view configuration element separate styling possibilities are available
which are described in detail in the respective sub chapter. For example, a
properties view can be further adjusted regarding the layout of the labels and their
values using specific parameters.

NOTE

3.3.2.3.1. Definition of style attributes

You can define your own style attributes in addition to those predefined by the application.
You can create the attributes of the styles under View configuration - Attribute types.

To ensure the style attribute is also written to the JSON output, an addition must be added to the
attribute in the schema. You get to the schema by clicking on “Schema” in the s menu of the
attribute. In the schema, you then have to maintain the attribute “Property keT:md enter the
name of the attribute there.

“Objects of style” must be entered in this “defined for” field. You add an entry by clicking on the
Plus icon (“Add” button). Once you have entered “Style” as the search term, a list appears from
which you select the entry “Style” (view configuration). Following that, you have to select the
additional tab page in which the new style element is supposed to be displayed.

368

Technical Handbook 5.8 - 3.3. Configuration

~

A propertyValidation
A Query for existing instances rea dOn Iy

& RDF-ID
A RDF-URI

Overview Details
& rdfiID-Prefix
A readOnly Properties of the type
A Reaim » Name = lreadOnIy ‘
A Release date

Color

A renderMode
A renderMode Icon |
A Repeating [T ‘
A Request Model

A Required Add attribute or relation

AR Cod S "~
esponse -oce Definition

A Response Model

A REST resource ID Value type ’ Boolean ‘

A Scipt Internal Name ’stylePropertyKe'y.readOnly ‘ f x

A second name

A Service ID Defined for |Instances of Style . +

In the JSON output, the key and value pairs (StylePropertyKey = Style property) are output as an
array under additionalConfig .

Example

Configuration of the type String for style value

Eigenschaften des Typs

¥ MNameTyp = | Zeichenkette fir Style-Wert
Farbe = -
Symbol = QD
Eigenschaftsschlissel = | jsonKey1

Configuration of the type Additional string for style value

Eigenschaften des Typs

» NameTyp = |Noch eine Zeichenkette fiir Style-Wert
Farbe = -
Symbol = ‘}‘D
Eigenschaftsschliissel = |jsonKey2

Configuration of the type Display banner attribute

369

Technical Handbook 5.8 - 3.3. Configuration

Eigenschaften des Typs

Banner anzeigen Attribut

¥ MameTyp

Farbe

Symbal

Eigenschaftsschlissel = | Banner anzeigen

Configuration of the object One style configuration of the type Style

w

Konfiguration Viewkonfiguration-Mapper KB Kontext

Banner anzeigen Attribut =

Editorbreite (Pixel)

Meta-Eigenschaften im Kontextmenii einblenden = [

Moch eine Zeichenkette fir Style-Wert = |jsanValue2
Verwende Knipfe = [
Vorschau anzeigen i
Zeichenkette fir Style-Wert = |jsonValuel

JSON output:

"properties": [{
"values": [{ ... }],
"label": “First name",
"additionalConfig": {
"jsonKeyl": ["jsonValuel"],
"jsonKey2": ["jsonValue2"],
“Display banner": ["true"]

}’
"viewId": "ID34304_461524079",
"schema": { ... }

3.3.2.3.2. Render modes

RenderModes can be used to apply additional predefined style properties.

&0

370

Technical Handbook 5.8 - 3.3. Configuration

RenderModes are available in the styles in the view configuration on the “view configuration

mapper” tab, once via drop-down menu and additionally via input line. Here the freely selectable
value entered via the input line takes precedence, which means that it overwrites a value that was
selected via drop-down.

The following renderModes are available in the drop-down menu:

renderMode

breadcrumb

calendar

chart

download

external

html

markdown

Explanation Applicability

Displays the hierarchy and path navigation Hierarchy

Displays date information in a calendar view; the basis for this is Table
a table containing the attributes of the value type time , date ,
date and time , flexible time or interval with the date and time

type.

Displays the data from a table in a chart. Under Table
vemPluginChartType you can select the type of chart. Under
vemPluginChartOptions you can use a script to format the chart

more precisely, e.g. axis scaling, display of keys etc.

Link to file download Action

Generates an external link in connection with href; can be used, Action
for example, in combination with icon and tooltip . For dynamic

links, an identifier in curly brackets can be used in the href
attribute. If the extra script provides a JavaScript object with a

value for the identifier, this is entered automatically. You can, for
example, trigger a Google search for the name of the current

object in the following manner: href : https://www.google.com/
search?q={search} extra script

function additionalPropertyValue(element,

context) {
return { search: element.name() }
}
Shows the string without masking String property

Converts text sections equipped with mark-ups into text with Text or string
highlights by means of in-line formatting attribute

371

https://www.google.com/search?q={search}
https://www.google.com/search?q={search}

renderMode

medialist

multiline

nolink

pre

timeline

translations

Technical Handbook 5.8 - 3.3. Configuration

Explanation Applicability

Displays the table entries as an HTML text link; displays the Table

Kiinstliche
Intelligenz

Gesundheitswesen

Project Health
Data

Project Diet
Project WFO
Project

RestauvView

Project Pharma
Expert System

Daphne Bradford

o Y T T R S

& Jeff Robertson

Marci Bryant
element with their icons L Y

Necessary to display the input field for a string in multi-line view Property
in an edit view.

The relation target is not linked, but instead shown only as text. Relation

property
Displays the string as a pre-formatted and scrollable text String property
Display of a data record in the form of a timeline; can be Script-

arranged vertically or horizontally. generated
view in group

Displays language variants (with the relevant flag icons in case of Property
the string attribute).

This render mode cannot be combined with
NOTE another Style containing the render bode
"Multiline".

The renderModes available in the input line are related to Bootstrap. They include the following
renderModes, for example:

renderMode

email

Explanation Applicability

Creates a link to the email address String property

372

Technical Handbook 5.8 - 3.3. Configuration

renderMode Explanation Applicability

image Displays an icon on the action Action

3.3.2.3.3. Usage of CSS

The view configuration mapper supports the use of Cascading Style Sheets (CSS). In addition to that,
it includes a predefined set of CSS properties to which you can refer in the style of the views. It also
offers you the option to define your own CSS properties.

The predefined set is based on the CSS classes defined the front-end framework bootstrap
(getbootstrap.com/docs/3.4/css/). To use these, they can be referenced in a style using the class
property (e.g. "h1" as the value for a heading).

class = |hi

Separate CSS properties can be defined using the following values:

e The attribute style or style (script) is available on a style. Here you can define a CSS that
applies only to views to which this style is linked.

style = | background-color: red
e CSS properties that are supposed to apply to entire applications can be defined in the script

“viewconfigmapper.config.GET.” If separate CSS classes are defined there, you can access these
in the styles via the class attribute.

3.3.2.4. Execute in

When you create a user-defined action, you can also fetch the relation “execute in.” This has the
effect that the returned data is not applied to all VCM contents but that the change only relates to a
certain view. This view must be set as the relation target of “execute in.”

Konfiguration | Aktionen (Tabelle) | Aktionen (Zeile) | Aktionen (Auswahl) | Verwendung | Alles |

@ p Og x Konfiguration | Alles |
Neu anlegen Konfiguration
» Aktionsart = Skript -
ausfiihren in = @

4 Beschriftung =

French =

German
Italian =

Neu anlegen

Konfigurationsname

Skript = [E] JavaScript see
Skript (ActionResponse) = E ActionResponse editResult s
Style = @
Symbol = ﬁ D

Attribut oder Relation hinzufiigen

373

https://getbootstrap.com/docs/3.4/css/

Technical Handbook 5.8 - 3.3. Configuration

3.3.3. Login configuration

3.3.3.1. JWT authentication

3.3.3.1.1. Modify the login form

The login form can be modified using the following translation key:

Key Description

login.form.title Title of the form
login.form.message Descriptive/welcome text
login.form.username.label Label of the user name field

login.form.username.placehold Placeholder of the user name field
er

login.form.password.label Label of the password field

login.form.password.placehold Placeholder of the password field
er

3.3.4. The View Configuration Mapper component

To use the ViewConfiguration Mapper, activation of the corresponding components first in the
Admin tool is a prerequisite.

374

Technical Handbook 5.8 - 3.3. Configuration

Compenents

Database Software

i i Knowledge-Portal Collections .

»
»
¥ Maintenance .
. Net-Navigator -

System configuration

L Release state: Preview
Access authorisation

Audit log Release state: Release
Blob storage Release state: Release candidate
» Components Translator
License Validatorkomponente
System accounts v
User Add standard component Create license template
» XML import / export
i p Knowledge Graph
i-views Core

Knowledge Builder
Printing component
REST

Tagging

View configuration

[View Configuration Mapper]

Nami | View Configuration Mapper Version |

Add generic component Update all Refresh Remove

| Back Exit

The component ensures the specific properties required are created in the view configuration and
also creates all REST services that the vem requires.

All requests are preconfigured so that they expect an authentication. The attribute
Password and Login is required for an authentication on the object of the user,

NOTE
with its schema generated by the component. Linking the user in the settings for
the Knowledge Builder is not necessary for this.
*1- viewconfig

*1- actionf{action}
% blob/{blobLocator}
b *1- config
b *1- element/{element}
*1- topiclcon/{topiclD}

*1- viewconfig-static

These are, specifically:

e action

375

Technical Handbook 5.8 - 3.3. Configuration

blob
config
element
topiclcon

viewconfig-static

“action” and “element” perform all communication between the ViewConfiguration Mapper and i-
views. “blob” and “topiclcon” are responsible for delivery of the media data within a Knowledge
Graph. “viewconfig-static” defines the area of the REST bridge in which the VCM front-end files
(scripts, templates, etc.) are found. “config” is called during the initialization of vem to configure
basic configurations (such as language and start topic). All REST services are preconfigured so that
modifying them is not always required. However, modifying the “config” request is recommended:

function respond(request, parameters, response){

//Personalize your viewconfigmapper configuration here
var options = {

"application" : "viewConfigMapper",
"user" : {

"login" : $k.user().name()
} r

"startElement" : $k.rootType().idString(),
"language": getRequestlLanguage(request),
translations: getTranslations()
}
response.setText(JSON.stringify(options, undefined, "\t"));

Values to be modified are

application : The application configured in the view configuration for the ViewConfiguration
Mapper. This is, by default, “viewConfigMapper” and therefore does not have to be modified.

user : User configuration. The current version of vcm only reads the configured name of the
user for display in the front-end.

startElement : ID or internal name of the topic that should be displayed initially when the start
screen is called up. The root type of the Knowledge Graph is preconfigured. This should be
modified.

language : The language of the browser making the request is preconfigured. This attribute
should be configured for specific language settings. The relevant 118N settings are foreseen in
the front-end templates and can also be expanded in the attribute “Translations”. Modifications
to this should be made in these templates. At this point, only the language is being defined.

translations : 118N templates are located in the front-end and should be modified there. Their
function can be extended at this point.

376

Technical Handbook 5.8 - 3.3. Configuration

3.3.5. Create a project with the View Configuration Mapper

To easily create an adjustment project, a project template is available in the Git under gitlab.ivda.i-
views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git. The README.md file of the
project explains all further steps. Initialization requires certain parameters. For example, you will be
asked for the basic path of the request and the name of the application. This data should be
available when first called.

3.3.6. Modify templates

The project template contains the directories components/ and partials/ in the webroot/ directory.
Both directories contain examples of ViewConfigMapper components and partials. You can add new
templates here. The basic templates of ViewConfigMapper remain available, so you only need to
create templates for special adjustments.

The js/ directory contains a JavaScript file where the ViewConfigMapper is initialized.

var vcmOptions = {
config: {
router: {
urlRewrite: true
o
application: "{%= name %}",
ajaxBasePath: "{%=ajax_base_path %}",
instanceId: "vcm_{%= name%}"
Do
partials: partials,
components: components,
translations: translations

}

var vcm = new ViewconfigMapper("#viewconfigmapper", vcmOptions);
The ViewConfigMapper receives the configuration settings, partials, components and translations.
The position in which the content is to be rendered is also specified (in this example: <div
id=viewconfigmapper"/>). For partials and components it is only important that they are located in

the relevant directories, because there are grunt tasks that extract the files and unload them to
separate JavaScript files.

Values for application, ajaxBasePath and instanceld would be set during the initialization call of the
project template.

3.3.7. Operate the frontend

The front-end can be built using grunt. The files required for operation are found in the /webroot

377

http://gitlab.ivda.i-views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git
http://gitlab.ivda.i-views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git

Technical Handbook 5.8 - 3.3. Configuration

directory following generation. It is accessed, if not configured otherwise, using the start screen
index.html.

In the most straightforward case, the files are found locally and can then only be used on the client
side.

There are several ways to make the front-end accessible. The component ViewConfiguration
Mapper automatically generates a REST service that can deliver static files. This can be used by
placing the files in the webroot directory in the corresponding directory in the REST bridge being
used (default is viewconfig-static). After this, the front-end can be addressed in the default
configuration via HOST:PORT/viewconfig/viewconfig-static/index.html. In addition, it is also possible
to deliver the files using a corresponding server.

378

3.4. Actions

Technical Handbook 5.8 - 3.4. Actions

The VCM supports standard interactions, such as the editing of contents without these having to be
configured separately. However, it is possible to define user-defined actions in a view configuration.

These are actions of type "Script".

Selection is made via a drop-down menu.

Konfiguration | Aktionen (Tabelle) ‘ Aktionen (Zeile) | Aktionen (Auswahl) | Verwendung | Alles. ‘

Konfiguration |A\Ie5 |

DLN

Neu anlegen Konfiguration

-

Aktionsart

ausfiihren in

.

Beschriftung

French

German

Italian

Konfigurationsname

Skript

Skript (ActionResponse)

Style

Symbaol

For a script action, you have to select “Script”
(user defined)” entry in the list.

Aktualisieren
Anzeigen

Auswahl

Einblenden
Graphisch darstellen
Léschen

Neu

Relationsziel auswahlen

éSkrl pt

Sortierung

Springen
Suchen

Ziel anlegen

Attribut oder Relation hinzufiigen

in this menu and create a “Script” under the

“Script

For customized VCM builds it may be necessary to create an action result that feeds the need of a
customized view. To achieve this you must use “Script (Action Response)”. Notice that you are not
allowed to modify the knowledge graph in an action response script.

379

Technical Handbook 5.8 - 3.5. Panels

3.5. Panels

Panels are configuration elements that separate the application interface into sections. They are
used to build the basic layout of an application.

Panels contain further panels or view configurations and can be nested in each other. They can
mutually affect each other.

Panels usually contain exactly one start element (an object or a type) during activation (= becoming
visible), which they pass on to their sub-configurations. Panels that contain view configurations that
display a set of objects (table, facet selection, graph) can also process a set of start elements.

Panels themselves have no other functions. These can only be defined with the help of actions and
view configurations.

There are different types of panels:

e Main window panels

e Dialog panels

Window title panel

e Footer panels

Normal panels

For each application there must be precisely one so-called main window panel , which can be
divided by means of subordinate panels. In addition, it can be allocated a window title panel
specifying the title and logo (Favicon) of the application.

It is also possible to assign additional dialog panels to the application; these panels can be displayed
as a pop-up on top of the main window. Next to additional panels, they can also contain window
title and footer panels.

A specific panel type must be selected for each panel .

¢ Layout panels (contain additional panels):
o Linear layout (all subordinate panels are displayed in horizontal or vertical order)
o Switching layout (only one of the subordinate panels is displayed at the same time)
o Variable-sized Layout (only for printing)
¢ View panels (contain view configuration(s)):
o Defined view (contains only one single defined configuration element)

o Flexible view (multiple views possible, depending on the type of start element)

Setting options

380

Name

Show action results in panel

Influences

Inherit to subpanels

Script for target object

Setting options for layout

Name

class

Width/height

Maximum width/height

Flex-grow/shrink

overflow-x/y (scrollbar)

Style

Technical Handbook 5.8 - 3.5. Panels

Value

All actions that are shown in the source panel cause the target
panel to be displayed with the respective transferred object
(example: every click in the panel object list causes the result to
be shown in the details view panel).The action setting "show
result in panel" overrides this setting. Moreover, the setting has
no effect on "save" actions.

Here you can specify a panel that is influenced by the current
panel (example: the objects displayed in the search results affect
which facets are displayed correspondingly).

Boolean, meta-attribute of "Influences". This also allows
subpanels to activate the influenced panel when activated
(example: You have a navigation panel that should display the
same for each subpanel of a panel with a switching layout when
it is activated).

With the help of scripts you can specify not only panels but also
conditions under which specific panels are affected by the
current panel.

Value

CSS classes for the panel (considered only for web applications or
in the ViewConfig mapper)

The precise dimensions of the panel can be set here in percent
or down to the pixel.

Alternatively, you can enter the maximum dimensions of the
panel here. The panel takes up as much space as possible
without exceeding these values.

Here you can specify the values for the relevant CSS property for
the growth or shrink factor of the panel. An element with a value
of 2 for flex-grow, for example, receives twice as much value as
an element with a value of 1.

This can be used to define how scrollbars are displayed if the
content of the panel does not fit into its horizontal (x) and
vertical (y) dimensions. The available options are auto , scroll
and hidden .

CSS styling rules for the panel (considered only in web
applications or in the ViewConfig mapper)

381

Technical Handbook 5.8 - 3.5. Panels

3.5.1. Activation of panels
Panels exhibit two basic conditions: “active” and “inactive”. A panel is visible when it is active.
The activation of panels functions using the following mechanisms:

1. The main window panel of the application is always active when an application starts

2. The execution location determines which panel become active when an action is executed
Based on A/B, there are subsequent activations based on these rules:

1. Panels influenced are activated

2. Panels with a specialized function (e.g. window title) are activated, and this from all panels in
the corresponding hierarchy

3. Subpanels are activated

4. In the case of a panel with a changing layout: Sister panels of the active subpanel are
deactivated

5. Continue with 1. until no further panels can be activated (an integrated cycle test prevents
endless loops)

Subsequent activations transport the model displayed respectively. If, for example, panel A shows
the object “Mr. Meier”, then the activated subpanel B also shows “Mr. Meier”.

Last of all, this ensures that all panels above the activated panel are also active. However, their
content is not calculated again.

Advanced activation mechanisms (version 5.2 or higher) :

So-called “Activation mode” can be used to optimize the calculation of the panel contents in step A
(action activation) and in step 1 (influencing).

This avoids the recalculation of panel contents that are currently not displayed because despite
activation, they are not within the visibility area (e.g. a shopping basket). The options “Refresh
model and view” and "Refresh view only" are provided for this case.

The option “Default” is the fallback setting when neither of the two options described above were
selected and leads to panel activation and evaluation of activation chains.

3.5.2. Layout panels
The application is divided into different areas using layout panels.
Linear Layout

Linear layouts arrange subordinate panels either next to each other or one above the other.

382

Technical Handbook 5.8 - 3.5. Panels

Name Value

Orientation (only available if e horizontal: display order from left to right
panel type " Linear Layout " has

e vertical: display order from top to bottom
been selected before)

Switching Layout

Switching layouts permit alternative displays on the same visualization panel, with only one of the
subordinate panels being displayed at the same time.

Setting options for configuration

Name Value

Activate the first by default (for If a checkmark is set, this means that the first subordinate panel
changing layout only) is activated by default (the example below shows the start
screen)

3.5.3. View panels
View panels serve as containers for individual views. They can however contain no further panels.

Setting options

Name Value

Context element Here it is possible to specify a concrete object or concrete type
that serves as the source element from which further paths can
be pursued through the Knowledge Graph.

Cannot be overwritten by If this option is activated, the configured context element is

external context element always used. Influence from other panels has no effect in this
case.lf no context element has been configured, the context
element remains empty.

Script for context element The script determines the start element. The external context
element is transferred as the argument.The “Cannot be
overwritten by external context element” option has no
influence, and the script is always executed.

Sub-configuration (only for Here it is possible to specify the one view configuration that is
defined view) used for the defined view.
3.5.4. Dialog panels

Dialog panels are special display areas whose contents are displayed in a dialog box. Dialog boxes
appear automatically when the corresponding dialog panel is activated. Just like with other panels,
activation is also possible via certain actions (see relation “Show result in panel” in Action

383

Technical Handbook 5.8 - 3.5. Panels

configurations) or generally on activation or updates of other panels (see relations “Show actions in
panel” and “influences” in other panel configurations).

Actions also have to be used to hide (“close”) dialog boxes. If the “Close panel” attribute is selected
in an action configuration, executing this action in a dialog box has the effect that the window is
closed. Hence, the action must be linked to a menu that is displayed in the dialog panel or one of its
subordinate panels.

Content-wise, dialog boxes are divided into the following three areas:

e Window title

e Content area

e Footer
The contents and the layout within the three areas can be specified using a panel configuration for
each. The dialog panel itself represents the content area. To configure the window title and footer, a

sub-configuration of the type window title or footer panel must be created on the dialog panel (see
the example below).

Dialog panel title Window title X

Dialogs can be closed again by means of an action with the option "close panel” being
enabled.

It doesn't matter whether the action is added to the header, the footer or to the dialog
itself.

Close dialog Contentarea

Footer OK

You can use the “Panel type” attribute on the actual dialog panel and on its window title and footer
panels to determine whether the respective panel provides layout or view functions. Detailed
descriptions of the different panel types are available in the preceding chapters.

Dialog panels can be created as follows in Knowledge Builder:

1. Use a user account that has administrator rights to log on to Knowledge Builder

2. In the navigation area, on the left, open the “Technical” category and select the sub-item “View
configuration.”

384

Technical Handbook 5.8 - 3.5. Panels

TECHMICAL

P & Rights (deactivated)

» 4 Trigger

» & Registered objects

» £¥ Printing component

b 4% REST

L . View configuration

» £¥ Entire semantic network

» £¥ Core properties

1. Select the “Application” tab on the right window.

\ o
W FOLDER

= KNOWLEDGE GRAPH

Graph-Configuration Folder structure (KB) Panel Relation

BEExzs0%°

TECHNICAL ‘ ‘

- Configuration name
¥ @ Rights (deactivated)

P 4 Trigger
b & Registered objects

Knowledge Builder
Topic-Chooser

View Confi tion M
b £} Printing component ew S-onfiguration Mapper

b 4% REST
4 ' View configuration
b L£F Entire semantic network

b £} Core properties

1. In the list underneath, select the application to which you would like to add the dialog panel
(usually “View configuration mapper”).

Application Graph-Configuration Folder structure (KB) Panel Relation
OOBAR -0+

Configuration name

Knowledge Builder
Topic-Chooser
View Configuration Mapper

385

Technical Handbook 5.8 - 3.5. Panels

1. Select the dialog panel section in the panel tree below and click on the Create icon

» @/ D:Graph
» (@] D:Detail
» [_| D:TestDialog

1. The newly created dialog panel is automatically selected in the panel tree and the details view
is displayed to the right of the panel tree

| FOFY2 & & 4

4 [l View Configuration Mapper
» [PMain
4 Dialog panels
» (%] D:Graph
¥ (@) DDetail

» [| DiTestDialog

I 4| Dialog panel - Instance I
Title

Footer

o)
[DidGaEE oy

Configuration Title Footer Context

- — Ll
Configuration name = |

|
Panel type | - | III
Show initially =[]
Path pattern | ‘ .’:
Path pattern parameter = | ‘ f‘ v

To create a window title or footer panel, you have to select the dialog panel in the panel tree, and

click on the icon for creating sub-configurations . . Following this, a selection window appears in
which the entry “Window title” or “Footer” can be selected. Depending on the panel type of the
dialog panel, additional subelements can also be created in this way. These, however, then refer to

the content area of the dialog box.

386

Technical Handbook 5.8 - 3.6. Viewconfig elements

3.6. Viewconfig elements
3.6.1. General

3.6.2. Alternative

An alternative view is a collective view for other views. That is, this type of view can be used to
group views that show data for a shared object (e.g. a Properties view with the life data of an artist
or a table view that lists the works of the artist). Unlike in a layout view, the summarized views are
not shown simultaneously, but instead in alternating order (e.g. via tabs).

Ein Reiter erhilt immer das Label des angezeigten Elements Tab ohne eigene Uberschrift im Inhalt

Ein Reiter erhilt immer das Label des angezeigten Elements

Die Beschriftung des Reiters ist gleichzeitig die Uberschrift, die dargestellt wird, wenn der Reiter offen ist.
Hier kénnen beliebige Elemente angezeigt werden. Dieses Element hier ist ein statischer Text.

To group views, the corresponding views are appended to the alternative view as subviews. Their
position decides the order in which they are displayed. Hence, the arrow buttons can be used to
change their positions.

Alternative
Product

KB Menus

WO

I Product

¥ I Product information
» 1 Bill of materials

¥ I Further information

Configuration Styles Context

Configuration name = |

|

4 Label = | Product |

English = |Pruduct |

French = |Produ|t |

German = |Produk‘t |

bookmark identifier = | |

Default alternative = | | .

Seript for Default alternative - oo
Restare last selected alternative = [

Script for visibility = soe

The “Configuration” and “Extended” tabs feature options for specifying the general display of the
list:

Configuration name The configuration name can be used to identify views and
panels.
Label The value entered here appears as the heading of the alternative

387

Technical Handbook 5.8 - 3.6. Viewconfig elements

Default alternative By default the first attached view is displayed. If you prefer the
view on the third tab to be displayed first, for example, you can
specify this view here. The front-end remembers the last
displayed view within a session, so that the user always lands on
the tab they looked at most recently if they look at one
alternative view several times within a session.

Restore last selected
alternative

Script for label As an alternative to the “Label,” the title of the alternative can be
determined in a script.

bookmark identifier
Script for Default alternative

Script for visibility This script is used to define whether the alternative should be
displayed, and under what conditions.

Actions can be configured for the alternative in the “Menus” tab, while the “Styles” tab allows
certain display options to be selected. The “KB” tab features options that only apply to Knowledge
Builder and are not used in the web front-end. The “Context” tab can be used to configure for
which object types the alternative view is to be used and in which application contexts.

An alternative view should be used when several views are based on the data of an object or type,
but are to be displayed not simultaneously but alternatively.

3.6.3. Layout

A layout view is a collective view for other views. That is, this type of view can be used to group
views that show data for a shared object (e.g. a properties view with the life data of an artist or a
table view that lists the works of the artist). To group views, the corresponding views are appended
to the layout view as subviews. Their position decides the order in which they are displayed. Hence,
the arrow buttons can be used to change their positions.

388

WOARXEE

1™ Product

4 {7 Product information Configuration

T Text - Instance
» @ Overview
N supplier
W Customer instance
» 1 Bill of materials
*» I Further information

4

Configuration name =

Label
English
French
German
bookmark identifier

Script for visibility

Technical Handbook 5.8 - 3.6. Viewconfig elements

Group
Product information @c

KB Menus Styles Context

= | Product information

| Informations sur les produits

= | Produktinformation

|Product information |

The “Configuration” and “Extended” tabs feature options for specifying the general display of the

layout:

Configuration name

Label

Script for label

Orientation

Resizable

Boomark identifier
Role

Script for visibility

The configuration name can be used to identify views and
panels.

The value entered here appears as the header of the layout

As an alternative to the “Label,” the title of the layout can be
determined in a script.

Determines the orientation of the sub configuration elements in
the web frontend.

When enabled, a slider is displayed in the web frontend that
allows the user to resize the area of the layout view.

A view role is used to link an action to a corresponding view.

This script can be used to specify whether the layout is supposed
to be displayed.

The “Menus” tab lets you configure actions for the layout, while the “Styles” tab lets you select
certain display options. The “KB” tab features options that only apply to the Knowledge Builder and
are not used in the web front-end. The “Context” tab can be used to configure for which object type
the layout view is to be used and in which application contexts.

A layout view is to be used when several views, which are based on the data of an object or type,
are to be displayed simultaneously and grouped. In contrast to this, there is the alternative that
displays the contained views for an object alternatingly (e.g. as tabs).

389

Technical Handbook 5.8 - 3.6. Viewconfig elements

3.6.4. Flexible view

A flexible view determines its content dynamically based on the underlying model. Unlike layouts,
flexible views do not have a direct subconfiguration. If a view is linked to the flexible view via the
‘Apply to’ relation, this view is displayed whenever the flexible view has a knowledge graph element
that matches this view as a model. Whether a view matches a knowledge graph element is
controlled via the ‘Apply to’ relation of the view.

&

Konfiguration Layout Kontext Alles
Konfigurationsname test.panel.flex.content ‘ -

|
Paneltyp = |Flexible Ansicht v | |Z|
Bookmark Identifikator = | ‘
Bookmark path = | | +*
Path pattern parameter = | | f"
Rolle = | | | %]

For more complex rules for determining the content of the flexible view, the detector system can be
used.

3.6.5. Hierarchy

A hierarchy view is a hierarchical representation of the configurable aspects of an object.

~ W Products

Product A
Product B
Product C

-

Product D

Product E
» 4 PartEA

W PartEB

» - Part EC

4

-

The configuration is performed in the Knowledge Builder by creating a hierarchy view.

390

f176e8f7-d676-4f42-8eff-c22af034c27c

Technical Handbook 5.8 - 3.6. Viewconfig elements

| ROt & & 4

U Product
» U Product information
4 .j Bill of materials
N= Product parts
L4 .j Further information

Product parts

Hierarchy @

|Product parts ‘

Configuration KB Hierarchy MNodes Context

Configuration name =

-

Label

bookmark identifier

lcon

Script for icon

Show parent banner

Do not show detail view

Restore {ast expanded nodes

Click action

O
O
|
|

Script for visibility
Traversal

jo) searchHierachyUp L11]
Script (down) = (T
Script (up) = see

Structured query {down)

Structured query (up)

Structured query (up)

Relation (down) = Product has part
Relation (down) = | | .‘:
Relation (up) = Part of product

Relation {up)

Output up to depth

I
N

Sort

Sort downward

Primary sort criterion

1}
I__ D
.

:

Secondary sort criterion

4 Script for sorting Choose

The “Configuration” tab provides options for determining the general display of the hierarchy:

Configuration name The configuration name can be used to identify views and
panels.
Label The value entered here appears as the heading of the hierarchy

bookmark itentifier

Script for icon

Show parent banner

Do not show detail view
Restore last expanded nodes
Click action

Script for visibility This script is used to define whether the list should be displayed.

391

Technical Handbook 5.8 - 3.6. Viewconfig elements

Structured query The hierarchy view starts with an object as the basis . This object
(down)Structured query (up) is passed to the hierarchy either by the context element on the
Script (down)Script (up) higher-level panel or by influencing it from another panel.Which
Relation (down)Relation (up) nodes and branches should be shown for this object can be
configured in both ascending and descending order. A relation
defined in the Knowledge Graph can be selected as a connection
between the nodes, however a structured query or even a script
can too. A combination of these three types is possible, i.e. it is
possible to specify a relation in a descending order, for example,
and a structured query in an ascending order. Specifying both
directions in optional, however it is also possible to configure the
ascending order or the descending order only. In the first case,
the object on which the hierarchy is based would be the node at
the bottom. And in the second case, the base object of the
hierarchy would then be the root node of the hierarchy.

Output up to depth

Sort downward The hierarchy is sorted in ascending order by default. Activating
the checkbox reverses this sort order.

Primary sort criterion The sort criterion is used to determine the aspect used to sort
the hierarchy elements on one level.

Secondary sort criterion Like “Primary sort criterion,” except this is only used if the
position computed from “primary sort criterion” is the same for
two or more attributes.

Script for sorting This script is used if “Script for sorting” was selected as the
primary or secondary sort criterion.

Disallow manual sorting This option is used to disable the option of allowing the user to
re-sort a hierarchy. This option is only used in the Knowledge
Builder.

It is possible to configure actions and styles on the entire hierarchy, or to only apply them at node
level. This is why there is a “Hierarchy” tab with the sub-items “Menus” and “Styles” and a “Nodes”
tab with the same subitems. Actions can be configured for the list in the “Menus” tab, while the
“Styles” tab allows certain display options to be selected. The “KB” tab features options that only
apply to the Knowledge Builder and are not used in the web front-end. The “Context” tab can be
used to configure for which object types the hierarchy view is to be used and in which application
contexts.

3.6.6. Properties

A Properties view is a list of the attributes and relations of an object.

392

Technical Handbook 5.8 - 3.6. Viewconfig elements

WOXt$

1™ Product
4 I Product information
T Text - Instance
4 - Properties - Instance
U Year of construction

Properties m

Properties - Instance

Configuration KB Menus Styles Context

Configuration name = |

4 [agbel

W size English = |
/] Weight _
French = |
U Product has part
U Supplier German = |
N Customer instance Script for label = woe
» I Bill of materials . . _
X bookmark identifier = | |
4 U Further information
Initial expanded =0
Script for visibility = ven
Sort
Sort downward =0
Primary sort criterion = | ~ |
Secondary sort criterion = | v|
Script for sorting = (1

The “Configuration” tab features options for specifying the general display of the list:

Configuration name

Label

Script for label

bookmark identifier

Initially expanded

Script for visibility

Sort downward

Primary sort criterion

The configuration name can be used to identify views and
panels.

The value entered here appears as the heading of the list

As an alternative to the “Label,” the title of the list can be
determined in a script.

If there are a great many properties, they are not displayed
directly in the Knowledge Builder, but instead in expandable
form. Activating this option expands them directly.

This script is used to define whether the list should be displayed.

Generally the contained attributes/relations are displayed in the
order specified by the order of the included property view. As it
is however possible to specify higher-level types (e.g. “User
relation”) here, the properties grouped in this way are sorted by
name in ascending order. You can change this order by activating
the “Sort downward” check-box.

Generally the contained attributes/relations are displayed in the
order specified by the order of the included property view. This
option can be used to change this behavior. The available values
are “Position”, “Script for sorting” and “Value”. In case of “Value”,
sorting is performed by attribute value, and not by the name of
the attribute.

393

Technical Handbook 5.8 - 3.6. Viewconfig elements

Secondary sort criterion Like “Primary sort criterion,” except this is only used if the
position computed from “primary sort criterion” is the same for
two or more attributes.

Script for sorting This script is used if “Script for sorting” was selected as the
primary or secondary sort criterion.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain
display options to be selected. The “KB” tab features options that only apply to the Knowledge
Builder and are not used in the web front-end. The “Context” tab can be used to configure for
which object types the Properties view is to be used and in which application contexts.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain
display options to be selected. The “KB” tab features options that only apply to the Knowledge
Builder and are not used in the web front-end. The “Context” tab can be used to configure for
which object types the Properties view is to be used and in which application contexts.

For the read view, the Properties view can be used on its own, but it is often also used in layout or
alternative views. In order to allow object properties to be modified, a Properties view must be
included in an Edit view.

The attributes and relations to be displayed for an object can be configured. For that purpose, it is
necessary to add property views to the Properties view which can be used to select the relevant
attribute/relation and determine in detail how these should be displayed.

3.6.6.1. Styling of a property view

Fir individuelle Eigenschaften-Konfigurationen kann es vorkommen, dass die Aufteilung des
Layouts gedndert werden muss, weil fiir eine darin befindliche Eigenschafts-View andere
Platzverhaltnisse bendtigt werden (Label vs. Eigenschaftswert). Dies lasst sich durch eine Anpassung
mit einem neuen Style unter "Style" > "Viewconfiguration-Mapper" > "class" erreichen.

Fir den "class"-Eintrag gibt es die Klasse "list", die die Aufteilung zwischen Label und
darzustellendem Eigenschaftswert bestimmt. Voreingestellter Wert ist "list-5-6". Die Eigenschaften-
View ist in ein gedachtes Raster von zwolf Einheiten unterteilt, wobei die letzte Einheit flr die
Aktion an einer Eigenschaft reserviert ist. Daraus ergibt sich ein Eintrag mit "list-N-M", wobei N+M =
11 ist. N steht fur die Breite des Labels, M steht fiir die Breite des Eigenschaftswerts.

Wenn beispielsweise das Label einer untergeordneten Eigenschaft aufgrund der Benennung mehr
Platz bendtigt, kann unter "class" der Wert "list-8-3" eingegeben werden.

Wenn das Label gar nicht dargestellt werden soll und durch die Option "hide label" deaktiviert ist,
kann unter "class" der Wert "list-0-11" eingegeben werden.

3.6.7. Property

A Property view is a display configuration of an attribute or a relation to an object. A Property view
can only be used underneath a Properties view.

394

| ROFt2 & & 4

t] Product
4 U Product information
T Text - Instance
4 . Properties - Instance
u Year of construction
u Size
W Weight
[/] Property - Instance
8] Supplier
N/ Customer instance
4 U Bill of materials
» U Further information

Configuration name

Label

Script for label

bookmark identifier

Property

Technical Handbook 5.8 - 3.6. Viewconfig elements

Property - Instance

Property @

Configuration KB Menus Styles Context

Configuration name

¥ Label

Choose sen

Script for label

bookmark identifier

Property

Query for virtual properties Choose

Choose s

4 Script for virtual properties

automatic update

Show filter Choose soe

Show new properties

Configuration for embedded meta

Configuration for meta properties

Click action

Script for visibilify Choose ses
Relation target

Display

-

Tooltip

-

Placeholder text

Script for placeholder text = P

Script for tooltip = e

Sort

Seript for sorting - s
O

Sort downward

The configuration name can be used to identify views and
panels.

The value entered here appears as the heading of the list

As an alternative to the “Label,” the title of the list can be
determined in a script.

Query for virtual properties

Script for virtual

(automatic update)

Show filter

Show new properties

Configuration for
meta properties

properties

Like “Primary sort criterion,” except this is only used if the
position computed from “primary sort criterion” is the same for
two or more attributes.

embedded

395

Technical Handbook 5.8 - 3.6. Viewconfig elements

Configuration far meta
properties

Click action

Tooltip

Placeholder text

Script for placeholder text

Scipt for tooltip

Script for visibility This script is used to define whether the list should be displayed.

Script for sorting This script is used if “Script for sorting” was selected as the
primary or secondary sort criterion.

Sort downward Generally the contained attributes/relations are displayed in the
order specified by the order of the included property view. As it
is however possible to specify higher-level types (e.g. “User
relation”) here, the properties grouped in this way are sorted by
name in ascending order. You can change this order by activating
the “Sort downward” check-box.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain

There are additional options for relations:

396

Technical Handbook 5.8 - 3.6. Viewconfig elements

o Property
: N EF Product has part Gc
1 Product

4 U Product information
T Text - Instance
- . Properties - Instance
W Year of constructio v Label

Configuration KB Menus Styles

Configuration name

G size Script for label H se
& Weight o _
bookmark identifier = | ‘
U Product has part
W supplier Property = Product has part
I Customer instance Show filter = e
» I Bill of materials _ _
i i Show new properties = | ~ ‘
» U Further information
Configuration for embedded meta properties= | ‘ .
Configuration for meta properties = | ‘ -
Click action B | ‘ a
Script for visibility = see
Relation target
Relation target view = | V| III
Relation target filter = cT
Relation target type filter = s
Script for relation target label = aee
ow relation target =
Sh lati g =0d
Display

-

Tooltip =

Placeholder text =

Script for placeholder text

Script for tooltip

Sort

Script for sorting

Sort downward

Relation target view By default, a link or relation target editor is displayed in edit
mode. However, it can make sense to display e.g. a drop-down
list with pre-filtered relation targets instead. These alternative
views can be configured here.

Relation target filter To assist users with their selection of a suitable relation target, a
filter query can be placed here.

Relation target type filter If several object types have been defined as the target of a
relation, a filter on the displayed types can be configured at this
point.

Script for relation target By default, the name of the relation target object is displayed.
identifier This can be adapted here by means of a script.

Show relation target

In the “Menus” tab, you can configure additional actions for the property, while the “Styles” tab lets
you select certain display options. The “KB” tab features options that only apply to the Knowledge
Builder and are not used in the web front-end. You can use the “Context” tab to trace in which view
the Property view is used.

397

Technical Handbook 5.8 - 3.6. Viewconfig elements

3.6.7.1. Relation target filter

To support the user in finding the suitable relation target, a query can be defined for filtering
possible relation targets by means of the option "Relation target filter". When the user clicks on the
magnifier symbol, a filtered amount of relation targets will be shown.

Example:

A user wants to select product parts by year as a relation target. If only certain products (with parts
used at a certain year) need to be presented in the relation target selection, the query for filtering
possible relation targets must comprise these conditions.

o} Property
e PartsByYear L?‘f.

1™ Product
4 I Product information
T Text - Instance
4 . Properties - Instance

Configuration KB Menus Styles Context

Configuration for meta properties = |

H Year of constructio Click action = | ‘ u
¥ size Seript for visibility = -
W Weight
W7 PartsByYear Relation target

I Supplier Relation target view = | v| E

) Customer instance

Relation target filter = L PartsByYear

» I Bill of materials g v oo

» I Further information Relation target type filter = LT
Script for relation target label = sen

< 3 Show relation target =0 .

In the query, the accessed element (product) for specifying the conditions can be identified as
usual.

L Q%Product part
O\ Attribute HE “ Year of construction ‘ 'ﬁ' Value > | 2020
& Relation HR |&® Part of product o has Target 4 ":" Access parameter Accessed element

By standard, relation targets are shown in a simplified table, listed by their name. If a more detailed
table is needed, it can be configured and assigned to the property view (in this example
"PartsByYear") via the relation "apply in".

3.6.7.2. Styling of a property view

A property in a properties-list is displayed by default as follows:

398

Technical Handbook 5.8 - 3.6. Viewconfig elements

Tourism

Arrivals 2017: 249.577
Overnight stays 2017: 591.535
Beds 2017: 4153
Dwell time in days 2017 2

The label of a property is on the left side and the value is on the right side. As all view
configurations a property view can be styled, too. In the following you can see how to style a
property with an example.

For example, if you want to display the values right-aligned, you must first create the appropriate
css class:

.text-align-right .property-value {text-align: right;}]

This must then be passed as style to the individual properties for which this class should apply:

Arrivals 2017:

Extended Menus

s 10 s

text-align-right

Configuration

VOXE$

text-align-right }"

Configuration Extended Viewconfiguration-Mapper KB Context

= | text-align-right

Configuration name

Tourism

Arrivals 2017: 2459.577
Overnight stays 2017: 591.535
Beds 2017: 4.153
Dwell time in days 2017: 2

The result of the four styled properties

3.6.8. Edit

And edit view is used to manage user modification of attributes or relations.

399

Technical Handbook 5.8 - 3.6. Viewconfig elements

.Doﬁ’(i& u

™1 Instances of Product part

G Year of construction Configuration Menus = Styles Context

Configuration name

» Label = | Year of construction
Script for label = Choose -
Bookmark identifier =
Edit mode switchable =[O

Role = u
Auto save =[O
Script for visibility = Choose e

In the process, all child configurations of the properties type are displayed as form fields. An edit
view can contain exactly one child view, which is either a properties configuration or a structuring
view (layout, alternative) containing properties configurations. Changes can be synchronized with
the Knowledge Graph by means of a Save button.

Year of construction 2020 i}
-
The “Configuration” tab features options for specifying the general display of the edit view:
Role In order to use custom buttons outside the same panel (e. g.

within the footer panel of a dialog), the view role can be used to
assign the actions of custom buttons for the edit view. For this
purpose, a menu with actions must be configured and its actions
must be interrelated via the view role to the edit view.If no
custom role is specified, the implicit role of an edit view is "edit".

400

Technical Handbook 5.8 - 3.6. Viewconfig elements

Auto save This option is available since i-views 5.4. It is also known as
"Micro-edit" and enables the automatic saving of changes being
made, without the need for a button press (meaning: without
the need to trigger an action of the action type "save").

To avoid low performance and erratic behavior
of property edits, the option "Auto save" should
not be used in combination with a long running
transaction.

NOTE Since a transaction leads to new entries being

added onto the web frontend session stack
each time a save action is triggered, the
performance decreases due to increasing data
amounts transferred back and forth.

Edit mode switchable (not Since i-views 5.4 and on, this option is not available anymore.

available anymore) This option enables the form mode to be "switchable". That
means, Properties are first shown in read mode only. A Switch
button then allows the user to switch to edit mode.

Only custom buttons (not Since i-views 5.4 and on, the option "Only custom buttons" is not

available anymore) available anymore. Instead, every button (except for the entry
delete buttons) needs to be configured. For example, a button
with an action of the action type "Save" must be configured for
saving actions if the option "Auto save" is not enabled.

Layout of property groups in an edit view
If a different layout is needed for edit views, there are following possibilities:

e Several Properties views can be arranged underneath an Edit view by means of an intermediate
Layout view. This allows horizontal or vertcal orientation of input elements.

e The pattern of label vs. value can be modified so that, for example, the label gets more space.
This is done by applying a style onto the properties view, containing a class reference "list-n-m",
whereas n+m = 10.

In contratst to the properties view used without an edit view, the properties
NOTE view used within an edit allows a layout pattern of 10 units in total instead of
12 units . When using 12 units for n+m in list-n-m, the edit might be scattered.

3.6.9. Form inputs

Form input views serve for retrieving user input values which are independent from the existence of
a semantic element. The input of the form input fields can be fetched and processed by means of
an action using a script, e. g. by saving as an attribute value, or used as the input of a search
compound to provide a search with parameters.

401

Technical Handbook 5.8 - 3.6. Viewconfig elements

It should be noted that in contrast to Edit views, an action with the action type "Save" has no effect
on form views and will not persist the values.

The following form input types are available:

Form input for

Boolean

Date and time

Number

Choice

String

Input with proposals

Value capturing

Checkbox for input of boolean values

A date picker that can be customized to accept either a date, a
time with hours and minutes, or both

A number spinner that can be customized to accept either
integers or decimals

Specification of a script which returns an array of character
strings or semantic elements for selection in forms of a drop-
down entry. The selection/display can be preset with an initial
value using the script.

Input field for character strings

An input field that assists the user by proposing suitable values.

Reading out form inputs using actions or scripts

To process the values from the input fields, an action or a script needs a way for addressing them.
An action can either be located in a menu at the form input itself or at a different location, whereas
a reference needs to be set up from the action to the form input by means of role assignment
("perform by"). A role assigned to a form input can also be used by a script to access the
corresponding view, which will provide the input value.

When using a view role, the identifier of the role must not contain any whitespace.
Since one view can have several roles, the roles are processed in a whitespace-
NOTE separated form. A single view role with an identifier containing a whitespace-
separated string therefore would be misinterpreted as several roles, leading to

errors.

Following application scenarios are possible:

1. Reading out multiple form inputs under a common layout using a single action, but process
each entry individually: Relating the action via a role to the form view, addressing each
individual value via an individual role by means of "this.viewsWithRole(roleName)[0].value()".

2. Reading out only one form input : Relating an action via a role to the form entry view,

addressing the entry value by means of "this.value()".

3. Reading out all form inputs at once - provided the values being of the same type or the order
of values is not important: Relating the action via a role to the layout view, assigning one role to
all form inputs and addressing all values at once by means of "this.viewsWithRole(roleName)",
then processing the array items.

402

Technical Handbook 5.8 - 3.6. Viewconfig elements

Addressing all form inputs by assigning one role to all form inputs and the
NOTE action by means of "this.value()" will not work since roles must be uniquely
assignable in the web frontend.

Example:
A layout view contains the form inputs for "choice", "boolean" and "string".

e |f an action only needs to access one dedicated form input, e. g. the string input field, the input
view gets a role called "inputField" and the action is related to the role "inputField" via the
relation "perform by". Then the action of the action type "Script" gets a custom script called
"Script (custom)". In every case, "this" is the view the action is located in or - if a role is
assigned - it is the view interrelated via the role. The value of the input field is then read out by
means of "this.value()".

e If all three entries need to be read out individually by means of one action at once, the action
needs to be related to the layout view via a role ("form") and the individual form inputs each
get their own role. To address the input field again in this case, the action is related to the
"form" role via the entry/relation "perform by". The action has the action type "Script" and the
"Script (custom)". Now, "this" is the layout view. To access the input field within the script, the
view with the assigned role "inputField" needs to be addressed. The value of the input field is
then read out by means of "this.viewsWithRole('inputField')[0].value()". Since "viewsWithRole"
returns an array, the one and only input field view is the first (one and only) array element with
the index number 0.

Forms as input for search compounds

Forms can also be used to act as parameter input for a search. To achieve that, a form input needs
to be be linked to a search compound by the "Input of" relation. Furthermore, the "Parameter
name" must be configured. It determines which search parameter the form input relates to. If the
form input is marked as "Required" and no user input is provided, the search will not be executed.
Otherwise, the search parameter is deactivated if the input is empty. For further details refer to the
chapter on Search compounds.

Input validation

Form inputs can be marked as "Required". In this case the input field receives a designation to
indicate to the user, that an input is mandatory. This also influences how a missing parameter is
handled if the form input is part of a search compound (see above).

The second validation mechanism is the "Script for validation" that can be configured for any form
input. Consider the following example for a script that validates the input of a number field:

function validateFormValue(value) {
if (value < @ || value > 10) {
this.setValidationErrorMessage('Only values between @ and 10 are
allowed. ')

403

37617f13-ef07-44db-b6a8-12b7b0cb5799

Technical Handbook 5.8 - 3.6. Viewconfig elements

return false

}

return true

The validation error message is presented to the frontend user who can then correct his input. If
the validation script returns "false", the invalid value will not be accessible by any scripts and will
also not be passed to the query, if the form input is part of a search compound.

It is also possible to access the values of other form inputs by using any of the methods described
above. It should be taken care though that there is no circular dependency between the validation
of multiple form inputs. In that case they will not be able to access each other’s values and will
receive undefined instead.

Input with proposals

For an input with proposals, there are two ways to configure how values should be derived from
user input. When specifying a "Query for proposed values", the user will be presented with the
query results. To make the query results dependand on the current user input, the predefined
parameter "searchString" can be used. Alternatively, a "Script for proposed values" can be provided:

function valueProposals(searchString) {
return [

new $k.TypeAheadProposal(searchString.toUpperCase()), // a function
applied to the user input

new $k.TypeAheadProposal(42, 'forty-two'), // a static number with
label

new $k.TypeAheadProposal($k.Registry.element('myElement')) // a
semantic element of the knowledge graph

]

In any case, there are two additional configuration options:

e Threshold: Defines the number of characters the user must type, before the first request for
proposals is sent. For expensive queries, this value should be chosen sufficiently high to reduce
performance impact. The default threshold value is 3.

e Restrict input to proposals: If this checkbox is set, the user will not be able to submit any value
that was not proposed to him. Otherwise, the user is free to edit the chosen proposal before
submitting.

3.6.10. Table

A table view is a display configuration of a list of objects. A table view can be used independently at
different points and its content depends on the context.

404

WO:EXK

Technical Handbook 5.8 - 3.6. Viewconfig elements

personTable

¥ Instances of Person
» | £ First name

» N} Last name

Configuration name

» label

Click action
Script for label

Without initial sorting

Sort order

Without column filtering

Page size

Label for empty table
Script for visibility

Restore last column filtering/sorting =

Configuration

KB Sort Table Rows Context

= | personTable |

| -

I
DI__EI_D

Choose

The “Configuration” tab features options for specifying the general display and behavior.

Action (selection)

Number of rows (page size)

Automatic search

Label

Configuration name

Without column filter

Script for label

Table of

The action configured here is executed if a row is selected in the
front-end (e.g. by clicking).

This specifies the maximum number of rows that are displayed
on one page.

Options: * Automatic search * Automatic search up to limit * No
automatic search

A table is displayed with the heading in the front-ends. By
default, the name is generated from the context. You can use
“Label” to display a value other than the name.

The configuration name can be used to identify views and
panels.

Here you can determine whether a column filter is supposed to
be displayed between the table header and table content. The
column filter can be used to filter the query result for the column
by entering a term.

Instead of using the “Label,” the displayed attribute name can be
determined in a script.

This references the view whose results are displayed in the
preceding table. This can be a query, of a query result view or
another table.

On the “Sorting” tab, you can configure the sort response using the columns.

The “Table” tab has two sub-items: “Menus” and “Styles.” In the “Menus” tab, you can configure
additional actions for the table, while the “Styles” tab lets you select certain display options that

405

Technical Handbook 5.8 - 3.6. Viewconfig elements

affect the entire table. In the next tab, “Columns" > "Styles" you then select the display options for
columns accordingly.

The columns of the table are defined using sub-configurations, which are explained in the next
section. The order of the columns can be changed using arrow buttons in the tree view on the left
side.

The column view represents the configuration of an entire column. Here you can influence the
display and the response (e.g. filtering).

The content of the cells (“column element”) in turn is defined by the sub-configuration as described
in the next section.

WORXE ¥

Column
First name
N Instances of Person

4 | { First name D

\ ¢ First name

"ELast name Configuration Operators Menus Styles Context

Configuration name =

» label = |

L]
[
=
=]

I
m

Script for label

bookmark identifier

Column width (%)

Standard operator

Search string

Do not show

Mandatory for query

I
0 o Y O

Not sortable

Script for input field preprocessing = ese

Mapping element

Configuration name The configuration name can be used to identify views and
panels.

Label Column name displayed

Script for label Instead of using the “Label,” the displayed attribute name can be

determined in a script.

bookmark identifier

Column width (%) Width of the column in percent of the width of the table

Standard operator This is where the default is selected from the possible filter
operators If nothing is configured, the first one in the list is
selected.

Search string

406

Do not show

Mandatory for query

Not sortable

Script for preprocessing input
fields

Search text

Technical Handbook 5.8 - 3.6. Viewconfig elements

This is used to hide a column. It is nonetheless calculated in the
background and can be used e.g. for sorting.

In the default setting, the columns can be sorted by clicking on
the header. This function can be deactivated here.

The text that was specified in the column filters can be
influenced via a script here.

The text for column filtering can be specified in advance here.

The column element sub-configuration determines the content of the column. The content is
typically derived from the elements to which this table refers.

| POFt2 & & 4

B Instances of Person

4\ £ Column - Instance Configuration

\ ¢ Column element - Instance

» N £ Last name

Do not show =
Do not create
Do not search
Emphasis

Mapping element

Configuration name

Column element
Column element - Instance

Menus = Styles Context

|
O
O
O
|
|

Content

Property = | ‘ .d:
Quality =0

Structured query element = P
Script = soe
Use hits =0

Configuration name

Do not show

Do not create
Do not search

Emphasis

Mapping element
Property

Quality

The configuration name can be used to identify views and
panels.

This is used to hide the column element. This is nonetheless
calculated in the background and can be used e.g. for sorting or
filtering.

This lets you choose if the content of the column element is to
be highlighted by underlining it.

The property of the element to be displayed in this column

407

Technical Handbook 5.8 - 3.6. Viewconfig elements

Structured query element As an alternative to “Property,” the content to be displayed can
also be determined using a structured query.

Script As an alternative to the first two method, the content to be
displayed can also be derived from the element via a script.

Use hits Allows the use of all meta properties of a search result (“hit”),
such as quality, cause etc.If the search results are processed
further by a script, JavaScript object Sk.SemanticElement or
Sk.Hit is forwarded.

3.6.10.1. Menus in tables

Menus can be configured at different points of a table. The selection of the configuration location
determines whether a menu is available for the entire table, for the column of the table or for every
column element:

Configuration location Menu with actions for the element
Table: "Table" tab > “Menu” tab Actions for the entire table:
woex w
\:é Tabelle - Objekt .:;5
Menis ~ Styles
DPXE S &)

[TabellenMen;

nen Styles KB -

- Objekt 1
[e Retson et Objekt 2
Objekt 3

Objekt 4

Objekt 5

408

Technical Handbook 5.8 - 3.6. Viewconfig elements

Column: “Menus” tab Actions are displayed in the column description
o
e L , of a table:
i Tabelle - Objekt Spalte
\ ¢ Spalte - Objekt Spalte - Objekt Gc
Name 8¢ Graphisch darstellen
BIET T X
[SpaltenMen @ =
Konfiguration
e = Objekt 1
» Beschriftung =
Ersetzt Standardmendi =0 .
et e | | Objekt 2
P o o -
Objekt 4
V Objekt 5

409

Technical Handbook 5.8 - 3.6. Viewconfig elements

Configuration location Menu with actions for the element

Column: Menu as a subelement of a column Actions are output in every row in a column:
wolxed W

v Menu in a separate column:
"\ e i
e -~ o x
- Name
Mend (Zelle)
’ | Objekt | =
Objekt 1 :{ Graphisch darstellen
o Ohbjekt 2 ::. Graphisch darstellen
===
Objekt 3 ::. Graphisch darstellen
Objekt 4 :{ Graphisch darstellen
Ohijekt 5 ::’ Graphisch darstellen

Menu element in the same column as the
column element to be displayed:

Name

| Objekt 7| | =

Obiekt 1 :{Graphisch darstellen
jekt 1,

Graphisch darstellen
Objekt 2, of orr

Graphisch darstellen
Objekt 3, oL o

Graphisch darstellen
Objekt 4, 8f 6w

Obiekt 5 :{Graphisch darstellen
jekt 5,

410

Configuration location

" ”
Column element: Menus
[Jors-s &£ 3 2 w
i Tabelle - Objekt
4\ hat Zielobjekt, Name
N i Name
\ ¢ hat Zielobjekt G
D08%
 SpaltenElementMena
]
Konfiguration = Aktionen ~Styles KB
CTET N !
Graph
]
K = Graph
=
o= |
Skrip= | Auswahlen
3.6.11. Search

Technical Handbook 5.8 - 3.6. Viewconfig elements

Menu with actions for the element

tab The action is output after every value: Output

for one
\:
Name
&)
(7] Objekt 1 :fJ

KB Kontext

%

Objekt 2

%

Objekt 3

%

Objekt 4

object

Graphisc
Graphisc
Graphisc
Graphisc

raphisc

per column element:

h darstellen

h darstellen

h darstellen

h darstellen

h darstellen

Objekt 5

Output for several objects per column element,
e.g. in the display of target objects of a relation.
The target objects
(configuration as shown on the left). In this case,
you should preferably use icons to save space;
alternatively, the label can be replaced with a
(mouse-over display).

are comma-separated

tooltip

Name, hat Zielobjekt

| Objekt 7
Objekt 1, :f Objekt 1a, :!. Objekt 1k, :‘. Objekt 1c :‘.

Objekt 2, & Objekt 2a, :{ Objekt 2b, :f Objekt 2c :{

Objekt 3 :‘.

Objekt 4 :‘.

Objekt 5 :‘.
For relation targets, the link to
the target object can be

NOTE . u
suppressed by using the “no

link” style attribute.

This section describes various views that can be used to implement a search - from the "all in one"
search to more complex scenarios with specialized views that are distributed across several panels.

Since version 5.8, the so called search compound has been available, which makes the search field

411

Technical Handbook 5.8 - 3.6. Viewconfig elements

view and the search results view no longer necessary.

3.6.11.1. Search view

A search view allows search pages to be created on which the search query and the search results
are displayed at the same time. If the search does not have any parameters, or only optional ones,
then the search is run immediately and the results displayed directly. If there are obligatory
parameters, then the search is only run following a user input.

Kreis Wahlberechtigte Q
MName Wahlberechtigte Wihler Giiltige Stimmen Ungiiltige stimmen
Aarbergen 4,588 1.999 1.983 16
24,02.2013
Abtsteinach 2.040 1.412 1.389 23
27.03.2011
Ahnatal 09.11.2014 8.657 2.839 2.790 49
Alheim 28.09.2014 4,016 2.609 2.573 36
Allendorf (Eder) 4,212 1.335 1.329 6
14.08.2011
« 1-5/532 »

A search view is created in the Knowledge Builder for a simple search page.

412

Technical Handbook 5.8 - 3.6. Viewconfig elements

™) Alternative: Alternative - Objekt
WOLXE S

N\ Typen von Suche
N Text - Objekt
N Text - Objekt
4) Alternative - Objekt
» I0J Direkt ausgefuhrte Suche
4 \J Suche mit Parametern
&3 Text - Objekt
& Suche - Objekt
4 I Suche mit Benutzereingabe
NG Text - Objekt
N Suche - Objekt
» I Suche mit Skriptparametern
» I Suche mit Gberschreibbaren Skriptparameter:

4 Abfrage

- o %
2]
| Konfiguration | Menas Styles KB Kontext Alles

=[O Strukturabfrage .

= | name

= Auswhlen voe

= |Benutzereingabe (deaktiviert, wenn leer) v

= |xsdistring ~

= | Kreis

= | wahlberechtigte

= Auswahlen .oe

= | Benutzereingabe (deaktiviert, wenn leer) >

= |xsdinteger ~

= | Wahlberechtigte

=0

= Auswhlen voe

= | Auswahlen oee

= | Auswahlen oee

= showcaseElections

A

4 Parametername
Skript
Wertermittlung
Typ

» Beschriftung
Reihenfolge

4 Parametername
Skript
Wertermittlung
Typ

» Beschriftung
Reihenfolge

» Parametername

Beschriftung

Konfigurationsname

Hits verwenden

Skript fiir Beschriftung

Skript fiir Sichtbarkeit

Skript fiir Tabellenkonfiguration

Tabelle

The “Configuration” tab provides options for determining the general display of the search:

Query

Parameter name

Script

Value determination

This is where you configure the query that is to be executed
when the query is executed.

Name of a search parameter. All parameters that are configured
in the search must also be configured at this point to ensure no
errors occur in the search.

If the parameter value is to be determined via a script, this has to
be configured here.

Here you specify how the parameter value is to be determined. *
“Script” (value determined via script) * “Script, can be
overwritten” (the value is determined via script, but is
overwritten by user input on the front-end) * “User input
(optional)” (the parameter value is copied from the user input if
it is set. It is displayed to the user as optional in the front-end.
Please note that the search is then configured in such a way that
this parameter does not have to be set) * “User input
(obligatory)” (the user must enter a value in the front-end,
otherwise the search is not executed) * “User input (deactivated
if blank)” (the parameter is set for the search if there was no
user input. Otherwise the parameter is deactivated when the
search is executed)

413

Technical Handbook 5.8 - 3.6. Viewconfig elements

Type Data type of the parameter

Label (Parameter) Name of the parameter in the front-end

Order The order in which the parameters are displayed in the front-end

Label (Search View) The value entered here appears as the heading of the search

Configuration name The configuration name can be used to identify views and
panels.

Use Hits Determines whether topics or hits are generated.

Script for label As an alternative to the “Label,” the title of the group can be

determined in a script.

Script for visibility This script can be used to specify whether the group is supposed
to be displayed.

Script for table configuration As an alternative to “Table”, a script can be used to determine
the table displayed at this point.

Table The search results are displayed in the front-end in the table
configuration that is configured here.

Actions can be configured for the search in the “Menus” tab, while the “Styles” tab allows certain
display options to be selected. The “KB” tab features options that only apply to the Knowledge
Builder and are not used in the web front-end. The “Context” tab can be used to configure for
which object types the search view is to be used and in which application contexts.

3.6.11.2. Search compound

For synchronizing the state of multiple search related views use a so called Search compound. A
simple search compound consists of a query definition and a table view that is used as its output.

e
W Ordnerstrukturelement -
* W Ordnerstrukturelementty
* W Paneltyp
» W Relationszielansicht (Fige Konhgtration | IS
» W Relationszielansicht (Spa Konfigurationsname
W Schnellsuchelement Abfrage
Vispalte
Ui spaltenelement
W Term
» W Termart
+ W verbund
W spiegelverbund
W suchverbund
W verkniipfung

' search-compound1

£ compound simple search ses

Filter Compound > Facets

Filter

m

.

Eingabe part 1 search

Parametername searchString

4 Fingabe

«q

Parametername

¥ || Panel-Konfiguration Ausgabe part 2 table
W Relationszielsuche

¥ palla

Ausgabe '
If input is required, one or multiple form input fields can be used, replacing the search field views
used in the past. For each input field, the corresponding parameter name that is used in the query
definition must be specified. By using the various types of input fields, the user input can be guided,
for example by providing a conveniant date input.

414

f3db080f-afa9-4707-ad37-678e1fdb3098
02f508fe-5f5c-48f4-8ecd-e59b6ee49b9e

Technical Handbook 5.8 - 3.6. Viewconfig elements

Filtering of search results is done by means of a facet view.

Any number of inputs, outputs and filters can be specified, even views that are not always visible.

New search compounds can be created from the context tab of any of the views involved.

3.6.11.3. Facet view

Display

Skill-Level Qualitst Name skill Sprache Branchenerfahrung
1 Trained @o

| 100% | Scrum master (Expert) Deutsch (Expert), Landwirtschaft, Medien &
2 Experienced ©o Franzesisch (Advanced) Marketing
3 Advanced @o
oot @o | 100 | Scrum master (Advanced) Deutsch (Advanced) Bildung, Industrielle

Englisch (Expert) Fertigung
Skill [100% | SAP Financial Services, Collection and Deutsch (Experienced) Kommunikationsdienste
Accelerate IT + ®o Disbursements (Advanced), Scrum master (Trained)
. 5

Agle Skills DO [100 | Agile IT (Expert), Scrum master (Experienced) Deutsch (Experienced), Landwirtschaft

Agile coaching ©o Englisch (Advanced)

Agile transformation (a]

9 o [100 | Agile transformation (Expert), Retail/Consumer Deutsch (Expert), Finanzdienstleistung

Product owner (1]=] Banking (e.g Accounting products) (Trained), Scrum Franzdisisch (Trained),

Scaled Agile [Ya) master (Expert) Spanisch (Experienced)

serum master o [100 | Agile IT (Experienced), Scrum master (Trained) Bulgarisch (Experienced), Karten und Zahlungen
At ©o Deutsch (Advanced),
Banking spezific (product) knowledge + ©o Englisch (Experienced)
1€ Methodalogy Experience = (2]=] [100 | Scrum master (Expert) Deutsch (Expert), Englisch Kommunikationsdienste
Language skills + @®o (Experienced)
P skills + [u]

Bt il B L2 [1005 | Agile transformation (Expert), Scaled Agile Arabisch (Expert), Englisch Gastranomie und
SAP Finance + (2]a] (Advanced), Scrum master (Expert) (Advanced) Freizeiteinrichtungen,
SAP Logistics Value Chain + [1]Ja] Gesundheitswesen,
Chemikalien

SAP S/AHANA + [2]a]

[100 | SAP Fiori (Advanced), Scrum master (Expert), Value Deutsch (Advanced), Gastronomie und
verfiighar Realisation Method (VRM) (Experienced) Englisch (Experienced) Freizeiteinrichtungen,
= s 1e) Grundmetallerzeugung

Configuration

A facet view can be created as a sub configuration of a panel, but not within another view
configuration elements. The panel of the facet view needs to influence the search result panel.

4 [user

4[| Hauptfensterpanel

b Titel
» [| P:Oben Konfiguration = Erweitert Menids Styles KB Kontext
“«0 PHauptbereich Konfigurationsname = |Facetten

» | P:Hauptbereich-Start
4 P:Hauptbereich-Suchen

¥ Beschriftung

b __.'| P:Personensuche ¥ Abfrage jol Strukturabfrage nach allen Angestellten
4 [| P:Facettensuche

% p:Facettensuchelabel

4[| P:Facettensuche-Body

4 || Pilinks-Facettensuche

P:Facette
4 W Facetten
T Skill-Level

S skl

4% verflgbar

W ja

415

5cfd22d6-93e3-4814-85dd-6f52720f8855

Query

Label
Configuration name

Script for label

Technical Handbook 5.8 - 3.6. Viewconfig elements

Here a query must be configured when the facet view is not
linked with a search field view. If, for example, the facets are
intended for influencing a search result table containing
employees, the query must output the employees as source for
the facets. If the facet view is linked to the search field view, no
query needs to be defined.

The title to appear above the facet view in the front-end.
Configuration names can be used to identify views and panels.

As an alternative to a permanent label, the title can also be set
via a script (to be found in the tab "Extended").

In order to configure facets, it is necessary to create facet views and attach them to the facets view.

These can be arranged in multiple hierarchical orders.

FLxX2 ¥

4 user
e Hauptfensterpanel
» Titel
4 P:Oben
4 P:Hauptbereich
4 P:Hauptbereich-Start
e P:Hauptbereich-Suchen
4 P:Personensuche
4 P:Facettensuche
4 P:Facettensuchelabel
- P:Facettensuche-Body
E P:Links-Facettensuche
4 P:Facette
4 . Facetten
7 skill-Level
57 skl
4 %% verfigbar

Wja

L&
F AN
h\/4
Konfiguration = Erweitert
Konfigurationsname =
» Beschriftung = | Skill-Level
Term-Operator = | oder v

Termart

416

Technical Handbook 5.8 - 3.6. Viewconfig elements

Query for determining In case a term hierarchy is needed, the parent term must be configured
the parent term by this query. The child element is used as input element here fore. In the
guery, the label "parentTerm" identifies the parent element.

:
o° Relaton 4 & hat Oberbegriff | @) hat Ziel a 55:5':"5'

e For the facet hierarchy to be able of being built up,
the "query for term detection" needs to be
configured for comprising both terms and parent
terms. The herein contained parent terms are
subsequently used for building up the hierarchy by
means of the "query for parent term detection".
Therefore, testing the queries is advised.

NOTE

e At the moment, only terms of the same type can
build a hierarchy.

e As usual in hierarchies, you can not display infinite
loops.

Query for determining Structured query that is used to form the facet. This query is obligatory

the term when the standard behaviour comes into account or when it is set
dynamically (which means that it keeps empty in case of static mode).
The query must be specified as follows: For narrowing down the search
results, facets can be defined for relation targets. The input element type
is equal to the type of the search results from the query of the query
view. The terms to be found must be identified by the label "term".

* Livgeioe

o Relation 4 | in Skill Level hat Ziel 4n Skill Level | Bezeichner| term
al

In principle, everything is possible like in all structured queries. It is also
possible that the label "term" is used several times within one structured
query. In this case, the behaviour of the terms specified by the values of
"Term operator".

Hide from number of The facet is hidden if the search results underlying the facet exceed this
terms number.

Label Ideally, a label is always specified. If not set, the name of the input
element of the query is used.

417

Display child terms
initially

Configuration name

Display blank terms

Maximum number of
terms

Do not display term
number

Term operator

Technical Handbook 5.8 - 3.6. Viewconfig elements

If the facet has a hierarchical structure, you can use this option to define
whether the sub-facets should be displayed initially. Per default, the child
elements are displayed after the parent element has been selected.

Views and panels can be identified via a configuration name.

If no results are found for the facet, it is hidden by default. This option
ensures it is displayed nonetheless.

Describes the maximum number of terms the facet can have. per default,
all terms are displayed.

In the front-end, the number of found terms is displayed right behind the
facet title. This option deactivates this.

At this point it is possible to configure how the terms are linked to each
other. You can use the “And” or the “Or” logic that applies on the search
result regarding the selected facets.

418

Technical Handbook 5.8 - 3.6. Viewconfig elements

Term type If no term type is selected (default behaviour), the terms will be detected
by the query of the facet configuration. In the query, relation targets or
attribute values can be defined for terms. Additional to the default
behaviour following settings are available:

¢ Dynamic: The value range of the terms are detected automatically.
The values used for term detection must be identified by the label
"terrmValue" within the "Query for term detection".

e Static: All terms to be displayed must be configured indiviudally. For
every term a query needs to be configured that specifies the possible
hits of the main query.

Example of a static facet:

4 [55) user =
4 Hauptfensterpanel A4
» Titel
» [/ P:Oben Konfiguration ~ Erweitert
4 [C) P:Hauptbereich

» [_) P:Hauptbereich-Start

Konfigurationsname

4 [7) P:Hauptbereich-Suchen 2 LEETE S verfigbar
» [P:Personensuche Term-Operator = | oder v
4 [PFacettensuche [Temm = | statisch v]
» [P:FacettensucheLabel

4[] PFacettensuche-Body
4 [PiLinks-Facettensuche
4 (W] P:Facette
4\ Facetten
G skill-Level

W Sk
4 % verfugbar
L]

Each term of the facet needs a label for display:

4 5 user .
4 || Hauptfensterpanel

» Titel
» P:Oben Konfiguration Erweitert
4) P:Hauptbereich
» P:Hauptbereich-Start
4[] P:Hauptbereich-Suchen

» P:Personensuche

mn

Konfigurationsname

]
®

[» Beschriftung

4[| P:Facettensuche
» [P:FacettensucheLabel
4[] P:Facettensuche-Body
4 [P:Links-Facettensuche
4 (W] P:Facette
4\ Facetten
G Skill-Level

4 W verfugbar
Wi

The query within the tab "Extended" defines the applicable criteria for
the facet:

+

O Attribut HR L Wert = M
Sort terms in By default, the terms found for a facet are sorted in ascending order. This
descending order option reverses the sort order.

419

Technical Handbook 5.8 - 3.6. Viewconfig elements

Sort terms by number The facet terms are generally sorted in alphabetical order; with this
option, they are sorted by the number of results found.

Faceting for attribute values

Search results can be faceted concerning predetermined attribute values, for which the term type "
static " must be set. If the term type "static" is chosen, the terms must be added as a
subconfiguration within a facette by clicking on the button "link new". For this purpose, the
configuration is built up as follows:

1. As usual, the structured query of the facette contains the elements to be filtered, including the
identifier "term" at the property:

= @ Task
N Attribute 4R | Progress [%] | @ ldentifier | term

Example of a query for term identification with attribute values as terms

2. The facette itself has a subordinate term element with a query for a more detailed definition of
the terms. The structured query for the terms then only contains the conditions for the
properties of the elements. An identifier is not used at this point:

= (@ Task
£\ Attribute ¥R | Progress [%] | ¥ Value < |50

Example of a query of a static term (predetermined attribute value)
Notes:
o The labeling of the facet term sub-configutaion is obligatory. If no label is set, the facet

term will not be displayed.

o For the static term, a term element is needed. If a facet element is used, the facet term will
not be displayed either.

3.6.11.4. Search field view

NOTE Search field views are deprecated in favour of Search compounds in combination
with Input fields.

420

37617f13-ef07-44db-b6a8-12b7b0cb5799
02f508fe-5f5c-48f4-8ecd-e59b6ee49b9e

Technical Handbook 5.8 - 3.6. Viewconfig elements

A search field element is used, if only a search slot and no search results is to be displayed in a
certain place. Configuration takes place as for the search view but without the configuration for
displaying the results.

Configuration Extended KB Menus Styles Context

I T A

Query for proposed values = Choose

Script for proposed values = Choose

Sort order = | |
4 Query = O Structured query sen

| searchString |

Script for value determinatior= ses

4 Parameter name

Script for parsed value

Value determination = | Script, rewritable overwritable by user input b
Value disposition = |mandatory v
Type = |xsd:str\ng >

-

Label =

bookmark identifier

-

Tooltip

Query for proposed values = (1)
Script for proposed values = .o

Sort order

4 Parameter name

The “Configuration” tab provides options for determining the general display of the search field:

Query This is where you configure the query that is to be executed
when the query is executed.

Parameter name Name of a search parameter. All parameters that are configured
in the search must also be configured at this point to ensure no
errors occur in the search.

Script If the parameter value is to be determined via a script, this has to
be configured here.

421

Value determination

Technical Handbook 5.8 - 3.6. Viewconfig elements

Here you specify how the parameter value is to be determined.

e “Script” (value determined via script)

e “Script, can be overwritten” (the value is determined via
script, but is overwritten by user input on the front-end)

e “User input (optional)” (The parameter value is copied from
the user input if it is set. It is displayed to the user as
optional in the front-end. Please note that the search is then
configured in such a way that this parameter does not have
to be set)

e “User input (obligatory)” (The user must enter a value in the
front-end, otherwise the search is not executed)

e “User input (deactivated if blank)” (The parameter is set for
the search if there was no user input. Otherwise the
parameter is deactivated when the search is executed)

Query for proposed values, Proposed values are possible elements or strings that are offered

script for proposed values

Type
Label
Order
Label

Configuration name

Script for label

to users in a list at the search slot. These in turn can be selected
as search string input (also known as “type ahead”). For
configuration, a query or a script can be placed on the
parameter. If a structured query is used, the names of the
elements found are displayed as default values on the front-end.
+

e B) © roe e S Py
In this example, only subjects belonging to "product class" would
be listed as proposals, represented by their primary name. In
detail, a query allows to define which attributes of the element
should be used (it doesn’t have to be the primary name in every
case). A search pipeline can be used to combine arbitrary
conditions (structured queries) with arbitrary attributes
(queries). A search pipeleine needs a 'searchString' parameter
for input. A script (see template in the Knowledge Graph) can
also be used to deliver labels/strings as fixed values only (that is,
without a mandatory reference to the Knowledge Graph). The
"elementld" and "iconLocator" keys are optional.

Data type of the parameter

Name of the parameter in the front-end

The order in which the parameters are displayed in the front-end
The value entered here appears as the heading of the search

The configuration name can be used to identify views and
panels.

As an alternative to the “Label,” the title of the search field view
can be determined in a script.

422

Technical Handbook 5.8 - 3.6. Viewconfig elements

Search field elements can be combined with search result views and facet views. To ensure that the
results of a search from a search field element are shown in a search result or facet view, the
actions must be configured accordingly. The simplest option is to configure the panel that contains
the search field element so that the actions are executed in a panel that contains a facet view or a
search result view.

Konfiguration Layout Kontext Alles

P_Body_Query_Facets

Skript fiir Zielobjekt = | Auswihlen soe

Aktionen aktivieren in Panel

4 beeinflusst

| P_Header_Query ‘

|Festg elegte Ansicht v | E

Skript fiir Start-Wissensnetzelemer = e

O

| Kc

Start-Wissensnetzelement nicht it= [

Konfigurationsname

Paneltyp

Slider

Start-Wissensnetzelement

Search_Params

Attribut oder Relation hinzufiigen

Sub-Konfiguration

If you want to connect all three views to each other, you activate the actions of a search field
element in a panel that contains a search result or facet view as described above or you configure
this panel so that the other result view panel is influenced by this panel.

423

Technical Handbook 5.8 - 3.6. Viewconfig elements

Konfiguration Layout Kontext Alles

Aktionen aktivieren in Panel = ‘ | '
4 beeinflusst = P_Body_Query Results

Skript fiir Zielobjekt = sen
Konfigurationsname = ‘ P_Body_Query_Facets ‘
Paneltyp = ‘Festgelegte Ansicht V‘E
Skript fiir Start-Wissensnetzelemer= [I1]
Slider =0
Start-Wissensnetzelement = ‘ | .’:

Start-Wissensnetzelement nicht at= [

Sub-Konfiguration = Query_Facets

Attribut oder Relation hinzufiigen

3.6.11.5. Search result view

NOTE Search result views are depre